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Full waveform inversion of VSP data
(normally-incident plane wave)

V.A. Tcheverda and T.A. Voronina

The problem to recover structure of vertically-inhomogeneous medium by VSP data with
unknown source-function is considered on the basis of optimization approach. It is proved
that any stationary point of the cost function provides identity of a simulated wave field
with a recorded one.

A numerical algorithm to recomstruct velocity of wave propagation is proposed, jus-
tified and realized. Results of numerical simulations are presented.

1. Introduction

We are going to consider the problem of recovering a wavepropagation
velocity in a vertically inhomogeneous medium (acoustic half-space) given
VSP data. We do not assume that any information about source excitation
is available. To invert VSP data and to reconstruct the velocity distribution
simultaneously with the input impulse we apply an optimization approach.
We would like to note here that this approach was proposed and justified in
(1] and modified to process VSP data in [2], where numerical algorithm was
proposed and synthesized and field data processed. In somé way our article
continues these ones and is devoted to the problem of local minima of a
cost function. We also propose and test an algorithm which does not need
any a priori information about a source function. Moreover, we illustrate
by means of numerical experiments that bad fitting of the reconstructed
source function with the real one does not lead to the same for, the wave
propagation velocity. '

As far as to the reconstruction of the trend under lack of information
for low time frequencies, we do not deal with it at all as it was shown in
[3] and [4] that it is unresolved for VSP data.
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2. Statement of the problem

Let us suppose plane wave with a source function f(t) (f({) =0, t < 0,
f(t) = 0, t > T) incidents normally on the half space z > 0 fulfilled
with a vertically inhomogeneous medium with a wave propagation velocity
¢(z) € C*(0,00). Then the wave field within this half space is described by
the boundary-valued problem

d*u
F + w2n2(z)u =0, n(z) = cl(z); (1)
% o F(w), u=Fw)S(w)exp (iwn(H)z), z>H, (2)

and we are going to reconstruct functions F(w) and n%(z) by the data
wj(w) = u(zjw); 2z €[0,H); j=1,...,N; w Sw<w (3)
We will suppose that
n?(z) € M = {n*(z) € C*(0,00) : n*(z) = ny, 2 > H},

and introduce the scalar product in M

oC
(nf,n%)M = /0 (nf(z) — Moo )(n3(2) = n%m)dz.
Then, Ly(wq,w2) x M, with a scalar product

({Fl,nf}, {F2’n§}) = (FlaF'Z)Lz + (nivng)ﬂﬂh

produces a space of models. Operator B;[F,n%}(w), which transforms point
(F,n?) from this space to the solution of a boundary value problem (1), (2)
in the point z; acts from La(wq,w;) X M to La(wy,w:) and has Freschet’s
derivatives with respect to F; = Re F, F; = Im F and n?.

If one is going to solve inverse problem (1)-(3) minimizing the cost
function

N jw

: ®[F;n’(2)] = Z] 2 |u;(w) ~ B;[F;n?)(w)| dw, (4)

j=1 7w

the key question is if this cost function has the only one minimum or a lot
of ones. If it has the only one stationary point — global minimum - it would
be reasonable to expect that at least for rather well initial approximation
iteration process will converge to real source function and slowness.
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3. Analysis of the cost function

After simple, but bulky calculations one comes to the following expressions
for the gradients of cost function (4):

N

(VROIF ) = ~2ReY” 1) - F@)G( 0] Gliw)  (5)
N

(Ve @[F,n?)(w) = -QImZ [uj(w) — F(w)G(2j; 0;w)] G(2j; w); (6)

N w2 B
(Va2 ®[F,n?))(2) = —-2ReZ/ (w? + %) F(w) [uj(w) — F(w)G(z5;0;:0)]

j=17w
x G(z;0;w)G(z; zj;w)dw. (7)

If these gradients are equal to zero in a point (FS %) € La(wy,we) x M,
then by (5) and (6) we have:

