
Bull. Nov. Comp.Center, Comp. Science, 32 (2011), 37�56
c⃝ 2011 NCC Publisher

Speci�cation and veri�cation of the classical sliding

window protocol

D.A. Chkliaev, V.A. Nepomniaschy

Abstract. We consider the well-known Sliding Window Protocol (SWP) which
provides reliable and e�cient transmission of data over unreliable channels. It
seems quite important to give a formal proof of correctness for the SWP, especially
because the high degree of parallelism in this protocol creates a signi�cant potential
for errors. However, the e�orts to provide a deductive veri�cation for the SWP had
only a limited success so far. To �ll this gap, we o�er a new approach, in which the
protocol is speci�ed by a state machine in the language of the veri�cation system
PVS. We also formalize its safety property and prove it using the interactive proof
checker of PVS.

Keywords: computer networks, communication protocols, Sliding Window Pro-

tocol, formal speci�cation, automated veri�cation, interactive theorem proving, ver-

i�cation system PVS

1. Introduction

One of the best known protocols for reliable transmission of data over un-
reliable channels is the Sliding Window Protocol (SWP) [2, 13, 14]. Many
popular communication protocols, such as TCP and HDLC, are based on
the SWP.

Correctness of the SWP is far from obvious, because the protocol involves
a subtle interaction of several distributed components and has a high degree
of parallelism. This is why many researchers attempted to verify the protocol
formally, by specifying it in some speci�cation language and giving a formal
proof of correctness using mathematical techniques. The veri�cation was
often supported by tools, such as a model checker or an interactive theorem
prover. It turned out that such a rigorous study of the SWP is a rather
di�cult task, and there is currently no consensus among researchers on which
approaches and formal techniques are best suited for the formal veri�cation
of the protocol.

In the dissertation [3], we previously presented a promising general method
for speci�cation and veri�cation of distributed protocols and used it to verify
several non-trivial examples from the �eld of databases. Here we demonstrate
that our method can also be successfully applied to the Sliding Window pro-
tocol, leading to a compact speci�cation with rather natural data structures
and an intuitively understandable proof of correctness. Just as in [3], all our
proofs are automated with the veri�cation system PVS.

38 D.A. Chkliaev, V.A. Nepomniaschy

In our previous work [4], we have already veri�ed a version of the Sliding
Window protocol using our method from [3]. In that version (invented by us),
an unusual timing mechanism was used to periodically remove old messages
from the channels; this allowed messages in the channels to be reordered.

Here we consider the �classical� version of the SWP protocol, i.e. the
version aimed at data link channels that do not allow reordering of messages.
This is the version that is usually studied in the literature in the context of
formal veri�cation. It corresponds to the �go-back-n� protocol from [14], i.e.
the protocol with the sending window of an arbitrary size and the receiving
window equal to 1. However, unlike [14], we assume that there is no limit
on message size in our protocol. Therefore, in this version the sender uses
the original index of each frame in the input sequence when it transmits the
frame to the receiver, instead of its remainder with respect to some �xed
modulus. Such simpli�cation of the protocol is rather common in the works
dedicated to its formal veri�cation; for example, in the context of deductive
veri�cation it is used in [9].

The rest of the paper is organized as follows. In Section 2, we give a
brief introduction to the PVS system. In Section 3, an informal description
of the SWP protocol is given. In Section 4, we formalize the protocol by a
state machine. Section 5 presents speci�cation and veri�cation of the safety
property for our protocol. Finally, Section 6 gives a review of related works
and some remarks on the possible future work.

2. The PVS veri�cation system

The PVS system [7], created at the Stanford Research Institute about two
decades ago, is widely used for formal speci�cation and veri�cation of com-
plex computer protocols and systems, especially in the area of fault-tolerant
computing. It consists of a speci�cation language, a large number of pre-
de�ned theories and an interactive prover, as well as documentation, tutorials
and examples, illustrating the use of PVS in several domains. PVS is able to
combine an expressive speci�cation language with powerful automated de-
duction, which allows it to handle many examples that present considerable
di�culties for other veri�cation systems.

The speci�cation language of PVS is based on the classical higher-order
logic. The main types include uninterpreted types, which may be intro-
duced by a user, as well as built-in types such as Booleans, natural and
real numbers. The constructors of types include functions, sets, records,
tuples and enumerations, as well as recursively de�ned abstract datatypes
(for example, lists and binary trees). It is also possible to de�ne predicate
subtypes such as the type of prime numbers. The speci�cations are orga-
nized into a hierarchy of parameterized theories, which contain assumptions,
de�nitions, axioms and theorems. Expressions of the PVS language provide

Speci�cation and veri�cation of the classical sliding window protocol 39

usual arithmetical and logical operations, as well as application of functions,
lambda abstraction and quanti�ers, all with natural syntax. The prede�ned
theories contain hundreds of useful de�nitions and lemmas.

In the prover of PVS, every goal or subgoal is displayed in the following
form:

{-1} A1

{-2} A2

[-3] A3

. . .

|����

[1] B1

{2} B2

{3} B3

. . .

This display is a sequent : formulas above the dashed line (A1, A1,
A3. . .) are called antecedents and those below (B1, B1, B3. . .) are called
consequents. The sequent is interpreted as follows: conjunction of the an-
tecedents implies disjunction of the consequents. The lists of antecedents
and consequents may both be empty (an empty antecedent is equivalent to
true, and an empty consequent is equivalent to false).

