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Modeling Estelle specifications using
colored Petri nets*

T. G. Churina, E. V. Okunishnikova

Our aim is to validate distributed systems which are described by means of
Estelle. This paper describes a procedure of translating the Estelle specifications
into colored Petri nets extended by the priorities and Merlin’s time concepts. The
considered specifications are based on standard Estelle which developed by 1S0.
The hierarchy specifications with time and priorities are considered. The dynamic
behaviors of the Estelle specifications cannot be handled. Thus the considered sub-
set of Estelle provides expressive power sufficient for modeling a lot of the protocols.
The nets created during the translation are semisafe nets: all places except places
corresponding to arrays and interaction points can contain at most one token. The
translation of all constructions is described with some informal justification.

Introduction

Two principal approaches are used for distributed system verification. The
first one uses such formal description techniques (FDT) as Estelle, SDL,
LOTOS, which are international standards. However, high expressive power
of FDT increases difficulties of validation and verification of distributed
systems. In framework of the second approach, distributed systems are
modelled by finite state machines, Petri nets or their modifications, and
subsequently verified. The advantage of this approach is the existence of
powerful methods of analysis.

A problem of combining the advantages of both approaches is of con-
siderable importance. Papers [8, 7] have recently examined the problem for
SDL. In both the papers, new classes of Petri nets are used and methods of
reachability analysis are proposed. The developed technique of the perfor-
mance analysis for SDL-nets is also presented in [7]. Paper [9] describes the
verification of the Estelle specifications by translating them into Numerical
Petri Nets. The merit of this approach is the fact that dynamic behaviors of
the Estelle specifications can be handled. The deficiencies are the fact that
priority- and delay-clauses and systemprocess attribute cannot be modelled.

Our aim is to validate distributed systems which are described by means
of Estelle [2, 1]. A modeling procedure has been developed for this goal. The
procedure translates Estelle specification into colored Petri nets (CPN's) ex-
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tended by the priorities and Merlin’s time concepts [10]. We choose extended
CPN’s to model Estelle specifications for the following reasons: a more com-
pact graphical representation, the expressive power in concurrence and non-
determenism and, at last, the existence of automated tools for simulation
and analysis. In order to retain the advantage of Petri net analysis algo-
rithms, we consider only specifications which dc not use dynamic capabili-
ties of Estelle. A preliminary version of the translation procedure operating
with the Estelle specifications which have exactly one level in the hierarchy
of modules and do not use time and priorities, has been recently described
in [6].

Translation of an Estelle specification to a CPN is made in several steps.
At the first step, we build a CPN which represents the general structure
of the Estelle specification and contains one transiticn for each module in-
stance. At the second step, the body cf each module is translated. At the
next steps, blocks of transitions of the Estelle specification (E-transitions)
are translated into CPN transitions (N-transitions).

This paper presents the extended procedure which allows to be consid-
ered the specification with time, priorities, and arbitrary hierarchy. There-
fore tie considered subset of Estelle provides the expressive power sufficient
for modeling a lot of the protocols.

1. Basic concepts

1.1. Estelle

Estelle [2, 1] is a Formal Description Technique developed by ISO and based
on an extended state transition model. Estelle may be viewed as a sei
of extensions to ISO Pascal, level 0, which models the specified systems
as a hierarchical structure of communicating automata which may run in
parallel, and may communicate by exchanging messages and by sharing, in
a restricted way, some variables. :

An Estelle specification describes a hierarchically structured system of
nondeterministic sequential components which interchang messages
through bidirectional links between their ports. Each component is an in-
stance of a module defined within the Estelle specification by a module
definition.

The behavior of a module and its internal structure are specified re-
spectively by the set of transitions which the module may execute and by
the definition (children modules) of the module together with their inter-
connection. Execution of a transition by a module is an atomic operation.
Transitions of a parent module have the priority over its children’s transi-
tions.

From an external viewpoint, a module instance is a “black box”. Ac-
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cess in and out of that box is made with finite sets of interaction points
and exported variables. Each interaction point of a module has an asso-
ciated FIFO queue which receives and stores interactions received by the
module through this interaction point. More than one interaction point of
a module may share the same queue. A channel is associated with each
interaction points which defines two sets of interactions. These sets consist
of interactions which can be transmitted and received, respectively, through
the interaction points. External access of exported variables is restricted
exclusively to the parent module instance.

