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Formal verification of programs for abstract
register machines

D. A. Chkliaev, V. A. Nepomniaschy

Abstract. Abstract register machines are an important formal model of compu-
tation widely used for the modeling of many classes of computational algorithms
and the analysis of their complexity. Despite the significance of this model, for-
mal verification of general-purpose programs for abstract register machines has not
been properly covered in the existing literature. To fill this gap, we provide a for-
mal specification for one version of abstract register machines — the random-access
machine invented by Aho, Hopcroft and Ullman. Executions of this machine are
formalized by a transition system in the language of the verification system PVS.
We also specify in PVS a simple search program for this architecture and its cor-
rectness property. The property is proved using the interactive proof checker of
PVS. We were able to prove not only the functional correctness of the program,
but also its time complexity, which shows the novelty of our approach.

Keywords: abstract register machines, random-access machines, formal specifica-
tion, automated verification, interactive theorem proving, verification system PVS.

1. Introduction

Abstract register machines (ARMsS) [9, 2], together with Turing machines and
recursive functions, belong to the most important formal models of compu-
tation. However, unlike Turing machines and recursive functions, they are
much less abstract and much closer to the operations of actual computers.
Indeed, although ARMs are not directly based on any computer architecture
used in practice, they are still able to imitate closely the structure of modern
CPUs and their arithmetical, logical and input/output commands. For this
reason, the formalism of ARMs has been used during several decades for
the formal, mathematical study of computational algorithms and programs.
Perhaps the best known example of this approach is shown in [7], where
a highly detailed version of an abstract register machine is used to define
rigorously many important classes of computational algorithms and to prove
their complexity measures.

Although a lot of research has been dedicated to the verification of pro-
grams written in high-level languages such as C and Java (and also to the
correctness of some register-based processor designs), we are not aware of
any works that systematically study the formal verification of computational
programs for ARMs. This is unfortunate, because formal verification can
greatly improve our understanding of programs and algorithms, and help to
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find and remove subtle errors in them. Such verification is especially rigorous
and convincing when it uses some form of automated support, for example
an interactive theorem prover. Since ARMs have been successfully used to
analyze the complexity measures for many types of computer algorithms, it
is an interesting challenge to create a formal framework that allows proving
not only the functional correctness of programs for them, but also their time
and space complexity.

In the dissertation [3], a promising general method was presented for the
specification and verification of distributed protocols. In [3], it was used to
verify several non-trivial examples from the field of databases, and in [4], it
was successfully applied to the Sliding Window protocol. Here we show how
a modification of our method can be used to provide a formal framework for
the verification of programs for ARMs. We consider one particular version of
ARMs — the random-access machine invented by Aho, Hopcroft and Ullman
[1], which we call here RAM-AHU. In our method, we represent the data
structures of RAM-AHU in the language of the verification system PVS
[10] and define the effect of its commands on these data structures. After
that, the executions of RAM-AHU are formalized as finite or infinite traces
of a transition system generated by the effect predicate of its commands;
the correctness properties of programs for RAM-AHU are defined by logical
formulas on traces of this transition system.

We use our method to verify a simple search program for RAM-AHU.
A transition system is generated, and for that system the correctness prop-
erty of the program is defined as some relation between the input sequence
in the initial state and the output sequence in the final state. This allows
us to verify formally the correctness property using the interactive theorem
prover of PVS, which leads to a proof of correctness that is both rigorous
and intuitively understandable. We were able to prove not only the func-
tional correctness of the search program, but also its best-case and worst-
case execution time. We hope that this fact demonstrates the novelty of our
specification method, because the functional correctness of programs and
their time complexity are usually analyzed and proved using different formal
frameworks.

The rest of the paper is organized as follows. In Section 2, we give a
brief introduction to the PVS system. Section 3 describes RAM-AHU on
the basis of [1]. In Section 4, we present our formalization of the executions
of abstract register machines which can also be applied to RAM-AHU. In
Section 5, the RAM-AHU data structures are specified in PVS, and in Section
6 its commands are formalized in PVS. Section 7 presents a specification of
a simple search program for RAM-AHU and verification of its correctness
property. Finally, Section 8 gives some remarks on related works and possible
future work.
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2. The PVS verification system

The PVS system [10], created at the Stanford Research Institute about two
decades ago, is widely used for formal specification and verification of com-
plex computer protocols and systems, especially in the area of fault-tolerant
computing. It consists of a specification language, a large number of prede-
fined theories and an interactive prover, as well as documentation, tutorials
and examples illustrating the use of PVS in several domains. PVS is able to
combine an expressive specification language with powerful automated de-
duction, which allows it to handle many examples that present considerable
difficulties for other verification systems.

