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“Walk on spheres” algorithms
for solving Helmholtz equation
in the n-dimensional Euclidean space

A.F. Cheshkova

In this paper the algorithms of Monte Carlo methods for solving the n-dimensional
Helmholtz equation are investigated. The dependence of the computational efficiency
of the algorithms on n is studied.

1. Main problem. “Walk on spheres” process

Let us consider a n-dimensional Dirichlet problem for a variable-parameter
Helmholtz equation

Autcu=—g, ulp=4, (1.1)

as a main problem in a domain D € R™ with the boundary I', where
¢(r) < ¢*, and —c* is the first eigenvalue of the Laplasian operator for the
domain D, r = (xy,...,2,) € D.

The conditions for the functions ¢, g, ¥ and I” to be regular are assumed
to be fulfilled. These conditions guarantee the existence and uniqueness of
the solution of problem (1.1), as well as its probabilistic representation and
integral representation with making use of Green’s function for a ball (see,
e.g., [1-3]).

The well-known rule of taking a derivative of a resolvent with respect
to the parameter ¢ shows that the derivative

ofu

dcr

is a solution of the following Rikye problem:
(A+ )" o, = pl(~1)7*g,

k _ (—1)"1?! (p—k) _
(A+¢) vp‘r_———(p_k)!v‘) , k=0,...,p.

vp = ulP =

(1.2)
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This relationship can also be easily obtained by direct differentiation of
problem (1.1) with respect to c. Hence, the solution of problem (1.2) can
be estimated by direct differentiation of the estimates of problem (1.1).

The estimates to be considered below are associated with the so-called
“walk on spheres” process within the domain D. To describe the process,
let us introduce the following notation: D is a closure of domain D; d(P) is
a distance from the point P to the boundary I'; I is an e-neighbourhood
of the boundary I, i.e.,

I.={PeD: d(P)<e}

S(P) is the largest sphere of those centred at the point P and entirely lying
in D, ie.,

S(P)={QeD: |Q-P|=d(P)}.

In the “walk on spheres” process, every next point Pgy; is chosen
uniformly over the surface of the sphere S(Pi); the process terminates
when a point find itself inside I..

Let us denote by So(P,¢) the surface of that part of the sphere S(P),
that belongs to the set I'.. Construct a sphere S, with radius ¢ centred at
the point of contact of the boundary I' with the sphere S(P). Then the
area of the part of the sphere S(P), entirely lies inside S, equals

(ﬁ)n—l En—l.
I'((n-1)/2)(n-1)

This yields the following lower bound for the probability of the next p6int
ending up inside I:

So(P,¢) I(n/2) el
E)‘3'(1’) 2 (-2 n-1) diak v(e), (1.3)

where dp,; is the exact upper boundary of radii of the spheres entirely
lying in D. Evidently, the mean number EN = ¢(P,¢) of the transitions in
the “walk on spheres” chain, which governs the average time it takes for a
computer to model the chain, does not exceed v~ ().
Moreover, for a wide class of boundaries I", the following logarithmic
estimate is true [1-3]:
g(P,e) < Cllngl. (1.4)

This estimate is obviously valid for convex domains. Muller [4] has shown
that the mean number of the transitions in the “walk on spheres” chain
depends linearly on n for large values of n

g(Pe)~mn. (1.5)
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2. The use of probabilistic representation

For ¢ = const < c*, the probabilistic representation of the solution of
problem (1.1) has the form [1]

T

wro) = B [ eo(ew)it + Ele (&),

0

where £(2) is the diffusion process originating at the point ro and corre-
sponding to the Laplasian operator,  is the instant the process leaves the
domain D for the first time. Proceeding from the process being strictly
Markovian, we have

Ti41

EY, / e*leCt + B[y [~

i=0 1=0

Il

u(ro)

Ti41—Ti o0

i Ele™ f eg(t + m)dt] + B[w(e(r) [T =],

=0 ) i=0

where 7; is the instant the process £(t) for the first time arrives at the
surface of the i-th sphere of the corresponding “walk on spheres” {r,},
n=0,...,N,and ry € I,.