A module definition in Estelle may textually include definitions of other
modules. This leads to a hierarchical tree structure of module definitions.
The hierarchical tree structure of modules constitutes a pattern for any hi-
erarchy of module instances. The hierarchical position of a module instance
corresponds to the position of the module definition in this pattern.

A module may have one of the following class attributes: systempro-
cess, systemactivity, process, activity or may be not attributed at all. The
modules attributed with systemprocess or systemactivity are called system
modules. Attributes define two possible formns of execution. The process
and activity attributes represent synchronous parallel execution and nonde-
terininistic sequential execution respectively.

1.2. Colored Petri nets

A colored Petri net model is an extension of the basic Petri net model. It
consists of three different parts: the net structure, the declarations and the
net inscriptions.

The net structure is & directed graph with two kinds of nodes, places
and transitions, interconnected by arcs in such a way that each arc connects
two different kinds of nodes. Places and their tokens represent states, while
transitions represent state changes. An arc represents an input or output
relationship between a place and a transition.

The declarations contain definitions of color sets and declarations of vari-
ables which can be bound by colors. The declarations can also contain defi-
nitions of new operations and functions which can be applied to the colors.
Moreover, a color set definition often implicitly introduces operations and
functions which can be applied to its members.

Each net inscription is attached to a place, a transition or an arc. In
the CPN each place has three different kinds of inscriptions: name, color set
and initialization ezpression. The color set determines the type of tokens
which may reside on the place. The initialization expression determines
the initial marking of the place. Transitions have two kinds of inscriptions:
names and guards. The guard of a transition is a boolean expression which
must be fulfilled before a transition can occur. The arcs have one kind
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of inscriptions: arc ezpressions. They may contain variables, constants,
functions and operations. When the variables of an arc expression are bound
(i.e., replaced by colors), the arc expression must evaluate to a color which
belongs to the color set attached to the place of the arc.

Transitions are active components of the CPN’s. If transition is enabled,
it may occur. Before a transition may occur, all the variables of the guard
of the transition and the arc expressions on its surrounding arcs have to be
bound to colors of the corresponding types. The transition is enabled for this
binding if the guard evaluates to true and each of the input places contains
at least the tokens to which the corresponding arc expression evaluates. The
occurrence of the transition removes tokens from their input places and adds
tokens to their output places. The number of removed/added tokens and
the colors of these tokens are determined by the value of the arc expressions
evaluated with respect to the binding.

1.3. Extension of CPN’s with time and priorities

The computational model for Estelle is formulated in time-independent
terms: one of the principal assumptions of this model is that nothing is
known about the execution time of transitions. However, some Estelle tran-
sitions may contain a delay-clause. The intention of the delay-clause is to
indicate that a transition’s execution should be delayed. So, time extension
of CPN’s is necessary to model specifications whose behavior depends on
explicit time parameters. In [4], the CPN model is extended with a time
concept represented by a global clock and time stamps of tokens. However,
the proposed time concept is not convenient for modeling delay-clauses of
E-transitions. We define own time extension of CPN’s using the model
proposed by Merlin [10]. Our choice is conditioned by a similarity of time
concepts.

Merlin’s time Petri nets use delays specified by an interval. In [10] each
transition is associated with a pair of nonnegative numbers dpi, and dmax
representing the minimum and the maximum delay time. The enablement
of the transition means that it is enabled in the usual Petri net sense. Some
transitions may be enabled by a marking, but not all of them may be allowed
to fire due to the firing constraints of transitions.

The value dpi, gives the minimal time that the transition must be en-
abled before its firing. The value dy,,x denotes the maximum time during
which the transition can be enabled without being fired. Values dpmin and
dmax are relative to the moment at which the transition becomes enabled.
The origin of time scale is associated with the initial marking. If the transi-
tion becomes enabled at time r, then the transition can fire in the interval
[T + dmin, T + dmax] unless it is disabled before 7 + dmax by the firing of
another transition. The interval [dmin, dmax] is called a firing interval of the
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transition. In the model there is a nondeterminism about the choice of the
firing time within the firing interval. The transition may fire at any time in
its firing interval. The firing of the transition is an instantaneous event and
“takes no time”.

We integrate net models straightforward adding Merlin’s time model
to CPN’s. Transitions become the new kind of inscriptions — the firing
interval. A transition is enabled in a marking in the integrated net if and
only if it is enabled in the underlying color net. An enabled transition may
fire if it is allowed to fire due to the firing constraints. Such transition is
called the firable transition.