The proof of every theorem in PVS begins with a single consequent (re-
presenting the theorem). The objective of the proof is to create a proof tree
of sequents in which all leaves are trivially true. The prover is always at-
tempting to prove some unproved leaf in the tree. It can accomplish this task
by invoking one of its commands, which either proves the current sequent
(usually by applying some of the decision procedures) or splits it into several
easier subgoals. When there are no more unproven branches in the tree, the
prover noti�es the user that the proof is complete. The resulting proof is
automatically stored in a �le and can be run again later. The PVS system
has extensive facilities for managing the proofs and displaying information
about them.

In our PVS speci�cation of the SWP protocol, we use uninterpreted types
to represent the frames transmitted by our protocol and abstract datatypes
to represent the actions (transitions) of the protocol. Naturally, we also
use Booleans and natural numbers to represent some of the variables in the
protocol. Additional datatypes are constructed from these basic types by ap-
plying records, �nite and in�nite sequences and predicate subtypes. Many
predicates and lambda functions are also used to generate the whole speci�-
cation. Veri�cation of the protocol relies on the PVS decision procedures for
Boolean logic and arithmetical operations on natural numbers; mathematical
induction is also used to prove several lemmas.

40 D.A. Chkliaev, V.A. Nepomniaschy

3. Informal description of the SWP protocol

Sender and receiver. In the SWP protocol there are two main compo-
nents: the sender and the receiver. The sender obtains an in�nite sequence of
data from the sending host. We call indivisible blocks of data in this sequence
�frames�, and the sequence itself the �input sequence�. The input sequence
must be transmitted to the receiver via an unreliable network. After receiv-
ing a frame via the channel, the receiver may decide to accept the frame and
eventually deliver it to the receiving host. The safety condition for the SWP
protocol says that the receiver should deliver the frames to the receiving host
in the same order in which they appear in the input sequence. The liveness
condition expresses that each frame in the input sequence should eventually
be delivered by the receiver. In this paper, we are only concerned with the
safety property.

Messages and channels. In order to transmit a frame, the sender
puts it into a frame message together with some additional information and
sends it to the frame channel. After the receiver eventually accepts the
frame message from this channel, it sends an acknowledgment message for
the corresponding frame back to the sender. This acknowledgment message
is transmitted via the acknowledgment channel. After receiving an acknow-
ledgment message, the sender knows that the corresponding frame has been
received by the receiver.

Sequence numbers. The sender sends the frames in the same order
in which they appear in its input sequence. However, the frame channel is
unreliable, so the receiver may receive these frames in a very di�erent order
(if receive at all). Therefore it is clear that each frame message must contain
some information about the order of the corresponding frame in the input
sequence. Such additional information is called �a sequence number�. If there
is no natural limit on the size of a frame message, then we can simply send
the initial position of the frame in the input sequence (such as 0, 1, 2, 3 etc.)
together with the frame. This is the situation that we consider in this paper.
Therefore, an in�nite range of sequence numbers is used by this version of
the protocol.

To acknowledge a frame, the receiver sends an acknowledgment message
with the sequence number with which the frame was received. Acknowl-
edgments are �accumulative�; for example, when the sender acknowledges
a frame with the sequence number 3, it means that frames with sequence
numbers 0, 1 and 2 have also been accepted.

Sending window. At any time, the sender maintains a sequence of
sequence numbers corresponding to frames permitted to be sent. These
frames are said to be a part of the sending window. Similarly, the receiver
maintains a receiving window of sequence numbers permitted to be accepted.
In our protocol, the size of the sending window is represented by an arbitrary

Speci�cation and veri�cation of the classical sliding window protocol 41

integer N, whereas the receiving window is equal to 1.
At some point during the execution it is possible that some frames in

the beginning of the sending window have already been sent but not yet
acknowledged, and the remaining frames have not been sent yet. When an
acknowledgment arrives for a frame in the sending window that has already
been sent, this frame and all preceding frames are removed from the window
as acknowledgments are accumulative. Simultaneously, the window is shifted
forward, so that it again contains N frames. As a result, more frames can be
sent. Acknowledgments that fall outside the window are discarded. If a sent
frame is not acknowledged for a long time, it usually means that either this
frame or an acknowledgment for it has been lost. To ensure the progress of
the protocol, such a frame is eventually resent. Many di�erent policies exist
for sending and resending of frames [14], which take into account, e.g., the
e�cient allocation of resources and the need to avoid network congestion.
Here we abstract from such details of the transmission policy and specify
only those restrictions on protocol's behavior that are needed to ensure its
safety property.

Receiving window. When the receiving window is equal to 1, the re-
ceiver is always waiting for a frame message with one particular sequence
number. When a message arrives with a sequence number matching the ex-
pected one, it is accepted and the frame in it is delivered to the receiving
host; otherwise the message is discarded. Thus in this version the actions
for acceptance and delivery of frames by the receiver are combined to sim-
plify the speci�cation. After the delivery of a frame, the expected sequence
number is updated by incrementing it by 1.

The sequence number of the last delivered frame can be sent back to the
sender to acknowledge the frame. Not every frame must be acknowledged; it
is possible to deliver a few frames in a row and then acknowledge only the last
of them. If the receiver does not deliver any new frames for a long time, it
may resend the last acknowledgment to ensure the progress of the protocol.
Just as with resending of frames, no discipline is enforced in this version
with regard to resending of acknowledgments: basically the acknowledgment
messages may be resent at any time.

4. Speci�cation of the protocol in PVS

4.1. Our model of distributed computation

Here we use the same methods of speci�cation as in [3]. In that dissertation
we presented a comprehensive approach to the speci�cation and veri�cation
of fault-tolerant distributed protocols with nondeterministic behavior. In our
method, a protocol itself is represented by an abstract state machine with a
possibly in�nite number of states and transitions between them. The desired
properties of the protocol are formalized as logical formulas on all traces of

42 D.A. Chkliaev, V.A. Nepomniaschy

states and actions that can be generated by the protocol. We refer to [3] for
a more detailed presentation of our method, as well as its comparison with
related frameworks, such as process algebra and I/O automata.