On the other hand, the solution of problem (1.1) at the centre of the
ball D(r) can be represented as follows:

wn) = 229 [ueenis+ [ G,

5(r) D(r)

where G,(r') is the Green’s function for a ball for the Helmholtz’ equation,
wy, is the area of the n-dimensional unit sphere

wn = 2(v7)*/I'(n/2),
(dy/e/2)n-D/2
I'(n/2)J(n-2)72(dv/c)’

(dye/2)= 2
_ I'(n/2)I(n_3)/2(dV/e)’
Here d\/c < oy, where ay, is the first positive root of the function
J(n—2)/2(z). The latter requirement is evidently met, if ¢ < ¢7. Indeed,

c>0,
s(c, d) =

c<0.
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the quantity ¢* decreases with expanding the domain, and for a ball D* of
radius dy,q; the relationship dpazv/c*(D*) = oy, is valid.

Let us denote by P the point of the boundary I" closest to r,,. Using
the repeated averaging procedure, we can easily obtain [1] that

u(ro) & ue(ro) = Eﬂio),

where
N _i-1 N-1

n® =3 [T] ste.ds)] [ Glp,c,d)a(p)dp + | T s(e,d)](P). (2.1)
=0 5=0 D(r) 1=0

Here d; = d(r;), D(r;) is the ball of radius d; centred at the point r;.
If the first derivatives of the solution are bounded in D, then

lu(r) —ue(r)] < Ce, re€D.

Futher, each of the integrals appearing in (2.1) can be estimated by its

own random node p; [5]. It is reasonable to choose random nodes in D(r;)
with the density proportional to G(p,¢,d;). In this case, instead of nﬁ‘” we
obtain the estimate

N-1

ey [ﬁ s(e,d;)|a(p) Fr + | [T s(e,d5)] w(P),

i=0 3j=0 J=0
where ,
F, = / G(p,c,d(r))dp < Crd*(r). (2.2)
D(r)

The repeated averaging shows that
En. = Eﬂgo) = ue:('rﬂ)-

Now let us consider the question of uniform in ¢ boundedness of the
variance D1..
First, assume that g = 0. In this case

Ne <= C?[ﬁs(c’di)]7

=0

and En < 400 for ¢ < ¢*. Hence,
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Ef? < cgE[ﬁs?(c, d,-)].

=0
Now let us show that for ¢ < ¢* the following jnequality holds:
82(c/2,d) < s(ec, d). (2.3)
Evidently, that s(c,d) = v(r), where v(r) is the solution of the problem
Av+ev=0, vlgy =1,

where S(r) is the sphere with radius d centred at the point 7. On the other
hand, v(r) = Ee°", where 7 is the instant the diffusion process originating
at the point r leaves the ball D(r). Hence,

s%(c/2,d) = (Ee/?)? < Ee™ = s(c, d),

and the uniform in ¢ bondedness of the variance D7, has been proved for
c<c*/2at g=0.

Now let us turn to problem (1.1) for an inhomogeneous Helmholtz’
equation. Evidently, it will suffice to prove uniform boundedness of the
variance for g = const, and the statement is true, if for ¢ = 0 the variance
of the quantity

n _i-1

=311 s(c,dj)] di

=0 j=0
is bounded uniformly in n.
Let us consider the relationship

n

[[s(cdy=1+) []_'[ s(e, d,—)] [=1+ s(c,di)] = .

i=0 i=0 j=0
As dpmazv/€ < 0y, then
s(c,d;) — 1> Cad?, nn < C3ln.
From the above we have

lim D(, < +o0,
n—o00
and the quantity D, possesses the same property.
Now let us estimate the number R, , of arithmetic operations, required
to obtain a prescribed error ¢ in estimating the solution. Let us note that



12 A.F. Cheshkova

Re,n ~ LEQz,nCn. 3

where L. is the number of the trajectories to be modelled. It should be
Ce~? for the probabilistic error to be of the order of €. Q¢n is the number
of spheres, when the trajectories are terminated in I, it is equal to n|lne|
by the order of magnitude. C, is the number of arithmetic operations per
one sphere in an n-dimensional space. For large values of n it depends
linearly on n. Hence,

Rey ~ n?|lnel/e.

