
Bull. Nov. Comp.Center, Comp. Science, 22 (2005), 23–40
c© 2005 NCC Publisher

Acceleration of the numerical simulation programs∗

A. Cherkasov, M. Gorodnichev, S. Kireev, V. Markova, A. Merkulov

Abstract. The basic means and methods to increase the efficiency of the sequen-
tial numerical simulation programs are considered. The main components of the
modern hardware and software which affect the programs efficiency are discussed.
The most important guidelines and advices for application programmers are out-
lined.

1. Introduction

Many researchers, when developing the numerical simulation programs, miss
the possibility to use simple but effective means to increase the efficiency
of their programs. Here are factors that affect the program performance:
the architecture of the target microprocessor; the existence and the use of
specialized libraries; tuning of the compilation process. In this paper, the
most productive and effective ways for taking into account the above factors
are shown. Note, that we put aside an important question of choosing
the algorithm of problem solution. Only technical aspects of the algorithm
implementation are considered. This paper is based on the experience of
the researches of the ICM&MG, the Supercomputer Software Department,
and the Siberian Supercomputer Center in the field of development and
optimization of numerical simulation programs.

The paper consists of four parts. The first part contains a brief descrip-
tion of the main components and features of the microprocessor architec-
ture with Opteron 240 and Alpha 21264 processors used for illustration.
The second part is devoted to programming, the main “manual” optimiza-
tion techniques being given. The usage of specialized libraries is discussed
in the third part. The fourth part describes compilation of programs and
automatic optimization with compilers.

2. The architecture of the superscalar microprocessors

A set of instructions of superscalar processors contains no explicit instruc-
tions for parallel processing. Detection of independent instructions and their
scheduling among execution units are carried out at a hardware level during

∗Supported by the grants: the Dutch-Russian Project “High Performance Simulation
on the Grid”, Contract NWO-RFBS 047.016.007; the Dutch-Russian Project “Project
Investigation of Plasma Induced Cluster Formation and Thin Film Deposition”, Contract
NWO-RFBS 047.016.018, RFBR 03-07-90302 and financed by the SSCC.



24 A. Cherkasov, M. Gorodnichev, S. Kireev, V. Markova, A. Merkulov

the run time. The processor core contains a number of execution units to
organize parallel execution of independent operations. Each execution unit
is able to carry out a certain class of operations. Units are staged and can
also be several units bearing the same functions. The practice shows that
the quantity of executing commands is less, as a rule, at any moment, than
that of the execution devices. This is caused by the following reasons:

• the low rate of loading the new commands and the data from memory
and storing the results of the work;

• the data and the control flow dependencies between neighboring com-
mands.

The gap between processor speeds and the speed of memory access is
tremendous and is the problem for all the existent computational systems.
However, the size of this gap differs through the systems and this must
be taken into account when planning hardware acquisitions. On the other
hand, the problem of slow memory access is always and mainly alleviated by
caching the most used data. And the caching system is the most important
thing to take into account when optimizing your program. To eliminate
data and control flow dependencies, the so-called “dynamic” execution of
instructions is used, and the programmer should help the processor to do
this work.

2.1. Dynamic execution of commands

Superscalar processing is possible due to the dynamic execution of com-
mands and consists of the following:

• Branch prediction. When a conditional branch is encountered, the
further direction of the control flow is predicted not waiting for the
evaluation of the condition.

• Speculative execution. Commands are fetched and executed from the
predicted branch.

• Registers renaming. This technique allows us to remove data and
register dependencies invisible to the software.

• Out-of-order execution. All the instructions are dispatched to execu-
tion units as soon as their operands are loaded and execution units are
free.