Formally, in our approach a protocol is de�ned by the notion of a state,
representing a snapshot of the state-of-a�airs during protocol execution, and
a set of actions. The state consists of data and control variables (which are
not formally distinguished), each belonging to one of the distributed com-
ponents. For example, in the SWP protocol we have four components: the
sender, the receiver, the frames channel, and the acknowledgements channel.
Each action is executed by one of these distributed components and changes
its own variables, and, possibly, also the variables of an adjacent component
with which it is interacting. Actions, which may have an arbitrary num-
ber of parameters, are speci�ed by a precondition and an e�ect predicate
which relates the states before and after the action execution. Execution of
our protocol, or a run, is represented by an in�nite sequence of the form

s0
a0−→ s1

a1−→ ...si
ai−→ si+1

ai+1−→ ..., where si are states, ai are executed
actions, s0 is the initial state, each si satis�es the precondition of ai, and
every pair (si, si+1) corresponds to the e�ect of ai.

In the PVS speci�cation, the de�nition of runs is implemented by giving
the initial state Ini, the precondition Pre, i.e. the Boolean predicate on
pairs (si, ai), and the e�ect predicate Eff , i.e. the Boolean predicate on
triplets (si, ai, si+1). After that, a run r is de�ned as a pair consisting of
an in�nite sequence of states st(r) and an in�nite sequence of actions act(r)
and satisfying the following three properties:
1. st(r)(0) = Ini;
2. for each natural index i, we have Pre(st(r)(i), act(r)(i)) = true;
3. for each natural index i, we have Eff(st(r)(i), act(r)(i), st(r)(i + 1)) =
true.

The rest of this section is organized as follows. In subsection 4.2, we
de�ne the data structures of the protocol in PVS. In subsection 4.3, the
atomic actions of the protocol are de�ned and their e�ect on the state of the
protocol is shown and brie�y explained.

4.2. Data structures of the protocol

There are di�erent ways to model both the sender and the receiver in the
SWP protocol. In our model of the sender, the window �slides� over the in�-
nite input sequence input. We do not specify the nature of the frames in the
input sequence. Thus frames are represented by an uninterpreted (unempty)
type Frames. The window size is represented by a positive natural number
N .

Speci�cation and veri�cation of the classical sliding window protocol 43

Frames : TYPE+

N : { n : nat | n > = 1 }

The variable first denotes the �rst frame in the sending window, ftsend
is the �rst frame that has not been sent yet, and we always have first ≤
ftsend ≤ first + N . Thus, at any moment of time, frames with indices
from first to ftsend− 1 (if any) have been sent but not yet acknowledged,
and frames with indices from ftsend to first + N − 1 (if any) are in the
sending window but not sent yet. The complete data structure for the sender
is encoded as follows.

Sender : TYPE = [# input : sequence[Frames],

first : nat,

ftsend : nat #]

For the receiver, output is the �nite output sequence, seqnum is the cur-
rently expected sequence number, ackseqnum is the last received sequence
number, mayack is a boolean variable which tells whether we are allowed to
send the acknowledgment for ackseqnum to the sender.

Receiver : TYPE = [# output : finite_sequence[Frames],

seqnum : nat,

ackseqnum : nat,

mayack : bool #]

Both channels are modeled as lossy queues of unbounded capacity. For-
mally, the frame channel is represented by a �nite sequence of frame mes-
sages, and the acknowledgment channel is represented by a �nite sequence
of acknowledgment messages. The messages contain a sequence number and
possibly a frame. The complete state of the protocol, represented by the
PVS type SWStates, consists of the sender, the receiver and the two chan-
nels frameChannel and ackChannel.

FrameMessage : TYPE = [# seqnum : nat,

frame : Frames #]

AckMessage : TYPE = [# ackseqnum : nat #]

SWStates : TYPE = [# sender : Sender,

receiver : Receiver,

frameChannel : finite_sequence[FrameMessage],

ackChannel : finite_sequence[AckMessage] #]

The initial state of the protocol SWinit is de�ned in a rather obvious way,
i.e. 0 or an empty sequence is assigned to most �elds. Here the constant

44 D.A. Chkliaev, V.A. Nepomniaschy

F represents an arbitrary sequence of frames that is obtained by the sender
during the execution of the protocol. At the start of the execution, no frames
have been received yet. Therefore, the variable mayack is set to FALSE to
disallow sending of any acknowledgements (and the variable ackseqnum may
be set to an arbitrary value, in this case 1).

F : sequence[Frames]

SWinit : SWStates =

(# sender :=

(# input := F,

first := 0,

ftsend := 0 #),

receiver :=

(# output := empty_seq,

seqnum := 0,

ackseqnum := 1,

mayack := FALSE #),

frameChannel := empty_seq,

ackChannel := empty_seq #)

4.3. Atomic actions of the protocol

There are six atomic actions in our protocol: two for the sender (send and
receiveAck), two for the receiver (receive and sendAck), one for the frame
channel (loseFrame) and one for the acknowledgment channel (loseAck). In
PVS these actions are represented by the abstract datatype Actions, which
is shown below.

Actions [FrameMessage, AckMessage : TYPE] : DATATYPE

BEGIN

send(index : nat) : send?

receiveAck(ackmes : AckMessage, accept : bool, index : nat) :

receiveAck?

receive(framemes : FrameMessage, accept : bool) : receive?

sendAck : sendAck?

loseFrame(index : nat) : loseFrame?

loseAck(index : nat) : loseAck?