Let us dwell on the results of methodical calculations. The Monte Carlo
method was used to solve the Dirichlet problem in a cube 0 < z; <1, 1=
1,...,n for the equation

Au+cu=0, ulr=-cos(z; M) X ...X cos(zp\/c/n). (2.4)

The exact solution has the form

u(r) = cos(z14/c/n) X ... X cos(zn1/c/n).

It is known that for a n-dimensional unit cube ¢* = nx?. The solution
was estimated for different values of ¢, for n = 4 at the point with the
coordinates z; = ... = Z, = 0.9, with ¢ = 0.0001, N = 40000, ¢ ~ 39.5
(Table 1), and for n = 10 at the point z; = ... = 2, = 0.1, with ¢ = 0.01,
N = 10000, c* ~ 98.7 (Table 2). Here y, is the estimate of solution, g, is
the estimate of the corresponding mean-square error and o2 is the estimate
of the quantity Dr..

Table 1. Results of calculation for problem Table 2. Results of calculation with

(2.4) with n =4, N = 40000 n =10, N = 10000
¢ | ufr,c) Ynton ol ¢ | u(rc) Ynton o?
15 | 0.00086 | 0.00096 & 0.00020 | 0.00168 30 | 0.860 | 0.859+0.0005 | 0.003
20 | 0.03338 | 0.03347 +£0.00025 | 0.00253 50 | 0.777 | 0.776 £ 0.0007 | 0.006
25 1 0.15571 | 0.15490 +£0.00120 | 0.05722 100 | 0.601 | 0.600+0.0010 { 0.014
30 | 0.36931 | 0.36357 £ 0.00631 | 1.59144 120 | 0.542 | 0.54140.0013 | 0.016

351 0.61982 | 0.59343 £ 0.02730 | 29.8515
40 | 0.83753 | 0.73218 +£0.10720 | 459.666
45 | 0.97017 | 0.97484 £ 0.39973 | 6391.475

The analysis of results shows that insignificant deviations from the
exact solution have been obtained for ¢ > ¢*/2 as well.
The following problem was also solved in the unit cube:
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Au+cu=0, ulp=1. (2.5)

The solution was estimated at the point z; = ... = z, = 0.5, for n = 4,
¢ = 0.001, N = 40000 (Table 3), and for n = 10, ¢ = 0.01, N = 10000
(Table 4). There exists no exact solution of this problem, but the results
agree satisfactorily with the solution of problem {2.5) for the ball of radius
d, where d is chosen in such a way that the quantity ¢* for the ball coincides
with the quantity ¢* for the cube, i.e., d = a,/7\/n. In Tables 3, 4 s(¢, d)
is the exact solution of problem (2.5} at the centre of the ball.

Table 3. Results of calculation for prob- . Table 4. Results of calculation with

lem (2.5) with n = 4, N = 40000 n =10, N = 10000
c ynton o? s(c,d) c ynton a? s(c,d)
18 | 2.7665+0.0116 | 5.3890 | 2.7276 33 | 2.9101£0.0173 | 2.9919 | 2.8824
19 | 2.9703 £0.0143 | 8.1388 | 2.9268 34 1 2.9937+£0.0194 | 3.7476 | 2.9876
20 | 3.1966 £0.0176 | 12.3927 | 3.1484 50 1 5.6103£0.1018 | 103.5363 | 5.5542
22 | 3.7313+£0.0217 | 29.5330 | 3.6743 55 ] 7.0724£0.1318 | 173.8112 | 6.8959

It is interesting to note that for the same values of y, the quantity o,
decreases with growing n. The results are listed in Table 5. The time it
takes for the computer to model problem (2.5) for ny = 4 with £ = 0.001,
N = 10000 is t; = 5min.20sec., and for ny = 10 is ¢, = 34min.21sec., i.e.,
t1/ta = (n1/n2)? = 0.16. The result agrees with the estimate R, , ~ nZ.