Let us corsider the colered net extended with time which is given in
Figure 1. The transitions t1 and ¢2 do not have guards, their firing depends
on time ccnstraints only. The transition ¢3 is enabled if the token at the
place count is not larger than 3. Thus, all transitions are enabled by the
initial marking. However, the transitions t1 and ¢3 are only firable from
initial state. The transition £2 is not firable since {1 fire at the latest at
time 1. Occurrence of the firing sequence t1, t1, t1, t1 leads to the state at
which both the transitions 1 and t2 are enabled and firable. The guard of
the transition t3 does not fulfilled, so 3 is not enabled.

t1
[0,3] W +1
v} count
int
10
t3
t2 " "\ [n<3
2,3] [0,1]

Figure 1. Example of time colored net.

The clause-groups of some Estelle transitions may contain also a priority-
clause. Modeling such Estelle transitions requires priorities to be added to
the CPN model. Net transitions obtain a new kind of the inscriptions:
priority. The priority is a nonnegative integer and taken into account while
selecting firable transitions from the set of enabled transitions. The lowest
nonnegative integer is the highest priority. If the priority is omitted, the
lowest priority is assumed. The enabled transition may fire if the priority
of any other enabled transition is not less than the priority of the selected
transition.

If we consider both extensions, the firable transitions in the net are
defined in the following way. The transition is firable if it is allowed to
fire due to the time constraints and it has the priority not larger than the
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priority of any other enabled transition. Such definition of firable transition
coincides with the firing rule in Estelle.

2. Structure of communication links

Let us consider the first step of the net construction. The translation prin-
ciple at the first step is the same as for the specifications with exactly one
level in the hierarchy of modules. The declaration and initialization parts,
module headers and a part of information from module bodies are used.

There is one N-transition corresponding to every module variable inde-
pendently of module instance position in the hierarchy of the Estelle specifi-
cation. At this step, classes of module instances are unessential. The module
classes affect a computation steps organization which is considered below.
The name of the module instance is used in our paper as the N-transition
name. N-transition guards are not defined because the N-transitions cor-
responding to the module instances will be replaced by subnets during the
further construction.

The net declarations should contain color sets which represent Pascal
data types. Declarations of user data types are also translated into color
sets. In the further net construction, the net declarations are supplemented
with variables included in arc expressions and guards of the N-transitions
and, sometimes, with new color sets.

Interaction points of module instances are represented by places wkich
are connected with the N-transitions corresponding to the module instance.
The mapping of interaction points is made in the following way:

e if the module instance only receives messages through an interaction
point, then the interaction point becomes the one place. This place
is an input place for the N-transition corresponding to the module
instance;

e if the module instance only sends messages through an interaction
point, then the interaction point becomes one output place of the
corresponding N-transition;

e if the module instance both sends and receives messages through an
interaction point, then two places correspond to this point. One is
an input place and another is an output place of the corresponding
N-transition;

e all input places which correspond to interaction points with the com-
mon queue are combined (united into one place).

The places which correspond to connected interaction points are com-
bined in such a way that the input place of one N-transition is combined
with the output place of another N-transition.
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Translation of interaction points included in a link is different from- trans-
lation of the connected interaction points. The places which correspond to
the connection endpoints are combined in the net. The input places cor-
responding to the interaction points which are not connection endpoints
should be deleted. The output places which correspond to the intermediate
interaction points are kept in the net, but they are not combined with any
other place.

Declarations of interactions are transformed into color sets in net dec-
larations. The created color sets are used by modeling queuss of messages.
We use the enumeration of tokens for representing of FIFO queue (Figure 2),
because all tokens in a place have equal status. The token value at the place
“Turns” belongs to the set of color defined as follows:

color FIFO-counter = product Int * Int.

At the initial marking the place T'urns contains the token (0,0). The first
field of the token at the place Turns is the number of token at the place
Queue. This number corresponds to message at the queue head. The second
field is the number of the next token to be placed at Queue. This token
corresponds to message from the queue tail. _

The place T'urns is the input and output place for any net transition
removing or adding the token to the qucue place. At the transition in firing
the token with the value (h,%) is removed from the place Turns and the
token with the value (h,t+ 1) is added to this place. The new token (t,d) is
added to the Queue place and its number is maximum among all the tokens
from the same place. The value of the second field token at the place Turns

- is increased by 1. This value is the number of the next token to be added
to the place Queue.

At the transition out firing the token (h,t) is replaced by the tcken
(h+1,t) at the place T'urns, and the token (h,d) is removad from the place
Queue. Note that the token removed from the place Queue is uniquely
defined by the first field value of the token at the place Turns.