2.2. The memory subsystem organization

The hierarchical memory architecture is based on the locality principle of
the memory references with respect to space and time, which allows most
frequently used data to be placed into the fast memory of small volume. The



Acceleration of the numerical simulation programs 25

Parameter Alpha 21264 Opteron 240

Architecture RISC, 4 IPC CISC with RISC core 3×86 PC
L1 ICache 64 Kb, 2 way-set associative,

64 b line
64 Kb, 2 way-set associative,
64 b line

L1 D-Cache 64 Kb, 2 way-set associative,
3 cycles

64 Kb, 2 way-set associative,
3 cycles

L2 Cache
(shared)

1 Mb, external, joint, direct
mapped, 16 cycles

1 Mb, on-die, joint, 16 way-set
associative, 16 cycles

TLB 128 entries, fully associative 40 entries, fully associative
Program registers 32 unteger, 32 float 16 integer, 8 float, 16 SSE
Register life 72 float, 80 integer registers,

4 read, 6 write ports
120 integer, 9 read, 8 write ports,
120 float, 5 read 5 write ports

Frequency 833 MHz 1400 MHz
System bus 64 Mb, 3.2 Mb/s 128 b, 6.4 Mb/s
Functional units 2 integer, 2 float, 2 load/store 3 integer, 3 float, 3 load/store

result of this is that the memory access average time exceeds the time of
access to this fast memory just a little if the programmers do not violate this
principle. Alpha 21264 and Opteron 240 microprocessors have a convectional
memory organization: a register file, separate level 1 data and instruction
caches, the joint level 2 cache, the RAM and disk memory (parameters of
the microprocessors are specified in the table).

The first level data caches of these processors are 2-way set-associative,
of 64 K size, with cache-line of 64 b (Figure 1). This means that the cache
consists of 512 sets with 2 lines per set, and the physical address space is
broken into blocks of 64 bytes. Each memory reference to some memory
location causes the block including this location, to be entirely loaded into
the cache. Nine low bits of a block number determine the set, into one of two
lines of which a given block can be placed. It is obvious, that many memory

Figure 1. Cache memory organization



26 A. Cherkasov, M. Gorodnichev, S. Kireev, V. Markova, A. Merkulov

blocks correspond to the same set and the stride between these blocks equals
512× 64 bytes. Which of two cache lines is used for a particular block load
is determined by a certain replacement algorithm [1]. A tag, constituting
of higher bits of the block number, is used to identify which of the possible
memory blocks is now taking the cache line.

The caching system uses the buffer of associative translation (TLB) for
the fast translation of virtual addresses. The TLB stores the numbers of
memory pages, which have been recently accessed. The size of the buffer
determines the optimal quantity of actively used pages.

As it follows from the description of processor and memory architectures
and their implementation (it is known, for example, that memory imple-
mentations provide special mechanisms to speed-up, particularly, sequential
accesses to memory locations) the following architectural parameters con-
siderable affect the program performance:

• Quantity of program registers, i.e., registers into which local variables
of the program are mapped.

• Parameters of the cache memory (length of cache-line, size of the cache,
size of the TLB).

It is obvious that if the programmer ignores these parameters and the
principles (such as locality of references) which are put into the basis of the
architecture design, the program cannot run as fast as it could otherwise.

As it is hard for beginners to deal with the architectural features and
physical implementation of memory in the best way, our purpose is to pro-
vide guidelines for optimal programming that should be simple and techno-
logical.

In the following sections, the most effective recommendations of program
optimization are considered.

3. The effective use of arrays

Processing of large amounts of data is a distinctive feature of numerical
modeling programs. Reducing the time spent for memory operations can be
attained by the careful work with arrays in programs, i.e., good data layout
and access order.

3.1. The effective use of cache memory. Taking into account the hi-
erarchical memory organization and, particularly, cache parameters in most
cases allows one to notably speed-up the program. First of all, a program
should use memory by blocks not larger than the cache size in each separate
block of the code (loop, procedure). Here is an example:



Acceleration of the numerical simulation programs 27

Matrix multiplication Block matrix multiplication

for(i=0; i<n; i++)

for(j=0; j<n; j++)

for(k=0; k<n; k++)

c[i][k] += a[i][j]*b[j][k];

for(ii=0; ii<n-1; ii=ii+nb)

for(jj=0; jj<n-1; jj=jj+nb)

for(kk=0; kk<n-1; kk=kk+nb)

for(i=ii; i<ii+nb; i++)

for(j=jj; j<jj+nb; j++)

for(k=kk; k<kk+nb; k++)

c[i][k] += a[i][j]*b[j][k];

Three outer loops in the block matrix multiplication program choose
nb×nb blocks of matrices, block by block, and three inner loops multiply
these blocks. Speed-up can be expected when the sum of the sizes of three
matrix blocks is smaller than the cache size. For example, when n = 500
(the element type is double) and the block size is 50×50 (the sum of the
sizes is about 59KB) the block algorithm runs faster than the left one by
3% on Alpha and by 68% on Opteron. The example given demonstrates
the general principle of optimization only and, surely, a more effective block
algorithm could be proposed. The arrangement and addressing order does
not much influence the speed while the program works with data located
entirely in the cache. Hereinafter we mainly consider the effective processing
of data, whose size exceeds that of the cache memory.