END Actions

Speci�cation and veri�cation of the classical sliding window protocol 45

The informal meaning of the actions and their parameters is as follows:

• send is an action for both the initial sending and re-sending of frames.
It has a parameter indicating the index of the frame being sent in the
initial sequence. For our data structure, there is no need to include the
frame itself as a parameter, because it can be easily computed from its
index in the initial sequence;

• receiveAck is an action for the receiving of acknowledgements by the
sender. It has three parameters: the acknowledgement message ackmes,
the Boolean variable accept indicating whether this message is accepted
or rejected, and �nally the index of the frame in the initial sequence
to which this acknowledgement corresponds. The parameter accept
is necessary, because only the accepted messages change the state of
the sender, whereas the rejected messages are simply removed from
the channel. The removal of messages can also be achieved by ap-
plying the action loseAck, but we believe that immediate removal of
unwanted messages corresponds more closely to the informal de�nition
of the protocol;

• receive is an action for the receiving of frames by the receiver. It has
two parameters: the frame message framemes and the Boolean variable
accept indicating whether this message is accepted or rejected. Just as
for the action receiveAck, the parameter accept is necessary, because
only the accepted messages change the state of the receiver;

• sendAck is an action for sending of an acknowledgement for the last
frame received by the receiver;

• loseFrame is an action that erases a message with a particular index
from the frame channel;

• loseAck is an action that erases a message with a particular index from
the acknowledgement channel.

The precondition for the actions of our protocol is de�ned by the predicate
SWPre which says whether the action A is allowed in the current state s:

SWPre(s, A) : bool =

CASES A OF

send(i) : (i = ftsend(sender(s)) &

ftsend(sender(s)) < first(sender(s)) + N) OR

(i >= first(sender(s)) & i < ftsend(sender(s))),

receiveAck(ackmes, accept, i) :

length(ackChannel(s)) > 0 & ackmes = ackChannel(s)(0) &

(accept <=> (i = ackseqnum(ackmes) &

i >= first(sender(s)) & i < ftsend(sender(s)))),

46 D.A. Chkliaev, V.A. Nepomniaschy

receive(framemes, accept) :

length(frameChannel(s)) > 0 & framemes = frameChannel(s)(0) &

(accept <=> seqnum(framemes) = seqnum(receiver(s))),

sendAck : mayack(receiver(s)),

loseFrame(i) : i < length(frameChannel(s)),

loseAck(i) : i < length(ackChannel(s))

ENDCASES

The informal meaning of the predicate SWPre for particular actions can
usually be easily deduced from the description of these actions given above:

• for the action send, the predicate checks that its index lies within an
acceptable range;

• for the action receiveAck, the predicate checks that ackmes is the �rst
message in the acknowledgement channel and its sequence number cor-
responds to some sequence number that is currently in the sending
window;

• for the action receive, the predicate demands that framemes is the �rst
message in the frame channel and its sequence number is equal to the
sequence number that is currently expected by the receiver;

• for the action sendAck, the predicate demands that this action is al-
lowed by the boolean variable mayack ;

• for the action loseFrame, its parameter must be meaningful, i.e. it
should not exceed the length of the frame channel;

• for the action loseAck, its parameter must be meaningful, i.e. it should
not exceed the length of the acknowledgement channel.

The e�ect of the actions of our protocol is de�ned by the predicate SWEf-
fect which says whether a new state s1 can be obtained from the current state
s0 by applying the action A:

SWEffect(s0, A, s1) : bool =

CASES A OF

send(i) : SendEffect(s0, i, s1),

receiveAck(ackmes, accept, i) : ReceiveAckEffect(s0, accept, i, s1),

receive(framemes, accept) : ReceiveEffect(s0, framemes, accept, s1),

sendAck : SendAckEffect(s0, s1),

loseFrame(i) : LoseFrameEffect(s0, i, s1),

loseAck(i) : LoseAckEffect(s0, i, s1)

ENDCASES

Speci�cation and veri�cation of the classical sliding window protocol 47

The e�ect predicates for particular actions are somewhat large and cum-
bersome, but for our model this probably cannot be avoided, because each
action may change several variables at once. Due to their large size, these
e�ect predicates are de�ned separately in the preceding text of the speci�ca-
tion. Below we show and brie�y explain the e�ect for each of the six actions
of our protocol. Note that in PVS, if a �nite sequence FS is of length L,
then its elements are numbered from 0 to L− 1. We call the initial element
FS(0) the beginning of FS, and the �nal element FS(L− 1) the end of FS.

send(i). This action sends the �rst frame that has not been sent yet, i.e. a
frame with the index ftsend, and this index is included into the message as
its sequence number. It may also resend a frame that has already been sent
but not yet acknowledged, i.e. a frame with the index i such that i ≥ first
and i < ftsend. The de�nition of SendE�ect uses an auxiliary function add-
LastFM : if fmes is a frame message and fmesFS a �nite sequence of frame
messages, then addLastFM(fmes, fmesFS) is a �nite sequence of frame mes-
sages in which fmes is appended to the end of fmesFS.

SendEffect(s0, i, s1) : bool =

IF (i = ftsend(sender(s0))) THEN

s1 = s0 WITH

[sender := sender(s0) WITH

[ftsend := ftsend(sender(s0)) + 1],

frameChannel :=

addLastFM((# seqnum := i,

frame := input(sender(s0))(i) #),

frameChannel(s0))]

ELSE s1 = s0 WITH

[frameChannel :=

addLastFM((# seqnum := i,

frame := input(sender(s0))(i) #),

frameChannel(s0))]

ENDIF

receiveAck(ackmes, accept, i). This action receives the acknowledg-
ment message ackmes and checks whether its sequence number lies within
the sending window. If so, the frames with sequence numbers up to ack-
seqnum(ackmes) are removed from the window and the window is shifted
accordingly. The de�nition of ReceiveAckE�ect uses an auxiliary function
removeFirstAM : if amesFS is a �nite sequence of acknowledgement mes-
sages with at least one element, then removeFirstAM(amesFS) removes from
amesFS its initial element.