Each formal parameter of the module instance is represented by one
place. This place is an input and output place of the N-transition corre-
sponding to the module instance. The color set of the place which represents
the formal parameter is a type of the parameter. The initial marking of the
place is determined by the initialization part of the specification.

Export variables are translated into places similar to the formal param-
eters. The difference is in the following. The place corresponding to export
variable is an input and output place of two N-transitions. The first one
represents the module instance which contains declaration of the variable.
The second N-transition represents the parent instance.

We use the following elementary example to illustrate the first step of
translation. The specification contains one channel definition and two mod-
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Golowr Mess = 5 T 7

Colour Element = product Int x Mess;
Colour FIFO-counter = product Int * Int;
var h, t : Int;

d : Mess.

|

Turns
FIFQO-counter
1'(0,0)

Figure 2. Modeling FIFO queue

ule definitions. Both modules sender and receiver are attributed as sys-
temprocess. Each module has two interaction points. Individual queues are
associated with interaction points. The initialization part specifies the sys-
tem which consists of the instance ms of the module sender and the instance
mr of the module receiver. The interaction points s1 and 32 of the module
instance ms are connected with interaction points r1 and r2 of the module
instance mr, respectively.

specification 2xample;
channel CONN(ROLE1,ROLE2);
by ROLE1, ROLE2: mess(i:integer);

module sender systemprocess;
ip s1:CONN(ROLE2) individual queue;
s2:CONN(ROLE1) individual queue;
end; '

body send fer sender;
state wait, deliver;
var j : integer;
initialize to deliver

begin j:=0 end;

trans (*transmission of a new messagex*)
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from deliver to wait
begin output s2.mess(j) end;
trans (*reception of acknowledgement *)
from wait to deliver
when si.mess(i) provided (i=j)
begin j:=j+1 end;
end;

module receiver systemprocess;
ip r1:CONN(ROLE1) individual queue;
r2:CONN(ROLE2) individual queue;
end;

body reception for receiver;

var j:integer;
initialize begin j:=0 end;

trans (* reception of message and transmission *)
(* of acknowledgement *)
when r2.mess(i) provided (i=j)
begin output ri.mess(j); j:=j+1 end;
end;

modvar ms: sender;
mr: receiver;
initialize begin
init ms with send; init mr with reception;
connect ms.sl to mr.rl; connect ms.s2 to mr.r2;
end;
end.

Figure 3a demonstrates N-transitions which correspond to the modules
MS and MR. One place corresponds to each interaction point. Figure 3b
shows a CPN which is obtained by combination of the connected interaction
points. The net declarations are omitted.

3. Body of module instance

There may be more than one definition of a module body associated with a
given module header. At the first step of the translation, all N-transitions
corresponding to the instances of the same module have the same external
wisibility characterized by places connected with these N-transitions. The
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Figure 3. Net modeling specification ezample (top level)

choice of the body for the module instance is defined by the initialization part
of the specification. At the second step, each N-transition corresponding to
a module instance is replaced by the net which represents the body of the
module. If the definition of the module body contains the keyword ezternal ,
substitution of the subnet is not made.

The construction of the subnets for the module body does not deperd
on position of module instance in the hierarchy of the specification. The
declaration and initialization parts of module body and part of information
from E-transition declarations are used during the subnet construction.

The subnet contains one N-transition for each simple E-transition of the
module instance, i.e., for each E-transition which has one transition block.
Then all nested E-transition are expanded to simple E-transitions before
translation

All data types defined in the declaration part of the module body as well
as a set of local states (if it exists) are transformed into color sets.

The subnet contains also one place for each variable (including arrays).
The color set of the place which represents a variable is.a type of the variable.
The color set of the place representing an array is a set of pairs which
consist of an index and a value of a corresponding array element. The
initial marking of all places is determined by the initialization part of the
module. If a module has a set of local states, then there is a place State in
the net. The set of local states defines its color set. Otherwise there is a
place Manager in the net which contains a token carrying no information
(“uncolored” token). ’

At the second step, each place corresponding to the interaction point
obtains the auxiliary place which contains a token-counter for FIFO queue
(see Figure 2).