3.2. Arrangement of arrays in memory. The following recommenda-
tions are necessary to follow when arranging the data in arrays:

• place the data used in a computational block (loop, subroutine) as
densely as possible;

• place elements of the basic types to the addresses that are divisible by
the element size.

The first recommendation obviously follows from the memory hierarchy
organization. In particular, the cache memory exchanges data with the main
memory on a line-by-line basis. Thus, for the best efficiency each cache line,
placed into the cache from the main memory should be entirely used. That
is, if one element is used, the adjacent ones should be used as well (ideally,
all the elements of the cache line). The second recommendation is called
“natural alignment of data”. It follows from the memory addressing pecu-
liarities. Addressing of unaligned data can greatly decrease the performance.
The ratio between the access speed of aligned and unaligned data differs for
different processors and data types. For example, reading an unaligned ar-
ray of doubles (8 bytes) is 60–70 times slower than that of an aligned array
on the Alpha processor, and only about 10% on Opteron. Both the dense
data allocation and data alignment are significant for the time of execution.
However, the data alignment has a greater impact, so compilers always per-
form the alignment of elements of the basic types by moving them to the



28 A. Cherkasov, M. Gorodnichev, S. Kireev, V. Markova, A. Merkulov

next aligned address. As a result, there can be unused intervals in memory.
In some cases, the aggregate size of these unused intervals can be rather big.
Aligning data by a compiler may be disabled, but the time of execution can
greatly increase. These are recommendations, helping one to keep alignment
and dense allocation of data:

• When declaring local variables or structure elements in C or elements
of a common block in Fortran, place them in descending order accord-
ing to their sizes;

• When using an array of structures in C, make the size of the structure
to be multiple of the size of its biggest unit. One can reach this goal
in two ways:

– Split the structure to the several sub-structures of optimized size;
– Extend the structure to the required size with additional ele-

ments. This way is only meaningful if additional elements are
not only extend the structure (this can be done automatically by
a compiler), but are meaningfully used.

There are two rather artificial ways of how unaligned data can appear. It is
unlikely that the ordinary programmer will use such constructs in programs
but he ought to know them:

• In C, the explicit operations with pointers are allowed. Moving the
pointer to the address that is not a multiple of the size of a unit and
its subsequent usage will lead to unaligned memory access;

• In Fortran-77, one can have data unaligned passing the array of units
of a smaller size to the subroutine and accepting it in a subroutine as
array of units of a greater size.

3.3. Going through data in memory. It is a principle of data locality
that among others, common principles determine the effectiveness of suc-
cessive processing of large sequences of data elements (when elements are
fetched one by one, processed and/or written back and the like). In par-
ticular, the more elements of the loaded cache line are used, the higher is
the effectiveness. Moreover, if the cache lines are fetched sequentially from
main memory, the hardware prefetch mechanism starts to work, loading the
cache lines beforehand and the access time reduces. Thus, the best (simple
enough and efficient) way to walk through the array of elements in memory
is to access them sequentially in straight order. In some cases, the access
time can be more decreased using the software prefetch. The general rec-
ommendations on the accessing arrays are:

• access to the elements of arrays in the straight sequential order as they
are placed in memory;



Acceleration of the numerical simulation programs 29

• avoid the cache trashing.

Further we will consider these recommendations in detail and outline the
most common cases.

3.4. Sequential access to elements of array. Applying the straight se-
quential access to the elements of one-dimensional array is obvious: elements
are accessed from the first to the last with Step 1. Ambiguity arises when
considering a multi-dimensional array. It is clear that the order of accesses
to elements is determined by the order of loops nesting. For C language, the
order of nesting of loops should be the same as the corresponding dimensions
of an array; for Fortran language, the order should be reverse:

In C In Fortran

for(i=0; i<N; i++)
for(j=0; j<M; j++)
X[i][j] = 1;

do j=1,M
do i=1,N
X(i,j) = 1

enddo
enddo

Here are the two most useful ways of making the access to elements of
multidimensional array be sequential:

• Loop interchange. If allowed by the algorithm, loops should be inter-
changed in such a way that allows one to perform a straight sequential
access to the array elements;

• Changing the order of elements in the array. If the loop interchange
is impossible, the reordering of array dimensions may help.