48 D.A. Chkliaev, V.A. Nepomniaschy

ReceiveAckEffect(s0, accept, i, s1) : bool =

IF (accept = TRUE) THEN

s1 = s0 WITH

[sender := sender(s0) WITH [first := i + 1],

ackChannel := removeFirstAM(ackChannel(s0))]

ELSE

s1 = s0 WITH [ackChannel := removeFirstAM(ackChannel(s0))]

ENDIF

receive(framemes, accept). This action receives the frame message
framemes and checks whether its sequence number corresponds to the se-
quence number expected by the receiver. If so, it accepts the message and
appends its frame to the output sequence; otherwise the message is discarded.
The de�nition of ReceiveE�ect uses an auxiliary function removeFirstFM : if
fmesFS is a �nite sequence of frame messages with at least one element, then
removeFirstFM(fmesFS) removes from fmesFS its initial element. Also, an
additional function addLastFrame is used: if fr is a frame and frFS is a
�nite sequence of frames, then addLastFrame(fr, frFS) is a �nite sequence
of frames in which fr is appended to the end of frFS.

ReceiveEffect(s0, framemes, accept, s1) : bool =

IF (accept = TRUE) THEN

s1 = s0 WITH

[receiver := receiver(s0) WITH

[output :=

addLastFrame(frame(framemes),

output(receiver(s0))),

seqnum := seqnum(receiver(s0)) + 1,

ackseqnum := seqnum(receiver(s0)),

mayack := TRUE],

frameChannel := removeFirstFM(frameChannel(s0))]

ELSE

s1 = s0 WITH [frameChannel :=

removeFirstFM(frameChannel(s0))]

ENDIF

sendAck. If mayack is true, this action sends an acknowledgment for the
last received frame, i.e. the frame with the sequence number ackseqnum. The
de�nition of SendAckE�ect uses an auxiliary function addLastAM : if ames
is an acknowledgment message and amesFS is a �nite sequence of acknowl-
edgment messages, then addLastAM(ames, amesFS) is a �nite sequence of
acknowledgment messages in which ames is appended to the end of amesFS.

Speci�cation and veri�cation of the classical sliding window protocol 49

SendAckEffect(s0, s1) : bool =

s1 = s0 WITH [ackChannel :=

addLastAM((# ackseqnum := ackseqnum(receiver(s0)) #),

ackChannel(s0))]

loseFrame(i). This action formalizes a loss of a message with the index i
from the frame channel. The de�nition of its e�ect uses an auxiliary func-
tion removeFM : if fmesFS is a �nite sequence of frame messages with at
least one element and i is an index smaller than the length of fmesFS, then
removeFM(fmesFS, i) removes from fmesFS its element with the index i.

LoseFrameEffect(s0, i, s1) : bool =

s1 = s0 WITH [frameChannel := removeFM(frameChannel(s0), i)]

loseAck(i). This action models a loss of a message with the index i from
the acknowledgment channel. The de�nition of its e�ect uses an auxiliary
function removeAM : if amesFS is a �nite sequence of acknowledgment mes-
sages with at least one element and i is an index smaller than the length
of amesFS, then removeAM(amesFS, i) removes from amesFS its element
with the index i.

LoseAckEffect(s0, i, s1) : bool =

s1 = s0 WITH [ackChannel := removeAM(ackChannel(s0), i)]

5. Speci�cation and veri�cation of the safety property

The SWP protocol is correct with respect to safety, if the receiver always
delivers the frames to the receiving host in the same order in which they
appear in the input sequence. In our model, we prefer to de�ne correctness
in terms of states rather than actions. Note that in each state frames that
have already been delivered to the receiving host are represented by the
output sequence. Therefore, the safety property for a particular state s
can be expressed by a predicate which says that the output sequence is the
pre�x of the input sequence (note that in PVS the elements of a sequence
are enumerated starting with 0, not with 1):
Safe(s) = ∀ i : i < length(output(s)) ⇒ output(s)(i) = input(s)(i)

As de�ned in Section 4.1, st(r) and act(r) denote the sequence of states
and sequence of actions of a run r, respectively. We de�ne the run r to be
safe, if it is safe in every state:

Safety(r) = ∀ j : Safe(st(r)(j))
In order to establish the safety property for our protocol, we need to

prove in PVS the following theorem called Main:

∀ r : Safety(r) Main

50 D.A. Chkliaev, V.A. Nepomniaschy

The proof of the theorem Main consists of about 20 PVS theorems and
lemmas, and it took the �rst author from 2 to 3 weeks to develop the proof.
Checking the proof takes less than 25 seconds on a regular PC. Below we
present the proof itself.

Proof of the theorem Main. Like all PVS proofs, our proof is struc-
tured as a tree. The root of our tree is the theorem Main, and most of its
leaves are lemmas IniLem, PreLem and E�Lem, which will be given below.
These lemmas, which we call elementary lemmas, follow directly from the
de�nition of runs as it was given in Section 4.1. Note that in that general
de�nition we must replace the initial state Ini and the predicates Pre and
E� by their instances SWinit, SWPre and SWE�ect given in Sections 4.2
and 4.3.

The lemma IniLem expresses that the �rst state in any run must be equal
to the initial state. It follows directly from clause 1 in the de�nition of runs.