N .
D [usiw) = F3(w)G(25;0;0))G(23 0w) = 0,

i=1
hence, N
. G(z550;w)u;
Fs(w) _ J_f:r (2j;0;w) J(w), (8)
j=11G(2j; 0;w)|?

where G(§;7n;w) satisfies the boundary value problem

d*G 9 dG

zz G=46(¢-n), d—£|£=0 =0,

G(&mw) = S(w;n)exp (in(H)wE), &> max(H,n).
Next, (7) leads to

N wo
ReZ;/wl F‘S(w)w2 [uj(w) - Fs(w)G(zJ-;O;w)]G_'(z;O;w)é(z; zj;w)dw = 0,

where F5(w) is from (8).
Let us introduce the function

N wa
V€0 =2Re Y [ A )66 0,06 ), (9)
=17

where A;(w) = FS(w)w?(uj(w) — F(w)G(z;;0;w)). As one can check, for
{€ > 0,{ > 0}, this function satisfies the equation
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YU 2NN - LAY /g w2 _
"52(06—(2 - ”32(5)6—62 = 2; ﬁl&e[h A;j(w)G(&;0;w)dw.
(10)

which, for new variables

¢ 13
v=[ nshas == [ ns(o,
(¢] 0

transforms to

’¥  9*¥  dinns(z) 9V 2 dlnns(y) 0¥
0z?2  9y? dr Oz dy 0y

N wy
= 23 W) e [ 4 0)G(c(w); 2

wy

Taking into account (10), the identity ns(z) = ny for 2 > H and the
fact that z; € [0, H], one comes to the equality ¥(z,y) = 0 for {z > Hy,y >
H,}. This follows ¥(z,y) = 0 in Domain II (Figure 1) as a solution of the

y
11 .
I
I
H,y
\%
YN 1AY
Y1 ¢
H z
Figure 1

Cauchy problem with zero data on the ray z = Hy, y > Hy. So, ¥(0,y) =0
for y > 2H,. But for y > H; one has G(((y); zj;w) = Sj(w) exp(iwy) (wave,
geing to the infinity), from what follows that

N .2
¥(0,5)=2Re Y [ exp(iwn)G(0:0:)4;()3 ()
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but it means that, for y > Hy, ¥(0,y) is the analytic function of the real
variable y, and if it vanishes for y > 2H,, then it vanishes for y > H;, too.
So, in Domain III ¥(z,y) satisfies the equation

v N 0%y + dln ng(z) 9¥
oy?  Ozx? dz Oz

=0,

and conditions ¥(0,y) = ¥(2H; — y,y) = 0, 0 < y < H,. But, as was
proved in [5], it follows ¥(z,y) = 0 in Domain III.

Let us consider now ¥(z,y) within the square I = {0 < z < H;;0 <
y < Hq}. It satisfies there the following equation:

02 _ 9*v  dln ns(z) ¥ 4 dlnng(y) 0¥

dy?  Ox? dxr Oz dy 0Oy
N (11)
8(y — ;) /‘”2 :
=2 —2 %’ Re A(w)G(&(z); 0;w)dw,
; ns(y;) wi i) (6( ) )
Cauchy’s data
ov
'I’(.’E,H])= a|y=H1 =0, OSxSHh (12)

and additional condition ¥(z,z) =0 for 0 < z < H;.