3.5. The cache trashing. Sometimes, the sequential access to the ele-
ments of an array is not possible due to the algorithm peculiarities. So, it
is important to know special cases of access order that affect performance.
One of the most significant cases is cache trashing. It arises when the ele-
ments placed with a “bad” stride are accessed in program nearby, and their
count is more than the number of cache lines in a set in cache memory. The
stride is “bad” if it is divisible by the number of sets in the cache multiplied
by the cache line size, or, which is the same, it is divisible by a cache size di-
vided by the number of lines in the set. For example, in Alpha and Opteron
processors, the sequential access to more than two data items placed with a
stride multiple of 32 KB will cause cache trashing. There are some the most
common examples when the cache trashing takes place:

• For several arrays, a distance between elements with the same indexes
may be “bad”:
double a[4096], b[4096], c[4096];
for(i=0; i<4096; i++) c[i] = a[i] + b[i];



30 A. Cherkasov, M. Gorodnichev, S. Kireev, V. Markova, A. Merkulov

• In a multidimensional array, the size of the first dimension, i.e., a
distance between the neighbors of the other dimension may be “bad”:
double a[1000][4096]; for(i=1; i<999; i++)
for(j=1; j<4095; i++)
a[i][j]=a[i][j]+a[i-1][j]+a[i+1][j]+a[i][j-1]+a[i][j+1];

For the majority of processors, a “bad” size equals power 2. Thus, it is a
reason for paying a special attention to the arrays, whose dimension equals
power 2, as they are a potential cause of the cache trashing. Simplest ways
to avoid the cache trashing are the following:

• changing the order in which elements are accessed;

• changing the distance between elements.

Methods of changing the order of accesses were considered in the beginning
of this section. The distance between conflicting elements can be changed
by the following:

• If the elements of distinct arrays conflict, a distance can be changed
by inserting other variables or arrays between them;

• If the elements of one multidimensional array conflict, the size of one
of the dimensions can be increased. Additional elements may be used
for keeping other program data.

Note that the best change of the distance is a cache line size (or greater).

4. Optimization of computations in loops

Computations in loops take up most of the time in numerical simulation
programs. Hence, a modification of the loop body can result in a notable
change of execution time of the program. In the sequel, the ways of loop
optimization are considered.

4.1. Common optimization techniques. There are optimization tech-
niques that are applicable to any computations, not only to loops. Within
loops, their significance can greatly increase.

1. Reducing the number of operations. Two most frequently used methods
are the following:

• arithmetical transformations;
• removing of redundant computations.

It is necessary to say that many numerical methods use coefficients in
the formulas, and these coefficients may be computed just once and
then used many times.



Acceleration of the numerical simulation programs 31

2. Replacing slow operations with faster ones. Different operations take
different processor time. For example, addition and subtraction take
less time than multiplication, and multiplication takes less time than
division and square root calculation. In certain cases long operations
can be replaced with faster ones, thus attaining the same result in
lesser time.

3. Eliminating data dependence between operations. To fully load all the
functional units of the processor, the adjacent operations must be in-
dependent and able to be simultaneously computed. Changing the
order of calculations in program can help making the adjacent opera-
tors independent.

4. Redundancy reduction in control flow.

In many cases the time spent for organization of the control flow, i.e.,
conditional and unconditional branches can be decreased due to only slight
variations in algorithm.

4.2. Techniques for optimization of computations in loops. There
are some optimization methods that are typical of loops. The latter take
into account such important features as repeated computations. Let us
consider the most widespread methods applicable in most cases of the loop
optimization.

Common loop optimization techniques.

1. Reducing the number of variables used in a loop. During the loop
execution, accesses to the same several variables happen repeatedly.
To avoid unnecessary references to memory, it is preferable that all
variables be placed in registers. As the count of program registers is
limited, the count of variables in loop has not to exceed it.