∀ r : st(r)(0) = SWinit IniLem

The lemma PreLem means that each action with an index i must be
allowed in the state with the same index by the precondition predicate. It
follows directly from clause 2 in the de�nition of runs.

∀ r, i : SWPre(st(r)(i), act(r)(i)) PreLem

Finally, the elementary lemma E�Lem expresses that each action with
an index i must transform the state with the same index according to the
e�ect predicate. It follows directly from clause 3 in the de�nition of runs.

∀ r, i : SWEffect(st(r)(i), act(r)(i), st(r)(i+ 1)) E�em

Now we continue with the proof. Let r be an arbitrary run. We denote
as outputr(i) and inputr(i) the output and input sequences in a state with
the index i, and the length of the output sequence as LOr(i). The proof is
by induction on the length of the output sequence. We prove the following
theorem MainInduct, which expresses the relation between the length of the
output and the safety property, by induction on k :

∀ r, k, i : LOr(i) = k ⇒ Safe(st(r)(i)) MainInduct

It is obvious that MainInduct implies our main theorem (if we take as
k the current length of the output sequence). In the proof of MainInduct,
the basis of the induction is trivial, because a sequence of length 0 has no
elements. It remains to prove the induction step. Suppose that the theorem
has been proved for any output length not greater than k, and that we are
currently in a state with the index i such that LOr(i) = k + 1. In order to
prove Safe(st(r)(i)), we need to introduce 5 additional lemmas L1, L2, L3,
L4, and L5, the proofs of which will be given later. The lemma L1 expresses
that the output can only be changed by the action receive, which accepts the
message being received:

Speci�cation and veri�cation of the classical sliding window protocol 51

∀ r, i : outputr(i+ 1) ̸= outputr(i) ⇒
receive?(act(r)(i)) & accept(act(r)(i)) L1

We will also use the lemma L2, which expresses that if the current length
of the output is equal to some arbitrary natural number n + 1, then there
was a preceding state in the run, when the length of the output increased
from n to n + 1, and the output remained the same from the resulting state
to the current state:

∀ r, k, n : LOr(k) = n+ 1 ⇒
∃ l : l < k&LOr(l) = n&LOr(l + 1) = n+ 1&
outputr(l + 1) = outputr(k) L2

Applying the lemmas L1 and L2, we obtain that there exists an index
l such that l < i, LOr(l) = k, LOr(l + 1) = k + 1, act(r)(l) = receive,
accept(act(r)(l)) = true and outputr(l + 1) = outputr(i). Thus in a state
with the index l we increased the length of the output from k to the current
value of k+1, and after this increase the output sequence remained the same.
We can now apply the induction hypothesis to the state with the index l,
which gives us Safe(st(r)(l)). Now we split the proof of Safe(st(r)(i)) into
two parts (*) and (**):

(*) Safe(st(r)(l)) ⇒ Safe(st(r)(l + 1))
(**) Safe(st(r)(l + 1)) ⇒ Safe(st(r)(i))

First we prove the easy part (**). Its proof is based on the following
lemma L3, which says that the input sequence remains the same in all states
of any run:

∀ r, i, j : inputr(i) = inputr(j) L3

Applying L3, we obtain inputr(l + 1) = inputr(i). But we have already
proved that outputr(l + 1) = outputr(i). So both the input and output are
the same in the state with the index i as in the state with the index l + 1.
Therefore if the output is the pre�x of the input in the state with the index
l + 1, this is still the case in the state with the index i. This completes the
proof of (**).

The lemma L3 allows us to introduce a new abbreviation: in the rest of
the proof we denote the input sequence in any state of a run r as Inputr.
We also denote the frame channel in a state with the index i as FChanr(i),
and the sequence number expected by the receiver in a state with the index
i as SNumr(i).

Next we prove the more di�cult part (*). The proof uses two additional
lemmas L4 and L5. The de�nition of L4 includes an auxiliary predicate
Fbelongs expressing that a frame message fmes belongs to a �nite sequence
of frame messages fmesFS. The lemma L4 says that if a frame message fmes
belongs to the frame channel of any state in a run r and its sequence number
is some natural number n, then the frame of fmes originated from the same
index n in the input sequence.

52 D.A. Chkliaev, V.A. Nepomniaschy

Fbelongs(fmes, fmesFS) = ∃ m : m < length(fmesFS)& fmes =
fmesFS(m)
∀ r, fmes, i : Fbelongs(fmes, FChanr(i))& seqnum(fmes) = n ⇒
frame(fmes) = Inputr(n) L4

The lemma L5 expresses that if the length of the output in any state of
a run r is some natural number k, then the receiver is currently expecting
the frame message with the same sequence number k :

∀r, k, i : LOr(i) = k ⇒ SNumr(i) = k L5

Now we denote as FM the frame message that was received and ac-
cepted in a state with the index l : FM = framemes(act(r)(l)). Apply-
ing the elementary lemma PreLem, we obtain FM = FChanr(l)(0) and
seqnum(FM) = SNumr(l). Applying the lemma L5, we obtain
SNumr(l) = k, so seqnum(FM) = k. It is clear that FM belongs to
the frame channel in a state with the index l, so the lemma L4 gives us
frame(FM) = Inputr(k). If we now apply the elementary lemma E�Lem,
we obtain outputr(l+1) = addLastFrame(Inputr(k), outputr(l)). The def-
inition of addLastFrame now gives us that in a state with the index l + 1
the output is still the pre�x of the input. This completes the proof of (*)
and of the theorem Main.

We present brief proofs of lemmas L1 - L5 in the appendix of this paper.