The specification language of PVS is based on the classical higher-order
logic. The main types include uninterpreted types, which may be introduced
by a user, as well as built-in types such as Booleans, natural and real num-
bers. The constructors of types include functions, sets, records, tuples and
enumerations, as well as recursively defined abstract datatypes (for exam-
ple, lists and binary trees). It is also possible to define predicate subtypes
such as the type of prime numbers. The specifications are organized into a
hierarchy of parameterized theories which contain assumptions, definitions,
axioms and theorems. Expressions of the PVS language provide usual arith-
metical and logical operations, as well as application of functions, lambda
abstraction and quantifiers, all with natural syntax. The predefined theories
contain hundreds of useful definitions and lemmas.

In the prover of PVS, every goal or subgoal is displayed in the following
form:

(-1} Al
(-2} A2
[3] A3

{3} B3

This display is a sequent: formulas above the dashed line (A1, A1, A3...)
are called antecedents and those below (B1, B1, B3...) are called conse-
quents. The sequent is interpreted as follows: conjunction of the antecedents
implies disjunction of the consequents. The lists of antecedents and conse-
quents may both be empty (an empty antecedent is equivalent to ¢rue, and
an empty consequent is equivalent to false).

The proof of every theorem in PVS begins with a single consequent (rep-
resenting the theorem). The objective of the proof is to create a proof tree of
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sequents in which all leaves are trivially true. The prover is always attempt-
ing to prove some unproved leaf in the tree. It can accomplish this task
by invoking one of its commands, which either proves the current sequent
(usually by applying some of the decision procedures) or splits it into several
easier subgoals. When there are no more unproven branches in the tree, the
prover notifies the user that the proof is complete. The resulting proof is
automatically stored in a file and can be run again later. The PVS system
has extensive facilities for managing the proofs and displaying information
about them.

In our PVS specification of RAM-AHU, we mostly use natural numbers
and integers to represent some variables in the data structures of the ma-
chine, and an abstract datatype to model the commands of the machine.
Additional datatypes are constructed from these basic types by applying
records, finite and infinite sequences and predicate subtypes. Many predi-
cates and lambda functions are also used to generate the whole specification
and a search program for RAM-AHU. Verification of the program relies on
the PVS decision procedures for Boolean logic and arithmetical operations
on natural numbers and integers.

3. RAM-AHU

The random-access machine invented by Aho, Hopcroft and Ullman [1],
which we call here RAM-AHU, is a computing device with one adder in
which the program cannot change itself (the so-called Harvard architecture).
It consists of three parts: the input tape, the main (computational) part,
and the output tape.

The input tape is a sequence of cells of an unlimited length. Each cell
contains a symbol; it is only possible to read symbols from the input tape
but not to write them. At any moment, the reading head of the tape points
to some cell. After reading a symbol from that cell, the head moves one cell
right.

The output tape is also an unlimited sequence of cells, with each cell
containing a symbol. It is only possible to write symbols to the output tape
but not to read them. At any moment, the writing head of the tape points
to some cell. After writing a symbol to that cell, the head moves one cell
right. It is not possible to change symbols that have already been written
to the output tape. For this version of the machine, all symbols that can
appear on the input or output tape are integers.

The computational part of RAM-AHU consists of a program, a program
counter, and memory. The program for RAM-AHU is a finite sequence of
commands; each command can have a label. 1t is assumed that the program
is not stored in the memory, so it cannot change itself during its execu-
tion (which corresponds to the so-called Harvard architecture). There are
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commands for arithmetical operations, conditional and unconditional jumps,
input/output operations and some others.

At any moment of time during the program execution, the program counter
points to some of its commands that should be executed at the next step of
the computation. After the command with some index k is performed, the
counter automatically moves to the command with the index k + 1 (i.e. the
next command). The only exception is made for conditional and uncondi-
tional jumps, as well as the command HALT which stops the computation.
If the counter no longer points to any command (i.e. exceeds the length of
the program), this means that there are no more commands to be executed,
so the computation is over.