2. Eliminating subroutine calls. Calling a subroutine and returning from
it are not trivial operations that take a lot of processor time. As
they are performed repeatedly, the time can significantly increase. If a
subroutine is rather small, its code can be inserted in the place of a call.
The present day compilers can do such an optimization automatically
when the most aggressive optimization levels are used.

3. Reducing the number of array accesses in the loop body. In most cases,
elements of an array are indexed with loop counters. And often the
nearest neighbors are used in each loop iteration. In this case, the
array elements are read from memory more than once. Consider the
way to avoid unnecessary references by saving values in local variables:



32 A. Cherkasov, M. Gorodnichev, S. Kireev, V. Markova, A. Merkulov

Variant 1 Variant 2

for(i=1; i<n-1; i++)
y[i] = a*x[i-1]+b*x[i]+c*x[i+1];

x1=a[1]; x2=a[2];
for (i=1; i<n-1; i++) {
x3=a[i+1];
y[i]=a*x1+b*x2+c*x3;
x1=x2; x2=x3;

}

Read operations: 3(n− 2) Read operations: n

4. Loop unrolling. The optimization duplicates the loop body several
times and, respectively, reduces the number of iterations. Program
speed-ups due to a decrease of the number of conditional branches,
and a larger quantity of instructions become contiguous thus allowing
the compiler and the processor to reorder them in a proper manner.
Also, some additional optimizations may become available. Here is an
example:

Variant Code Reads

Source variant do i=1,n
do j=1,n
z(j,i) = a*x(i)+b*y(j)

enddo
enddo

2n2

Inner loop
unrolled 4 times

do i=1,n
do j=1,n,4
axi = a*x(i)
z(j,i) = axi+b*y(j)
z(j+1,i) = axi+b*y(j+1)
z(j+2,i) = axi+b*y(j+2)
z(j+3,i) = axi+b*y(j+3)

enddo
enddo

n2 + n2/4

Outer loop
unrolled 4 times

do i=1,n,4
do j=1,n
byj = b*y(j)
z(j,i) = a*x(i)+byj
z(j,i+1) = a*x(i+1)+byj
z(j,i+2) = a*x(i+2)+byj
z(j,i+3) = a*x(i+3)+byj

enddo
enddo

n2 + n2/4

The inner loop unroll variant is preferable as elements of the array are
sequentially accessed.



Acceleration of the numerical simulation programs 33

5. Avoiding the dependence between loop iterations. When the data de-
pendence between iterations is present, the compiler is unable to per-
form most of effective optimizations (software pipelining, vectoriza-
tion, parallelization, etc.). For example:

Variant 1 Variant 2

do i=2,n
x(i) = x(i-1) + x(i)

enddo

t=x(1)
do i=2,n
t = t + x(i)
x(i) = t

enddo

In the source loop (left), every iteration may start execution only if the
preceding iteration is finished, i.e., the write operation is performed. In
the optimized loop (right), the data dependence is avoided, so addition
in every iteration can be performed regardless of write operations in
the preceding iterations.

The inner loop optimization. The inner loop is the most important one
in the loop nest, as its body executes the greatest amount of times. So, the
lesser execution time of inner loop, the lesser notably total time of program
execution. These aspects have the most influence on the execution time of
the inner loops:

1. The size and complexity of the inner loop. Enough big loop body
gives the compiler and the dynamic processor core more freedom in
reordering commands, thus bringing about the more effective use of
the processor pipeline. But a too complex loop body is difficult for
the compiler to understand and optimize

2. The order of accesses to memory. When an array is being accessed
in the inner loop, the order of accesses has the strongest impact on
performance. Hence it is obligatory to sequentially access arrays in
the inner loops.

There are typical inner loop optimizations:

1. Data prefetching is moving it from the main memory to the cache
memory before it is actually needed. Prefetching data may be done
at the same time as some long computation in loop body. As the
data needed for the computations on the current iteration have to be
read before, prefetching data for the next iterations can be performed
during computation. The optimal prefetch distance is 3–4 cache lines.
The best way is to unroll the loop for the entire cache line be used per
loop iteration. The ways of making data prefetching:



34 A. Cherkasov, M. Gorodnichev, S. Kireev, V. Markova, A. Merkulov

• Using software prefetch operations. Advantages: does not need
to use additional variables; data out of the required array may
be prefetched. Disadvantages: need to use assembly commands
or special language extensions. Note that some compilers auto-
matically insert the software prefetch operations into code when
using special compiling options.