6. Conclusion

A signi�cant number of publications have already been dedicated to veri�-
cation of the Sliding Window protocol, so here we can mention only some of
them. In the area of model checking, some versions of the protocol have been
checked in [8, 5, 12]. These works cannot be considered particularly success-
ful, because the state explosion (due to the massive parallelism present in
the protocol) impedes the checking of the SWP for large parameter values.
For example, in [12] the SWP was veri�ed for a window of size 16, which is at
least two orders less than the window size in some industrial implementations
of the protocol (such as TCP).

The deductive veri�cation of the SWP also faced considerable challenges.
In one of the �rst papers on the protocol [13], only an informal manual proof
is given. A semi-formal manual proof is also presented in [6]. An excellent
veri�cation of the protocol was given in [1] in the framework of the process
algebra, and the proof was automated with PVS. Unfortunately, their proof
is somewhat incomplete: it relies on some complicated results from the �eld
of the process algebra which have not been proved in PVS. Some researchers
also considered veri�cation of the SWP for transport channels that allow
reordering of messages. For such channels, an interesting veri�cation of the
protocol for an untimed system is given in [11] (with some automation of the
proof), and for a timed system in [10] (with only a manual proof).

Speci�cation and veri�cation of the classical sliding window protocol 53

In the introduction, we have already mentioned veri�cation of the SWP
with an unlimited message size presented in [9]. Unlike our paper, they
consider the receiving window of an arbitrary size instead of just 1. Their
approach to speci�cation of the protocol and its safety property (based on
extended automata) is somewhat similar to the one that was presented in this
work, and their proof is also automated with PVS. However, in their speci�-
cation the frames are represented by natural numbers, whereas we represent
them by an arbitrary datatype. This makes our modeling considerably more
general. We also believe that the data structures used by our speci�cation
are more natural. For example, most sequences in our speci�cation are �-
nite, whereas in [9] only in�nite sequences are used. We believe that the use
of �nite sequences (which are easily programmed using arrays) makes our
speci�cation closer to possible implementations of the protocol (such as that
presented in [14]), because in�nite sequences cannot be directly represented
in a programming language.

In our future work, we would like to verify a version of the SWP with
the receiving window of an arbitrary size, i.e. corresponding to the �selective
repeat� protocol from [14]. This would make our investigation of the protocol
more complete and also allow us to more accurately compare our modeling
of it with the approach from [9].

References

[1] Badban B., Fokkink W., Groote J.F., Pang J., van de Pol J. Veri�cation of a
sliding window protocol in µCRL and PVS // Formal Aspects of Computing.
� 2005. � Vol. 17(3). � P. 342�388.

[2] Cerf V.G., Kahn R.E. A protocol for packet network intercommunication //
IEEE Trans. on Communs. � 1974. � Vol. COM-22. � P. 637�648.

[3] Chkliaev D. Mechanical Veri�cation of Concurrency Control and Recovery Pro-
tocols: PhD thesis. / Eindhoven University of Technology. � 2001. � Available
at http://alexandria.tue.nl/extra2/200112908.pdf

[4] Chkliaev D., Hooman J., de Vink E.P. Veri�cation and improvement of the
sliding window protocol // Lect. Notes Comput. Sci. � 2003. � Vol. 2619. � P.
113�127.

[5] Kaivola R. Using compositional preorders in the veri�cation of sliding window
protocol // Lect. Notes Comput. Sci. � 1997. � Vol. 1254. � P. 48�59.

[6] Knuth, D.E. Veri�cation of link-level protocols // BIT. � 1981. � Vol. 21. � P.
31�36.

[7] Owre S., Rushby J.M., Shankar N. PVS: A prototype veri�cation system //
Lect. Notes Comput. Sci. � 1992. � Vol. 607. � P. 748�752.

54 D.A. Chkliaev, V.A. Nepomniaschy

[8] Richier J.L., Rodriguez C., Sifakis J., Voiron J. Veri�cation in Xesar of the
sliding Window protocol // Protocol speci�cation, testing and veri�cation. �
1987. � Vol. 7. � P. 235�248.

[9] Rusu V. Verifying a sliding-Window Protocol using PVS // Formal Description
Techniques (FORTE'01). � 2001. � P. 251�266.

[10] Shankar A.U. Veri�ed data transfer protocols with variable �ow control //
ACM Trans. on Comput. Systems. � 1989. � Vol. 7. � P. 281�316.

[11] Smith M., Klarlund N. Veri�cation of a sliding window protocol using IOA
and MON // Formal methods for distributed system development. � 2000. �
P. 19�34.

[12] Stahl K., Baukus K., Lakhnech Y., Ste�en M. Divide, abstract, and model-
check // Lect. Notes Comput. Sci. � 1999. � Vol. 1680. � P. 57�76.

[13] Stenning N.V. A data transfer protocol // Computer Networks. � 1976. � Vol.
1. � P. 99�110.

[14] Tanenbaum A.S. Computer Networks (Third Edition). � Prentice-Hall Inter-
national, 1996.

Appendix: the proofs of lemmas L1�L5

Proof of lemma L1. The proof trivially follows from the elementary lemma
E�Lem and the de�nition of the SWE�ect predicate. Indeed, suppose that
the output in the state st(r)(i + 1) is di�erent from the output in the pre-
vious state st(r)(i). In the state st(r)(i), all 6 actions of our protocol are
possible. By examining the parts of the SWE�ect predicate corresponding
to the actions send, receiveAck, sendAck, loseFrame and loseAck, we can
easily determine that these actions do not change the receiver at all. It is
also clear from this predicate that if the receiver receives a frame message
but rejects it, then its variables do not change as well. Thus the variable of
the receiver output can only be changed by the action receive that accepts
the message being received, and this completes the proof of the lemma L1.