The memory of RAM-AHU is a sequence of registers ro,r1,...75,...; each
register can store an arbitrary integer. It is assumed that there is no upper
limit to the number of registers that can be used. This idealization is rea-
sonable when the size of the task is small enough to fit in the main memory
of the machine. The first register rg, called the adder, participates in all
arithmetical operations (it can also store an arbitrary integer).

The initial state of RAM-AHU is determined by the chosen program and
its input data. In any initial state, there are some symbols on its input
tape (i.e. the input data), all registers are empty, the output tape is also
empty, and the program counter points to the first command of the pro-
gram. After the execution of each command, the program counter changes
as described above until it eventually exceeds the length of the program and
the computation stops. It is also possible that this event never happens (i.e.
there is always some command waiting to be executed), and this leads to a
non-terminating computation.

Each command of RAM-AHU consists of two parts — its operation code
and its address. The command’s address is either an operand or a label of
some command in the program; in some cases it can also be empty. An
operand a can be of one of the three types:

1. The expression =i means the integer 7 itself and is called a literal;

2. The expression ¢ means the content of the register ¢ (i cannot be neg-
ative);

3. The expression *i means the use of indirect addressing, i.e. the value
of this operand is the content of the register j, where j is the integer
located in the register 7. If j < 0, the program should stop.

If some command has an operand a, we can define the value v(a) of this
operand. The definition of the function v uses another function c: for each
natural number 4, ¢(i) is the content of the register i. Using the informal
definition of the expressions =i, ¢ and *i given above, we define the value of
an arbitrary operand a as follows:
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There are 12 types of commands in the programs for RAM-AHU: LOAD,
STORE, ADD, SUB, MULT, DIV, READ, WRITE, JUMP, JGTZ, JZERO
and HALT. For the first eight commands (their meaning is clear from their
names) the address is an operand. For the commands JUMP, JGTZ and
JZERO, the address is a label, and for the command HALT, the address is
empty. JUMP is an unconditional jump instruction, whereas JGTZ (“jump
if greater than zero”) and JZERO (“jump if equal to zero”) are conditional
jump instructions. The HALT command terminates the program execution.

The following list defines the effect of each command. Here the sign +
denotes an assignment, and the function floor(z) gives the greatest integer
that is less than or equal to . Undefined commands and commands with
an illegal value of the address are equivalent to the command HALT.

1. LOAD a. Effect: c(0) < v(a)

2. STORE i. Effect: c(i) + ¢(0)

STORE xi. Effect: c(c(i)) < ¢(0)

ADD a. Effect: ¢(0) < ¢(0) + v(a)

SUB a. Effect: c¢(0) < c(0) - v(a)

MULT a. Effect: ¢(0) < ¢(0) * v(a)

DIV a. Effect: ¢(0) < floor(c(0) / v(a))
READ i. Effect: c(i) < the next input symbol.

READ xi. Effect: c(c(i)) < the next input symbol. In both cases, the
head of the input tape moves one cell right.

8. WRITE a. Effect: v(a) is printed in the cell of the output tape which
is currently observed by its head. After that, the head moves one cell
right.

NS O e W

9. JUMP b. Effect: the program counter moves to the command with the
label b.

10. JGTZ b. Effect: If ¢c(0) > 0, the program counter moves to the com-
mand with the label b or otherwise to the next command.

11. JZERO b. Effect: If ¢(0) = 0, the program counter moves to the
command with the label b or otherwise to the next command.

12. HALT. Effect: the execution of the program stops.
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4. Our formalization of abstract register machines

Our methods of specification are not specific to RAM-AHU but can be used
in principle to model the behavior of any abstract register machine. They
have significant similarities to the methods we previously used to specify and
verify distributed protocols in [3] and [4]. In our approach, the behavior of an
abstract register machine is defined by the notion of a state, representing a
snapshot of the state-of-affairs during the execution of its program, and a set
of commands. The state includes all information present in the machine at
any time: its program, the value of its registers and the program counter, the
input and output tapes. Each command changes the values of some variables
in the state when it is executed; commands can have an arbitrary number of
parameters. Commands are formally specified by an effect predicate which
relates the states before and after the command execution. The process of
computation on an abstract register machine begins in an initial state which
includes a particular program and a particular input tape.