• Explicit reading an element from the required cache line to the
local variable. The whole cache line would be prefetched. Ad-
vantages: standard language operations are used. Disadvantages:
additional variables are required; data out of the required ar-
ray can not be prefetched (several iterations must not perform
prefetching in such way).

2. Loop vectorization. This optimization is platform dependent and can
be realized only if a processor supports vector instructions. Each vec-
tor instruction performs the same (or not the same) operation on sev-
eral data items. The inner loops are usually to be vectorized if their
iterations are independent. The ways of performing vectorization:

• automatic vectorization by compiler;
• using low-level vector instructions in a high-level language exten-

sion;
• using an assembly language.

4.3. Loop transformation. When performing many of the given opti-
mization techniques standard loop transformations are often used. Some
of the modern (mainly commercial) compilers may perform such transfor-
mations. Making automatic optimization greatly depends on complexity of
code. Hence the Fortran compilers usually have greater abilities in trans-
forming loops as the Fortran language is much simpler than C. The mostly
used loop transformations listed below:

1. Loop splitting and fusion. When splitting a loop its body splits into
several parts, each one being placed in its own loop. Fusion is a reverse
operation;

2. Loop distribution. When distributing the loop splits into several loops
with same bodies, which iterations joined compound the iterations of
the source loop without repeating. Sometimes the reverse operation is
also useful;

3. Loop permutation –– changing the order of loops in a program;

4. Loop interchange –– changing the nesting order of loops;

5. Loop reversal –– making iterations in the reverse order.



Acceleration of the numerical simulation programs 35

5. Libraries

Using libraries is very advantageous: first, development time is decreased
due to the use of the existing code, and second, the resulting programs are
more effective since producers of libraries pay much attention to optimizing
their subroutines. As an example, let us describe the BLAS (Basic Lin-
ear Algebra Subprograms) subroutine package (www.netlib.org/blas). The
BLAS is a set of subroutines performing the basic vector and matrix oper-
ations. They constitute the basis of many libraries that provide solutions
of linear algebra tasks, and the effectiveness of such libraries depends on
the effectiveness of the BLAS implementation in use. The BLAS routines
are divided into three levels: the first level routines operate on vectors, the
second level routines operate on a vector and a matrix, and the third level
routines operate on two matrices. A set of subroutines and their names are
standardized in 2001 due to efforts of the BLAS Technical Forum. Produc-
ers of microprocessors develop their own mathematical libraries and include
in these libraries implementations of the BLAS specially tuned to particu-
lar processors. The Intel offers the so-called Intel Math Kernel Library for
its processors, there exists a Compaq Extended Math Library for the Alpha
processors, and the AMD provides the AMD Core Math Library for Opteron
processors. One can use the ATLAS package (www.netlib.org/atlas) to build
the BLAS implementation automatically tuned to a chosen target processor.
For the moment, the most effective implementations of the BLAS subrou-
tines for many contemporary processors were done by Kazushige Goto (Uni-
versity of Texas-Austin), a particular attention being paid to elimination of
the TLB misses.

Figure 2 shows the times of matrix multiplication on Alpha and Opteron
with a simple algorithm consisting of 3 loops and with the processor spe-
cific BLAS implementations (Goto’s implementations, not presented here,
are still a little bit faster). This simple example of matrix multiplication
demonstrates the effect of using libraries.

Figure 2. Matrix multiplication
time for simplest algorithm on Alpha
(1) and Opteron (2), for CXML dgemm
on Alpha (3), and for ACML dgemm on
Opteron (4)



36 A. Cherkasov, M. Gorodnichev, S. Kireev, V. Markova, A. Merkulov

The functions of mathematical libraries are wider than just the BLAS.
Note that the programs which use functions other than the BLAS are gen-
erally not portable between processors of different producers. Here follows
a short list of functions provided by the mathematical libraries of AMD,
Compaq and Intel.