To solve the Cauchy problem (11), (12) within Triangle IV is the same
as to solve the system of integral equations:

H, z+(n-v)
Vo) =g [ [ a@n(em - atnjate,mldn +

‘ﬂb‘

. (v;—-v)
S0 O (13)

= ns¥) Jo-(ui-w
1 [
(z,y) = §/y [aw(I +(m=y)p(z+(n-y),n) —a(n)g(z + (n-v),n) -
a(z — (0= ¥)p(z = (n - y),m) + a(n)a(z - (- y),m)|dn +

0('93 )] (z o  Flr — (v — )
; s () [Fi(z + (y; = ¥)) - F(z — (3, — »))]; (14)
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H
ey =3 [ [ate = (1= )pte = (0= v),) - almdate — (= v)on) -

a(z + (n—y))p(z+ (n—1v),m + a(ng(z + (n - y), n)] dn +

> ns(yj) [Fi(z ¥) = Fi(z + (i — v))], (15)
where
o0¥(z,y) 0¥ (z,y) dlnn(z)
p(z,y)= ———= q(z,y)=—F alz)= —577;
oz Oy dzx (16)

Fi(©) = e [ A,)G(E(€):00)de

Additional relation ¥(z,z) = 0 for %-L < z < Hy may be rewritten as

/dn /1 a(opfn)—a(n)q(e,n)]mz”(”f ) ] Fy(€)de = 0. (17)

Within Triangle V (below the last geophone), (13)-(17) is a system of
homogeneous Volterra’s integral equations of the second kind which has
the only trivial solution ¥(z,y) = 0. After differentiating this identity 2n
times with respect to z within this triangle and taking into account the
equation for G(£(z);0;w) one comes to the relation

[ e a0 ZA (@G (C(v);255)] do =
from what follows that
#(z,9) = Re [G(e(z);o;w)f;Aj(w)G(C(y);zj;w)} =0 Vo€ (wr,e),
within Triangle V. But, as ¢(z,y) satisfies

¢ | dnn.(z) dInn.(z) 0¢v

24 _
922 dr Oz w'e =0, (18)

it is identically equal to zero for {yn < y < Hy;z < y} as a solution of the
ordinary differential equation (18) with zero Cauchy data. So, we come to
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the same Cauchy problem with zero data for II; = {0 < z < yn;0 < y <
yn} as we had before for II.

-Let us analyze (13)—(17) within the square II; for yn_1 < y < yn. Here
the sums in the right-hand sides of (13)-(15) have only the last term and
(17) leads to the relation

YN H n
[7 Enode== [Tan [ fa(erpte.n) - atate ]an,

which allows to find Fn(z) over (yn—1,yn) as a function of p and ¢. So,
(13), (14) is again a homogeneous system of Volterra’s integral equations
with trivial solution only, i.e., ¥(z,y) = 0 within the triangle with the side
coinciding with the line y = z over the interval (yn—1,y~). And in the same
way as before this fact leads to the identity Re[An(w)G(&(z);0;w)] = 0,
which may be hold only if Ax(w)=0, because Green’s function G(£(z);0;w)
must not be identical zero over any contineous interval of z.

So, the right-hand side of (11) has only N —1 first terms and one comes
to the Cauchy problem with zero data for square II;. Next, repeating this
procedure one will finally come to the equalities 4;(w)=0; j =1,...,N;
wE (wl,wg).

Summarizing, we can formulate the theorem:

Theorem. Let us suppose a solution u(z;w) of the boundary value problem
(1), (2) be known in the points z,...,2n, (2; € (0,H); j = 1,...,N),
the wave propagation velocity c(z) € C%(0,00) and for z > He(2) = coo.
Then gradient of the cost function ®[F;n?) is equal to zero only in the point
{F5(w),n%(z)}, such that

u;(w) = Fs(w)G(Zj;O,w); ji=1,...,N; w € (wy,ws), (19)

where G(z;0;w) is a solution to the boundary value problem (1), (2) with
F(w) = 1, n¥(2) = n%(z), calculated in the point z;.

Corollary. If all assumptions of the theorem are valid, and the wave prop-
agation velocity is known within the interval (0,h), h < H, where at least
two geophonesare situated, then the cost function (4) has only one stationary

point {F5(w),n%(2)} which coincides with the real source function and the
real slowness.