The computation on an abstract register machine (for an initial state)
terminates if and only if it eventually reaches a final state, i.e. a state where
it is no longer possible to execute any command. For RAM-AHU, it is easy to
see that a state is final if and only if the value of the program counter exceeds
the length of the program, so the counter no longer points to any command.
The definitions of the final state and the effect predicate are closely related:
if a state sl is final and Effect is the effect predicate for our machine, then
for any other state s2 we should have Effect(sl,s2) = false. On the other
hand, if a state sl is not final, then the effect predicate should transform it
into another state s2. RAM-AHU is fully deterministic, so for any non-final
state sl there exists exactly one state s2 such that Effect(sl, s2) = true.

The complete execution of an abstract register machine (for some initial
state) is defined by the notion of a complete run. A complete run R is
either an infinite or a finite sequence of states which satisfies the following
conditions:

e If R is infinite, then it is a sequence of the form sgs;...5;S;+1. .., where
s; (i > 0) are states, sg is the initial state of the machine, and each
pair of states (s;, s;+1) is related by the effect predicate.

o If R is finite, then it is a sequence of the form s¢s1...8iSi+1- - .Sn, Where
si (0 < i < n) are states, so is the initial state of the machine, each
pair of states (s;, s;+1) is related by the effect predicate, and the state
Sy, is final.

In our PVS specification of the states of RAM-AHU, the program is
represented by the variable program, and the program counter by the variable
pCounter. For an arbitrary state st, this allows us to define formally the
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notion of a final state by the following predicate isFinal (note that in PVS
the elements of a sequence are enumerated starting with 0, not with 1):

isFinal(st) = (pCounter(st) > length(program(st)))

In the PVS specification, the definition of complete runs is implemented
by giving the initial state Ini (for a particular program and a particular
input tape) and the effect predicate Effect, i.e. the Boolean predicate on
pairs (8;,s;+1). We define the abstract datatype Runs, which includes both
the infinite and finite sequences of states. Suppose R is a variable of the
type Runs. If R is infinite, then it is a complete run if the following two
properties are met:

1. R(0) = In;
2. for each natural index ¢, we have Effect(R(i), R(i + 1)) = true.

If R is finite and is of length Len, then R is a complete run if Len > 0
and the following three properties are satisfied (where the function last gives
the last element of a sequence):

1. R(0) = Ini;

2. for each natural index i such that i < Len —1, we have Effect(R(i), R(i+
1)) = true;

3. isFinal(last(R)) = true.

5. Data structures of the machine in PVS

To model RAM-AHU in PVS, we need to define the structure of its states.
The state should include the program of the machine, the value of its registers
and of the program counter, the input and output tapes. Since any program
is a sequence of commands, we need to specify the structure of the machine
commands.

In the informal definition of a program, only some of its commands have
labels, and these labels are represented by words in a natural language. In
PVS, it is much more convenient to have a label for every command, and to
represent labels by natural numbers. A label equal to 0 is interpreted as the
absence of a label, and “real” labels are modeled by positive natural numbers.
For this reason, any command is represented by a record with two fields: its
label and its body. The body of a command belongs to the abstract datatype
CommandBody, which is rather complex and is presented in the next section.
Assuming that the type CommandBody is already defined, we can define the
type Commands as follows:

Commands: TYPE = [# label : nat,
body : CommandBody #]

The complete data structure for the states of RAM-AHU is given by the
PVS type RAMstates, which is defined as follows:
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RAMstates : TYPE =

[# program : finite_sequence[Commands],
pCounter : nat,
registers : sequencelint],
inputTape : sequencelint],
inputHead : nat,

outputTape : sequence[int],
outputHead : nat #]

The meaning of the fields in the type RAMstates is rather obvious: the
program is represented by a finite sequence of commands, the field p Counter
models the program counter, the field registers represents the infinite se-
quence of registers, where each register can hold an integer. The input tape
and the output tape are also modeled as infinite sequences of integers. The
field inputHead points to the cell of the input tape that should be read dur-
ing the next read command, and the field outputHead points to the cell of
the output tape that is due to be written during the next write command.