AMD Core Math Library version 2.5 (http://www.developwithamd.
com/acml/):

• BLAS, LAPACK;

• Fourier Transform;

• Exponent, logarithm, sine, cosine functions of the vector elements (vec-
tor operations).

Compaq Extended Math Library (http://h18000.www1.hp.com/
math/):

• BLAS, LAPACK;

• Direct and iterative solvers for sparse matrix SLAEs.

• Signal processing: 1–3D Fourier transforms, filters, convolution.

• Array-math library vector operations: the square root of N elements
of an array, cosine, sine, exponent, logarithm of N elements of an
array.

• Random number generators. Uniform and normal distributions.

• Sorting.

Intel Math Kernel Library version 7.2 (http://www.intel.com/software/
products/mkl):

• BLAS, LAPACK;

• 1–7D Fourier transforms;

• Vector Math Library;

• Vector Statistical Library, vector random number generator, many
distribution functions;

• Sparse SLAE solvers.

A short list of other famous libraries follows.



Acceleration of the numerical simulation programs 37

Free software:

1. GSL–– GNU Scientific Library. A large set of subroutines of different
areas of computations (www.gnu.org/software/gsl/).

2. GLPK –– GNU Linear Programming Kit (http://www.gnu.org/
software/glpk/glpk.html).

3. FFTW –– Fastest Fourier Transform in the West, multidimensional
(http://www.fftw.org).

4. UMFPACK–– asymmetric sparse SLAE solvers (http://www.cise.ufl.
edu/research/sparse/umfpack/).

5. SPARSEKIT–– basic sparce matrix computations (http://www-users.
cs.umn.edu/∼saad/software/SPARSKIT/sparskit.html).

6. PETSc –– PDE solvers (http://www-unix.mcs.anl.gov/petsc/
petsc-2/).

Commercial libraries:

1. NAG Fortran 77 library. A large set of subroutines of different areas
of computations (http://www.nag.co.uk).

2. IMSL Fortran Numerical Library. A large set of subroutines of
different areas of computations (http://www.absoft.com/Products/
Libraries/imsl.html).

6. Optimizing with compilers

Compiling is a process of program translation from the high-level language
to the language of machine instructions. Compiling is performed by special
programs named compilers. Unless we write assembly code, we are always
using a compiler. Up-to-date compilers have a wide range of facilities for
optimization of a generated code and tuning it to concrete architectures.
Thus, it is possible to have various implementations of the same program
which will have strongly different execution times. Usually it is much better
to employ the compiler for optimization. In this section, we consider the
most convenient and effective methods for program’s acceleration by means
of compilers.

6.1. Optimization options. For reducing the program run time, the
compiler can make the following manipulations on the code being gener-
ated: integration of functions into their callers, global register allocation;
elimination of an unreachable code; instructions reordering; automatic par-
allelization; elimination of the computation redundancy; loops conversion
(unrolling + pipelining, vectorization, etc.); replacement of slow operations



38 A. Cherkasov, M. Gorodnichev, S. Kireev, V. Markova, A. Merkulov

by the fast ones (e.g. replacement of multiplication and division by 2N with
a bitwise shift), optimization for a particular microprocessor architecture.
One has to use the corresponding options to let the compiler know what
kind of optimization should be applied. A typical compiler has hundreds
of flags/options. Most of them are never used or are not related to opti-
mization. For an exact option syntax, see the compiler documentation. It
is important that the programmer can find the best variant of compilation
of his program only by means of searching in different combinations of the
optimizing techniques.

6.2. General optimization. The compilers has a great number of differ-
ent optimizing techniques, each of them can be activated by switching-on a
special option. At the same time, there are some general options enabling
sets of optimization techniques at once. Such general optimizations are di-
vided into several levels. Each following level includes all the techniques
from the previous level, and some more complex and aggressive techniques.
As a rule, zero level means no optimization. The default level of general op-
timization is different for different compilers. Moreover, it may be the zero
level. As was shown in our experiments, the highest level of optimization
does not always provide the best program performance. It is important to
know, that the employment of optimizing techniques may affect your results.
Therefore, a program should be tested and checked for correctness after any
optimizations are applied. For the most compilers under the UNIX-like op-
erating systems, the level of optimization can be enabled by the -On option,
where n is the number of the level. For the ccc compiler, n may be a value
from 0 to 4, for the gcc compiler, it lies in the interval from 0 to 3. There are
some other options enabling sets of optimization techniques, such as -fast
and -tune, which can also help to generate a program with a good perfor-
mance. Figure 3 demonstrates how the time needed to solve the Poisson
equation (an explicit scheme is used) depends on the applied optimization
level. N is the size of the square mesh.