Table 5. Results of calculation with N = 10000, ¢ = 0.01

c ynton n c ynton

11.0 | 2.9191 £ 0.0331 6 | 25.0 | 2.9281 +0.0270
15.6 | 2.9559 +0.0287 8129.9 | 2.9934 £0.0207
19.3 | 2.9381 +£0.0260 || 10 | 34.0 | 2,9937+£0.0194

- W |

3. Algorithms for variable c(r)
Let us rewrite (1.1) in the form
Au=—cu—-g, ulr=~1. (3.1)

Using the integral representation of the solution of Poisson’s equation at
the ball center [6], we can write the following integral equation for the
function u(r):

u= Ku+ h. (3.2)
In D\ I this equation has the form
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W) =~ [ wtriepyas + [ et
" S(r) D(r)
+ ] G.(rg(r")dr', re D\ I,
D(r)

while in I it transforms into the identity
w(ry=u(r), rel,

i.e., k(r,r) = 0 and h(r) = u(r) for r € I... Here k(r,r') is the kernel of
the integral operator K. :

N 11 <
6:)= G (= o) L

is the Green’s function for a ball at the centre of the ball D(r). For
r € D\ I, we write the integral operator K in the form

— cod?(r)/2n) !
1 - oty [ L2 (opas

5(r)

(3.3)

2 '
+ cod’(r) / e(r )an"z(r)G,(r')u(r')dr',
2n Co
D(r)

with co satisfying the inequality codZ,./2n < 1.
The standard Monte Carlo estimate that implements a probabilistic
representation of the Neumann series has the form [1]

N
£= Zth(rﬂ)s u(ro) = E.
n=0
According to (3.2), the following “walk on spheres” and balls are accom-
plished: with a probability of 1 — cod?(r;)/2n, a new point iy is chosen
uniformly over the sphere §(r;), while the weight Q; is multiplied by the
quantity
q(riy co) = [1 - cod’(r:)/2n] ™!
with an opposite probability cod?(r;)/2n, a point ri4; is chosen within the
ball with respect to the density 2nd~?(r;)Gy,(r'), while the weight is mul-
tiplied by ¢(riz1)/co- When the chain find itself inside I'. it is terminated,
and the solution estimate multiplied by the weight is added to the sum in
the counter. The resulting rundom weights @, has the form
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=1 =1

and the function h(r) is calculated exactly or in a randomized manner.
Here {ry}, i = 1,...,n — m, are the points chosen on the spheres, while
{r&.}, i =1,...,m, are the poiats chosen inside the balls.

For the new “walk on spheres” and balls the average modelling costs
Se» also admit an estimate [5]

Sen < const|In E|n2.

Below we shall justify an asymptotical unbiasedness of the quantity &,
considered as an estimate of the solution of the initial problem.

Lemma 1. Provided
co > |e(r)] and ¢o < 2nc*/al, (3.4)
the Neumann series for equation (3.2) converges.

Proof. Let us consider ¢o satisfying the inequality

co . (2n F(n/2)J(n—z)/z(3)) }
2 < (50—} 49

where z = dv/c*, than for all d; < dpmaz

co 2 (1_ F(n/2)J(n_2)/2(d.-\/c_*))
c*  d¥er (div/e*[2)m-D/2 )7

that entails the inequality

1 < (div/c*/2)(n=2)/2
1—cod?/2n " I'(n)2)J(n—2)/2(div/c")’

The minimized function monotone decreases in [0, a,], hence, inequality
(3.5) is equivalent to ¢p < 2nc*/aZ. With allowance made for inequality
le(r)]/eo < 1, relationship (3.6) implies that quantity £, can be termwise
majorized by the standard estimate 7 (see Section 2) on “walk on spheres”
{r;} (not necessarily maximal) with a certain ¢ < c¢* for ¢ = 0. The
Neumann series corresponding to estimate 7 converges, as i can be obtained
by the partial averaging of the probabilistic representation of the solution.

0

(3.6)
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Let us note that for large n quantity an depends linearly on =, hence,
2nfedd — 0 for n — oo. Forn = 3 the Neumann series converges with
¢, < 0.6079c*, for n = 4 with cg < 0.5454¢*, for n = 10 with ¢o < 0.3481c*.

In [5] it is proved that under the hypotheses of Lemma 1 there exists a
unique bounded solution to equation (3.2) that can be represented by the
corresponding Neumann series and coincides with the solution of problem
(3.1).