Suppose that we have a program SomeProg (i.e. a finite sequence of the
type Commands) and an input tape SomelnputTape for it (i.e. a sequence
of integers of unlimited length). The initial state for SomeProg and Someln-
putTape is defined in a rather obvious way: they are included in the state,
an empty sequence EmptyIntSeq (i.e. a sequence consisting of only zeros)
is assigned to the fields registers and outputTape, and 0 is assigned to the
program counter and the variables inputHead and outputHead. So the ini-
tial state for SomeProg and SomelnputTape is represented by the following
constant SomelniState of the type RAMstates:

SomeIniState : RAMstates =

(# program := SomeProg,
pCounter := 0,
registers := EmptylIntSeq,
inputTape := SomeInputTape,
inputHead := 0,
outputTape := EmptyIntSeq,
outputHead := 0 #)

6. Commands of the machine in PVS

It was already said in the previous section that any command of RAM-AHU
is represented by a record with two fields: its label and its body. The body
belongs to the abstract datatype CommandBody shown below.

CommandBody [ IntOpType : TYPE] : DATATYPE
BEGIN
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load(typeop : IntOpType, intop : int) : load?
store(dir : bool, natop : nat) : store?
add(typeop : IntOpType, intop : int) : add?
sub(typeop : IntOpType, intop : int) : sub?
mult(typeop : IntOpType, intop : int) : mult?
div(typeop : IntOpType, intop : int) : div?
read(dir : bool, natop : nat) : read?
write(typeop : IntOpType, intop : int) : write?
jump(labop : posnat) : jump?

jgtz(labop : posnat) : jgtz?

jzero(labop : posnat) : jzero?

halt : halt?

END CommandBody

The type CommandBody has another type IntOpType as a parameter.
A variable typeop (“type of operand”) of the type IntOpType indicates the
meaning of the integer operand intop in some commands. It can have one
of three values : lit, dir, or indir. If typeop is equal to lit, then the integer
operand in the corresponding command should be interpreted as a literal. If
typeop = dir, then intop means the index of a register with direct addressing,
and if typeop = indir, then intop means the index of a register with indirect
addressing.

The meaning of the commands and their parameters in the type Com-
mandBody should be rather obvious, because it completely corresponds to
their informal definition in Section 3. We have already explained the param-
eters typeop and intop of the commands LOAD, ADD, SUB, MULT, DIV
and WRITE. The commands STORE and READ have a natural parameter
natop, and a Boolean parameter dir that indicates the meaning of natop.
If dir = true, natop means the index of a register with direct addressing,
and if dir = false, natop means the index of a register with indirect ad-
dressing. The commands JUMP, JGTZ and JZERO have a positive natural
parameter labop indicating the label of the command to which the program
counter should jump if some condition is satisfied. The command HALT has
no parameters.

To obtain the complete runs for RAM-AHU according to the method
presented in Section 4, we need to define the effect predicate Effect, i.e. a
Boolean predicate on pairs of states. This was done separately for each of
the 12 commands of the machine. The effect predicates for most commands
are rather large and cumbersome, and we see no need to present all of them
here, because they correspond very closely to the intuitive meaning of the
commands given in Section 3. To illustrate our approach, we only show the
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effect of commands HALT and LOAD.

The effect of the HALT command is very simple: the program counter
becomes equal to the length of the program, so it no longer points to any
command of the program (note that if the program length is Len, then its
elements are enumerated from 0 to Len — 1). So if s0 and sl are arbitrary
states, the effect is defined as follows:

haltEffect(s0, s1) : bool =
sl = sO WITH [ pCounter := length(program(s0)) ]

The LOAD command has two parameters: an integer operand intop and
its type typeop with possible values lit, dir or indir. If sO and s1 are arbitrary
states, then the effect of the LOAD command with arbitrary parameters
wntopl and typeopl is defined as follows:

loadEffect(sO, typeopl, intopl, sl1l) : bool =

CASES typeopl OF

lit: loadLitEffect(s0O, intopl, sl),

dir: IF intopl >= O THEN loadDirEffect(sO, intopl, si1)

ELSE haltEffect(s0O, s1) ENDIF,
indir: IF intopl >= O THEN loadIndirEffect(sO, intopl, si1)
ELSE haltEffect(s0O, s1) ENDIF

ENDCASES

So it is clear from this definition that the effect is defined according to
the three possible values of the parameter typeopl. If typeopl = lit, then
intopl is a literal that should be loaded into the adder. This is defined by
the predicate loadLitEffect:

loadLitEffect(sO, intopl, sl1) : bool =
sl = sO WITH
[ registers := registers(s0) WITH [ (0) := intopl ],
pCounter := pCounter(s0) + 1 ]