Figure 3. Dependence of Poisson
equation solving time on compila-
tion level: 1) N = 201, 2) N = 301,
3) N = 401, 4) N = 501, 5) N =
601



Acceleration of the numerical simulation programs 39

6.3. GNU C/C++ compiler (gcc). Generation of a code exclusively
tuned to a given processor architecture is activated by the option -march=
target arch, where the target arch is to be chosen from i386, i486, i586,
i686, pentium, pentium-mmx, pentiumpro, pentium2, pentium3, pentium4.
If the processor and the compiler support special sets of instructions (MMX,
SSE, etc.), one can use additional options for the greater speedup. For
instance, -mfpmath=sse option enables utilization of the SSE extensions.

6.4. Compaq C Compiler (ccc). Use -arch target arch option for op-
timization for a particular processor architecture. The target arch may be
chosen from the following set: generic (default value), host (architecture
of the processor, where the program is compiled), ev4, ev5, ev56, ev6, ev67,
pca56. In addition to the previous option, one may use flag -ansi_alias
which informs the compiler that the program uses only legal combinations of
the methods of memory access (established by ANSI C standard). Assume
that the compiler can produce more a sophisticated optimization conversa-
tion. We observe that -arch host option slows down the program if used
without -ansi_alias option. In relation to that fact we recommend use
both this options together with each other.

7. Recommendations to programmers

A program code has to satisfy a certain set of requirements to allow effective
optimization by a compiler. The most general and effective recommenda-
tions are given bellow.

Use the language more accurate for more accurate description of the nature
and utilization methods of the programming objects:

• Prefer local variables to global ones. The compiler analysis is more
effective with local variables.

• Use standard functions for implementation of the widespread opera-
tions. The compiler has effective implementations of many such oper-
ations.

Follow the recommendations:

• Do not leave procedures with empty body.

• Group functions used together in the same file.

• Eliminate program blocks which are never used.

• In the file, subroutines should follow each other in the order in which
they are supposed to be used (it may be done by compiler if the cor-
responding option is used).



40 A. Cherkasov, M. Gorodnichev, S. Kireev, V. Markova, A. Merkulov

• Use the compiler’s hints and flags/options.

• If your program consists of several files, compile it as a whole at once
(not separately).

• Use options allowing optimization between procedures and files.

• Try to eliminate dependencies between loop iterations and between
index array elements. Let the compiler know that they are independent
using the appropriate options (see compiler documentation).

• Use branch-free loop iterations. Even with sophisticated branch pre-
diction hardware, branches are bad for performance. If you can’t elim-
inate them, at least try to get them out of the critical loops. Try to
help compiler, rather than do its job.

• Do not use fetch-commands in advance.

• Do not unroll loops by hand.

• Do not use an assembler language in programs in C, C++, Fortran,
etc.

• Try to help the compiler to do its job; write a simpler and obvious
code. In particular, do not implement parallelization of computations
between functional processor units by means of an assembler language;
avoid function calls in loops and computations of the end condition
inside the loop body.

References

[1] Wilkinson B. Computer Architecture. Design and Performance. –– Cambridge:
University Press, 1994.

[2] Sima A., Fountain T., Kacsuk P. Advanced Computer Architectures. A Design
Space Approach. – London: Addison Wesley, 1998.

[3] 21264/EV68A Microprocessor Hardware Reference Manual.–– ftp://ftp.compaq.
com/pub/products/alphaCPUdocs.

[4] Software Optimization Guide for AMD AthlonT 64 and AMD OpteronT Pro-
cessors 25112 Rev. 3.05. –– November, 2004.

[5] Kasperski K. Technic for Program Optimization. –– SPb.: BHW-Peterburg,
2003.

[6] http://www.cs.utexas.edu/users/flame/goto/.

[7] Gerber R. The Software Optimization Cookbook. High-Performance Recipes
for the Intel Architecture. –– Intel Press, 2002.