Now let us proceed with constructing and studying the actual estimate
£, which is obtained by the replacement of u(r) in I with the value of the
boundary function ¥ at the point P(r) € I' closest to 7. In this case

h(r) = ¥(P(r)), 1€l

If the first derivatives of the solution of problem (1.1) are bounded in D,
then, provided the conditions of Lemma 1 are satisfied, E£. = u,. exists [5]
and

|u(r) — ue(r)| < const -, TE D, ¢>0.

Lemma 2. If the conditions

) c . 2n r(n/2)J(n-2y/2() 12
ozl %< g {50 TG )} e

are satisfied and g = 0, then D < ca < 400 for all e > 0.
Proof. Relationship (3.7) implies that

4o/ 2
F(n/?)J(n_g)/g(d,‘\/E:)'

This means that the quantity £2 here can be majorized in the same way
as £ in the proof of Lemma 1. a

(1 - cod?/2n)"2 <

Direct calculations show that the variance is bounded for n = 3 with
co < 0.488¢*, for n =4 with co < 0.465¢*, for n = 10 with ¢g < 0.336¢*.

Now let us consider the variance for an inhomogeneous equation. With
the aim to extend the condition of the finiteness of the variance, instead of
the estimate & we shall consider the estimate

N-mpy N-mp
Er= 3 Quha(ra) = Y Quh(ri—) + @no(Prw)).
n=0 =1

The repeated averaging yields Et.1 = EC.
Under the hypotheses of Lemma 2 we have



“Walk on spheres” algorithms for solving Helmholtz equation 17

Dfe,l < Cd,1 < +oo Ve > 0.

Now let us construct estimates of the derivatives

*u(r,c)

u(k)(r, C) = 6ck

while assuming ¢ = const < cp. Evidently, it is sufficient to consider the
case when the functions g and % are independed of ¢. Let us differentiate
the estimate 1 k-times with respect to ¢ to get

N-mpy .
{(k) = a E&l = Z ( m _‘ ' th.h(Tt,—l)

mpy!
(mn — k)
Here yu; is the number of steps into the balls among the first ¢; steps, i.e.,
pi = my;. If pi < k, then the corresponding term equals zero. Therefore, by
analogy with Lemmas 1,2 we can state that E{s | exists and the quantity

+ ¢ * QNY(P(rn)).

Dﬁ(k) is bounded uniformly in e.

The new algorithms have been used for calculating a number of versions
of problem (2.5) at the point z; = ... =z, = 0.5 for n = 4 with ¢ = 0.001,
N = 40000 and for n = 10 with ¢ = 0.01, N = 10000 (Table 6).

Table 6. Results of calculations by the new method for problem (2.5)

nl|lc| c |(gmton)-10°| o2 ul - 10° ul . 10° uw!” . 10°

4118 | 18.1 2761 £11.8 5.568 | 189.5 +2.4 | 18.19 £ 0.56 | 2.22 £ 0.14
10 | 33 | 33.1 2939 +18.1 3.299 | 107.2+£2.1 | 4.83+0.25 | 0.26 +£0.03

The results presented are in good agreement with the results obtained
by the standard “walk on spheres” method. The costs of the new method
are practically the same as those of the standard one.

On the basis of these estimates of the solution and on the basis of the
first five derivatives using the Taylor series in the point ¢ = 18 for n = 4
and ¢ = 33 for n = 10, the values of the solution have been estimated for
other values of ¢ with the aim to compare with the corresponding results
from Section 2. The mean-square error was estimated by the formula

o(36) <Y ol6) =5
1=1 =1

The results are included in Tables 7, 8.
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Table 7. Estimates with the Taylor series at the point ¢ = 14 for n =4

c ynton Estimates from Section 2
18 | 2.761+£0.0118 2.767 £ 0.0116
19 | 2.960 £0.0145 2.970 + 0.0143
20 | 3.180 £0.0180 3.197 £ 0.0176
22 | 3.69240.0280 3.731 £ 0.0217

Table 8. Estimates with the Taylor series at the point ¢ = 33 for n = 10

c Ynton Estimates from Section 2
33 | 2.939+0.0182 2.910 £0.0173
34 | 3.049 £0.0204 2.994 +£0.0194
50 | 5.737+0.1271 5.610 £0.1018
55 | 7.117£0.2153 7.072 +£0.1318
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