If typeopl = dir, then intop! is the index of the register that should be
loaded into the adder. This is defined by the predicate loadDirEffect given
below; it uses the predicate loadLitEffect for loading a literal. If intopl < 0,
the LOAD command has illegal parameters and should have the same effect
as the HALT command.

loadDirEffect(s0, natopl, s1) : bool =
loadLitEffect(sO, registers(s0O) (natopl), s1)
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Finally, if typeopl = indir, then intop! is the index of the register that
should be loaded into the adder via indirect addressing. This is defined
by the predicate loadIndirEffect which is given below; it uses the predicate
loadDirEffect for loading based on direct addressing. Again, if intopl < 0,
the LOAD command has illegal parameters and should have the same effect
as the HALT command.

loadIndirEffect(s0, natopl, s1) : bool =
IF registers(sO) (natopl) >= 0
THEN loadDirEffect(sO, registers(s0) (natopl), si)
ELSE haltEffect(sO, s1) ENDIF

7. Verification of a search program
7.1. The program and its specification in PVS

To illustrate our method for the verification of programs for RAM-AHU,
we use it to verify a simple search program. The aim of the program is to
compute the larger of two integers located in the beginning of the input tape.
Even for such a simple task, the resulting program is not particularly short.
It consists of 9 commands numbered from com0O to com8 which are given
below.

comO : Commands = (# label := 0, body := read(TRUE, 0) #)
coml : Commands = (# label := 0, body := read(TRUE, 1) #)
com2 : Commands = (# label := 0, body := store(TRUE, 2) #)
com3 : Commands = (# label := 0, body := sub(dir, 1) #)
com4 : Commands = (# label := 0, body := jgtz(1l) #)

comb : Commands = (# label := 0, body := write(dir, 1) #)
com6 : Commands = (# label := 0, body := jump(2) #)

com7 : Commands = (# label := 1, body := write(dir, 2) #)

com8 : Commands = (# label := 2, body := halt #)
We constructed a program SearchProg consisting of these nine commands

which looks as follows.
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SearchProg : finite_sequence[Commands] =
(# length := 9,
seq := (LAMBDA (k : below[9]):

COND
k=0->com0, k =1 ->coml, k = 2 -> com2,
k=3->com3, k=4 ->comd4, k =5 -> comb,

k=6 ->comb6, k=7 ->com7, k =8 -> com8
ENDCOND)
#)

We also defined the input tape SearchSeq on which the computation
of SearchProg should begin. It contains arbitrary integers ¢nt0 and intl
followed by a string of zeros. The definition of SearchSeq is given below.

EmptyIntSeq : sequencelint] = LAMBDA n : O
int0O, intl : int

SearchSeq : sequencelint] =
EmptyIntSeq WITH [(0) := intO, (1) := int1i]

Since ¢nt0 and intl are arbitrary constants of the type integer, it is clear
from this definition of SearchSeq that it models any possible input tape for
the program SearchProg.

It is easy to see how the program SearchProg computes the larger of
int0 and intl. The command com0 reads the integer int0 and places it into
the register with index 0 (the adder). After that, the command com1 reads
the integer intl and places it into the register with index 1. Since another
copy of int0 will be needed shortly, the command com?2 stores int0 into the
register with index 2.

After that, the command com3 subtracts intl from ¢nt0 and places the
result into the adder. If it is greater than 0, then int0 > intl, so the
command com4 moves the program counter to the command with label 1,
i.e. the command com7. The command com7 writes int0Q from the register
with index 2 to the output tape, and the command com8 terminates the
computation. However, if int0 < intl, the program counter moves to the
command comb. The command comb writes intl from the register with
index 1 to the output tape. After that, the command com6 unconditionally
moves the program counter to the command com8. Again, the command
com8 terminates the computation.

The initial state Searchini of RAM-AHU for SearchProg and SearchSeq
is defined in the same way as was presented in Section 5: they are included in
the state, an empty sequence EmptyIntSeq (i.e. a sequence consisting of only
zeros) is assigned to the fields registers and outputTape, and 0 is assigned
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to the program counter and the variables inputHead and outputHead. After
that, we can use our definitions from Section 4 and obtain the set of complete
runs for Searchlni.