Proof of lemma L2. The proof uses an additional lemma L2A, which
expresses that receiving and accepting a frame message increases the length
of the output exactly by 1:

∀ r, i : receive?(act(r)(i))& accept(act(r)(i)) ⇒
LOr(i+ 1) = LOr(i) + 1 L2A

The proof of the lemma L2A follows directly from the elementary lemma
E�Lem and the predicate SWE�ect. If in a state with the index i the re-
ceiver receives and accepts some frame message FM, they imply that the
output sequence is transformed in the following way: outputr(i + 1) =

Speci�cation and veri�cation of the classical sliding window protocol 55

addLastFrame(frame(FM), outputr(i)). The de�nition of addLastFrame
now implies that, indeed, the length of the output is increased exactly by 1.

Using the lemmas L1 and L2A, we can now prove the lemma L2 by
induction on a natural index k. If k = 0, we have LOr(0) = n + 1, i.e. the
length of the output in a state with the index 0 is greater than 0. But this
contradicts the elementary lemma IniLem and the de�nition of the initial
state for our protocol, because according to this de�nition the initial output
sequence is empty. This proves the basis of induction. Now we must make
the induction step. Suppose LOr(k + 1) = n+ 1. According to the lemmas
L1 and L2A, the output either did not change from the previous state, or its
length was increased exactly by 1. Let us consider each of these cases:

• LOr(k) = n + 1 and outputr(k + 1) = outputr(k). Applying the in-
duction hypothesis, we obtain that there exists l such that l < k,
LOr(l) = n,LOr(l + 1) = n + 1 and outputr(l + 1) = outputr(k). It
is clear that l < k + 1 and outputr(l + 1) = outputr(k + 1), so we can
instantiate the same index l as the index required by the lemma. This
completes the proof of the �rst subcase.

• LOr(k) = n. If we instantiate l = k, we can see that all conditions on
the index l required by the lemma are trivially satis�ed. This completes
the proof of the second subcase and of the lemma L2.

Proof of lemma L3. The proof is based on the following lemma L3Induct,
which is proved by induction on a natural index k:
∀ r, i, k : inputr(i+ k) = inputr(i) L3Induct

In the proof of L3Induct, the basis of induction is trivial. Let us consider
the induction step. Suppose inputr(i + k) = inputr(i). We must prove
inputr(i + k + 1) = inputr(i). Similar to the proof of L1, we apply the
elementary lemma E�Lem and consider all 6 actions that are possible in a
state with the index i+k. It follows from the parts of the SWE�ect predicate
corresponding to these actions that none of them changes the input sequence.
Thus inputr(i + k + 1) = inputr(i + k), and this obviously completes the
induction step and the proof of L3Induct.

The lemma L3Induct trivially implies the lemma L3: if i > j, we take
k = i − j, otherwise we take k = j − i. This completes the proof of the
lemma L3.

Proof of lemma L4. The proof is based on the following lemma L4A:

∀ r, fmes, i : ¬Fbelongs(fmes, FChanr(i))
&Fbelongs(fmes, FChanr(i+ 1)) ⇒ send?(act(r)(i)) L4A

The lemma L4A intuitively means that a frame message may enter the
frame channel only as a result of a send action. Like several previous lemmas,
it is easily proved using the elementary lemma E�Lem and the de�nition of

56 D.A. Chkliaev, V.A. Nepomniaschy

the SWE�ect predicate. The action send is not the only one that changes
the frame channel: the channel is also changed by the actions receive and
loseFrame. However, by considering the parts of the SWE�ect predicate
corresponding to these actions, we prove that both of them can only remove
messages from the channel. Therefore the action send is the only one that
can add messages to the frame channel, and this completes the proof of the
lemma L4A.

Using L4A, the lemma L4 can easily be proved. If a frame message fmes
is currently in the frame channel, it is easy to prove that there was a moment
in the past when it was added to the channel. Thus there exists an index j
(j < i) such that fmes does not belong to the frame channel in a state with
the index j but belongs to the channel in a state with the index j + 1. Now
we apply the lemma L4A and obtain that fmes was added to the channel as
a result of the action send. It remains to consider the part of the SWE�ect
predicate corresponding to the action send. This immediately gives us that
the frame in fmes was taken from the position in the input sequence that is
exactly equal to the sequence number in fmes, completing the proof of the
lemma L4.

Proof of lemma L5. The lemma is proved by induction on a natural index
k. First we prove the basis of induction. If k = 0, then in the current state
we have LOr(i) = 0. It is easy to prove, using the SWE�ect predicate, that
as long as the length of the output does not change, the sequence number
expected by the receiver stays the same as well. Here the length of the
output did not change from the initial state, and this implies that SNumr

remained the same as well. Thus it must be currently equal to 0, and this
completes the basis of induction.

Now we must prove the induction step. Suppose LOr(i) = k + 1. Ap-
plying the lemmas L1 and L2 in the same way as we did in the proof of the
theorem MainInduct, we obtain that there exists an index l such that l < i,
LOr(l) = k, LOr(l+1) = k+1, act(r)(l) = receive, accept(act(r)(l)) = true
and outputr(l + 1) = outputr(i). We now apply the induction hypothesis to
a state with the index l, which gives us SNumr(l) = k. The e�ect of the
action receive in a state with the index l now gives us SNumr(l+1) = k+1.
If the output did not change from the state with the index l + 1 to the
state with the index i, then its length also did not change. But we already
know from the proof of the basis of induction, that in this case SNumr also
stayed the same during that interval. This implies SNumr(i) = k + 1, and
this completes the induction step and the proof of L5.