Proof. As the real slowness n(z) is known over the interval (z;,z;) one
can resolve the boundary value problem
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% + w?n?(z)u = 0, (20)
w(z,w) = w(w), u(z,w) = uz(w), (21)

and find u(z,w) within (2q,2;). This allows to find u(z,w) for the interval
(0, h) as a solution of Cauchy’s problem for ordinary differential equation
(20), calculate its derivative with respect to z for 2 = 0 and to find a
source function F(w) (as the spectrum of (20), (21) is discrete, F(w) may
be reconstructed over the interval (wy,ws), except of finite quantity of
points).

Therefore, we come to a well-known statement of an inverse problem for
reconstruction of a wave propagation velocity with known function F(w).
It is known ([6], [7]), that relations (19) provide coincidence of the slowness
n%(z) with the real one. 0

Remark. It is necessary to underline that we did not prove that inverse
problem has a solution as we did not prove that the cost function has a
stationary point. The theorem concludes that for any stationary point (19)
is hold.

4. Numerical experiments

To perform minimization of the cost function (4) numerically the following
version of method of conjugate gradients was used:

ni41(2) = ni(2) — akPi(2), (22)
aj = argmin ®[Fy; ns — o Py, (23)
Po(z) = V2 ®[ Fo; ), (24)
Pu(2) = V,a®[Fis n2)(2) = BePecs(2); k> 1, (25)
Br = (Vo2 ®[Fi; n}], V,2 ®[Freo1; ni_y] — V,28[Fi; nf)). (26)

As the source function Fi(w) for (k + 1)-th step of the process (22)(26)
the function which vanishes the gradient of the cost function ®[F; n?(z))
with respect to for the slowness nf(z) was taken (see (8)). It seems to be
more reasonable, than to organize the same process as (22)-(26) for the
source function as in [2].
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To simulate data (3) the model of the medium presented in Figure 2a
was used and as the source function the wavelet with the spectrum

F@) = [exp(~(*2 ) 4 exp(- (2L o)

X exp(—1.75iw f 1),

where f =35 Hz is the dominant frequency (Figure 2b).

We performed two numerical experiments for the data (3) known within
the range of the time frequencies 10 Hz+60 Hz for two different initial ap-
proximations. The first one (Figure 3) was done with the trend component
as the initial approximation. One can see an excellent fitting of the recon-
structed velocity and impulse with the real ones.

Next we took the constant as the initial approximation for the velocity
(Figure 4a). Then there is a rather good accuracy of the reconstruction of
the medium only within the location of the antenna of geophones and a
very strong deviation out of it (Figure 4b). As far as to the wavelet is con-
cerned, it was reconstructed with high perturbations (as one can see from
Figure 4c there is not only deviations of the amplitude, but the convertion
of the phase), nevertheless this fact had no influence on the quality of the
reconstruction of the medium within the antenna. We suppose that this
fact is very important as it follows a possibility to avoid the necessity to
reconstruct a source function with high accuracy to provide a rather well
resolution of a medium.

To support this hypothesis we would like to refer to Figure 5, which
presents the results of wave field inversion within the range of the time
frequencies 1Hz+60Hz for the initial approximation as in Figure 4a (i.e.,
without the trend component). One can assure there is perfect fitting of the
reconstructed medium with the real one, although there are again strong
deviation in the source function.

5. Conclusion

On the basis of previous considerations we can conclude that proposed
approach to process VSP data allows to detalize a structure of a medium
as along a well as below its bottom, if one knows a trend component of
a wave propagation velocity, while no information about source function
is needed to be available. This approach could be adopted to process the
data (3) with a number of source functions Fj(w). The matter is to get
a VSP data one moves a group of geophones (usually 2+5) along a well
and for every position perform an excitation (an explosion or something
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else). That means we have to take into account that there will be a lot
of unknown functions Fj(w). But this trouble may be overcome if one
modifies the cost function (4) in the way

N J o
B(F, Enin) =33 [ ) - Bi(Bn®) P,
w1

k=1 j=1

where N - a number of explosions, J — a number of geophones in a group.
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