7.2. Specification and verification of the correctness property

The correctness property for the program SearchProg is as follows: it termi-
nates for any values of int0 and intl (i.e. the numbers in the beginning of its
input tape in the initial state) and, in the last state of its complete run, there
is exactly one number written on its output tape equal to the maximum of
int0 and intl. If crun is an arbitrary complete run, the correctness property
for it is defined as follows (here the function last gives the last element of a
finite sequence):

Correct(crun) =
fin?(crun) &
outputHead(last(crun)) =1 &
outputTape(last(crun))(0) = maz(inputTape(SearchIni)(0),
inputTape(SearchIni)(1))

We proved in PVS the following theorem called Main which establishes
not only correctness of any complete run for our program, but also the num-
ber of states in it:

Verun : Correct(erun) & (length(crun) = 8 OR length(crun) = 9)
(Main)

It is clear from the theorem Main that all executions of our search pro-
gram consist of exactly 7 or 8 commands, because the number of states in
any finite run exceeds the number of commands by 1. For example, if some
run is a sequence of states sO s1 s2 s3, then there are exactly 3 commands
leading from s0 to s3. So the theorem Main implies that the best-case ex-
ecution time of the program SearchProg is 7 commands, and its worst-case
execution time is 8 commands.

The proof of the theorem Main consists of about 40 PVS theorems and
lemmas. Checking the proof takes less than 1 minute on a regular PC.
Below we present the proof itself.

Proof of the theorem Main. Like all PVS proofs, our proof is struc-
tured as a tree. The root of our tree is the theorem Main, and most of
its leaves are lemmas InflniLem, InfEffLem, FinlniLem, FinEffLem and Fin-
LastLem, which will be given below. These lemmas, which we call elementary
lemmas, follow directly from the definition of complete runs as it was given
in Section 4. We only need to replace in that general definition the initial
state Ini by its instance SearchIni for the program SearchProg.
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The lemmas InflniLem and InfEffLem describe the basic properties of
infinite complete runs. The lemma InflniLem expresses that the first state
in any infinite complete run must be equal to the initial state. It follows
directly from clause 1 in the definition of infinite complete runs.

Verun :inf?(crun) = crun(0) = SearchIni (InfIniLem)

The elementary lemma InfEffLem means that in any infinite complete
run each state should be obtained from the previous state according to the
effect predicate. It follows directly from clause 2 in the definition of infinite
complete runs.

Verun :inf?(crun) = Vi : Effect(crun(i), crun(i + 1)) (InfEffLem)

The lemmas FinlniLem, FinEffLem and FinLastLem describe the ele-
mentary properties of finite complete runs. The lemma FinlniLem expresses
that any finite complete run must have at least one state and its first state
must be equal to the initial state. It follows directly from clause 1 in the
definition of finite complete runs.

Verun @ fin?(crun) = length(crun) > 0 & crun(0) = SearchIni
(FinIniLem)
The lemma FinEfflLem means that in any finite complete run each state
should be obtained from the previous state according to the effect predicate.
It follows directly from clause 2 in the definition of finite complete runs.

Verun @ fin?(crun) =
Vi :i < length(crun) — 1 = Effect(crun(i),crun(i + 1)) (FinEffLem)

Finally, the elementary lemma FinLastLem expresses that the last state
of any finite complete run should be final (in the sense defined in Section 4).
It follows from clause 3 in the definition of finite complete runs.

Verun : fin?(crun) = isFinal(last(crun)) (FinLastLem)

Now we continue with the proof. Let crun be an arbitrary complete run
which can be either infinite or finite. Below we consider both possible cases.

The case of an infinite complete run. If crun is infinite, our goal is
to prove that this is impossible, i.e. obtain a contradiction. This is done by
showing that the program counter in an infinite run will eventually exceed
the length of the program. We proved the following lemma BadCounter
which expresses that the program counter will reach the value of 9 either in
the state with index 7 or in the state with index 8:
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Verun s inf?(crun) =
(pCounter(crun(7)) =9 OR pCounter(crun(8)) =9) (BadCounter)

The proof of lemma BadCounter is rather long and complex; we do not
present it here. Using this lemma, we can easily obtain a contradiction with
the elementary lemma InfEffLlem. Indeed, applying InfEffLem we obtain
Effect(crun(7), crun(8)) = true and Effect(crun(8),crun(9)) = true. If
pCounter(crun(7)) = 9, this leads to a contradiction with Effect(crun(7),
crun(8)) = true and the definition of the effect predicate, because a state
with such a large value of the program counter cannot be related to any other
state by the effect predicate. For the same reason, pCounter(crun(8)) =9
creates a contradiction with Effect(crun(8), crun(9)) = true and the defi-
nition of the effect predicate. Since both cases lead to a contradiction, this
means that crun cannot be infinite. This result establishes the termination
of our program for any input data.

The case of a finite complete run. If crun is finite, our aim is to
prove that eventually the final state will be reached in which the output
tape contains either int0 or intl, depending on which of these numbers is
larger. If ¢nt0 > intl, such a state will be reached after executing exactly 7
commands, and if int0 < intl, it will be reached after exactly 8 commands.
We proved the following lemmas ShortPathLem and LongPathLem which
describe both possible cases:

Verun : fin?(crun) & int0 > intl =
length(crun) > 7 & pCounter(crun(7)) =9 &

output Head(crun(7)) = 1 & outputTape(crun(7))(0) = int0
(ShortPathLem)

Verun @ fin?(crun) & int0 < intl =
length(crun) > 8 & pCounter(crun(8)) =9 &

output Head(crun(8)) = 1 & outputTape(crun(8))(0) = intl
(LongPathLem)

We do not discuss here the proofs of lemmas ShortPathLem and Long-
PathLem because of their large size and complexity. Using these lemmas,
we can easily prove the theorem Main. Indeed, if int0 > intl, we apply the
lemma ShortPathLem and obtain: pCounter(crun(7)) =9,
output Head(crun(7)) = 1 and outputTape(crun(7))(0) = int0. If we as-
sume that the state with index 7 is not the last state of crun, we can ob-
tain a contradiction with the elementary lemma FinEffLem and the def-
inition of the effect predicate. This means that length(crun) = 8 and
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crun(7) = last(crun). We can easily see that the theorem Main is satis-
fied for crun. If int0 < intl, we apply the lemma LongPathLem and obtain:
pCounter(crun(8)) = 9, output Head(crun(8)) = 1 and
outputTape(crun(8))(0) = intl. As in the previous case, we prove that the
state with index 8 is the last state of crun. Therefore, length(crun) =9 and
crun(8) = last(crun). Again, the theorem Main is satisfied for c¢run. This
completes the proof of Main.

8. Conclusion

Abstract register machines (ARMs), which include counter machines [8] and
pointer machines [11], as well as more realistic models of hardware such as
random-access machines [5] and random-access stored-program machines [6],
are an important model aimed at rigorous analysis of computer algorithms.
We presented here a formal framework for the specification and verification
of computational programs for ARMs — something not presented in [5, 6,
8, 11| and subsequent works on this model. As we already mentioned, our
framework allows proving not only the functional correctness of such pro-
grams, but also their best-case and worst-case time complexity.

The version of ARMs considered here (based on the book [1]) has not
only significant similarities to the random-access machine from [5], but also
some differences. For example, the only primitive arithmetic commands in [5]
are addition and subtraction, but there is a mechanism that allows creating
arrays. However, our version has little in common with pointer machines
from [11]. The computational part of pointer machines is so primitive that
they cannot perform arbitrary arithmetic operations, and this makes them
unsuitable for programming of complex algorithms.

To illustrate our method of verification, we used it to verify a search
program which computes the larger of two arbitrary integers. Despite the
apparent simplicity of this example, we believe that it is far from trivial. In-
deed, since the initial data for our program belong to an infinite domain Z X
Z, we verified its correctness for an unlimited number of possible executions.
This is something that is rather challenging for fully automated techniques
such as model-checking, but can be done using deductive verification. An
additional advantage of our approach is the fact that we were able to prove
the exact time complexity of the program: its executions consist of at least
7 and at most 8 commands.

Naturally, the search program considered in this paper is only the first
step in our investigation of programs for abstract register machines and their
formal verification. In our future work, we would like to verify a program for
RAM-AHU that performs a search in an array of an arbitrary size. Another
interesting possibility is to investigate how to efficiently sort large arrays
on this architecture, and also to verify formally such sorting programs. It
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is well-known that programs that process data structures of arbitrary sizes
usually cannot be verified fully automatically. Therefore, it seems completely
appropriate to use deductive verification in order to ensure their correctness.
We also plan to extend our framework so that it would allow us to prove not
only the time complexity of programs, but also their space complexity.
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