The interconnection of places and transitions is determined as follows.

e if some variable or array is referred in an E-transition, then the corre-
sponding place is an input and output place of the N-transition asso-
ciated with this E-transition;

e if some E-transition is an input transition (i.e. it contains when-
clause), then there is an arc from a place which represents the in-
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teraction point referred in the when-clause of the E-transition, to the
corresponding N-transition; the auxiliary piace is simultaneously input
and output place for bhe N-transition;

e if the E-transition is an oufput transition (it contains the statement
output), then there is an arc from the corresponding N-transition to
a place associated with the interaction point. The auxiliary place is
simultaneously an input and output place for the N-transition;

e if there exists the place State, then it is an input and output place
for all N-transitions, otherwise the place Manager is the input and
output place for all the N-transitions.

The N-transitions being created at this step are “black boxes” as at the
first step.

We use the module sender of the specification ezample to illustrate the
translation of the module body.

sl torl State 82 _to_r2
== O
countl transl J trans2 count?
()
_

Figure 4. modeling body of module sender

The net (see Figure 4) contains the place State with the color set
{deliver, wait}. The place j represents the variable ;. The net has the places
sl _torl and s2_tor2 corresponding to the connected interaction points.
Moreover, there are two auxiliary places countl and count2 which contain a
information about the organization of the FIFO queuecs in the places s1_to_rl
and #2_te_r2 respectively.

The net has two N-transitions transl and trans2 corresponding to the
E-transitions. Both places State and j are input and output places of transl
and trans2. The place sl _to_rl is an output place of transl, because the
first E-transition is cutput one. The place s2_tor2 is an input place of
trans2, because the second E-transition is input one.

4. Mapping of Estelle transition
At the third step, the translation of the E-transitions is made. For the

present, we leave out of consideration the time aspect and will return to this
problem later.
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4.1. Block of Estelle transition

The third step is the last step of the translation, if the E-transition satisfied
the following conditions:

¢ the E-transition does not contain loops or calls of procedures and func-
tions;

e there are no statements in the E-transition block which use variables
changed during the execution of this E-transition;

In this case, creation of the N-transition corresponding to the E-transi-
tion is completed. The guard and the expressions on the surrounding arcs
of the N-transition are defined. The guard is a combination of the from-
and provided-clauses. If the E-transition is the input transition, the guard
includes also the condition that the token removed from the corresponding
place is the head of the FIFO queue. The to-clause and the block of the
E-transition define the arc expressions.

The second transition of the module sender of the specification ezample
is an example of the E-transition whose translation is completed at the third
step. Figure 5 represents the net which models this E-transition.

(s = wait) & (n = h) & (i = z)]
trans2

81‘to‘rbﬁz, mess, i) deliver State
. —C)
E:] .
counter (hyt) |z +1 J
C= 0
(h+1t) 1@

Figure 5. Net modeling the second E-transition of the module sender

The translation process continues if the E-transition does not satisfy the
above conditions. The block of the E-transition is divided into subblocks.
Each subblock is represented by the N-transition. The N-transitions are
connected consequently by means of the connective places. Each subblock
is translated separately. In turn, the subblock can be divided into subblocks
during the translation. The block decomposition continues until each sub-
block can be represented by one N-transition. Then we can speak about
the first and last N-transitions of the net modeling the E-transition or the
subblock. The rule of the interconnection given at the second step is applied
to each resulted E-transition.

The procedure/function definition is translated into the net by the same
way as the blocks of the E-transitions. The resulted net is substituted for
the call operators. We use the library net fragments to model the stan-
dard language statements such as i [, for, while, repeat. Figure 6 gives an
example of modeling the following E-transition.
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from wait to deliver
when sl.mess(i)
provided i-j > 0
begin for n = j to i rec[n mod k] := 1; end;

[(s = wait) & (n = h) & (i — z)0)]

1 trans @: +1, i)

@ (n,mess,1) - 2 <]
te 311: ) (31 i) | (:l':j_%) Y (:B,‘i) |
JOS=—LL R (2,i) [Tz, i)

j (h+1,t) ’
O, - 4
State 2 [z > 1] [n = (zmodk)]

s

deliver

Figure 6. Net modeling for loop

The provided-clause including the function call is represented by the
separate subblock. Otherwise, the provided-clause is the guard of the first
N-transition of the net which models the E-transition.

The place State/Manager is the input place of the first N-transition
and the output place of the last N-transition of the modelled net, if the
E-transition is represented by more than one N-transition. If modeling the
execution of the E-transition is started, then none N-transition which models
the other E-transition, can fire. Modeling is completed by firing the last N-
transition which returns the token into the place State/Manager. Thus,
the atomicity of the E-transition execution is guaranteed.

4.2. Delay- and priority-clauses

Let us return to the time aspect. The delay-clause of the E-transition can
have three different syntax forms: delay(dl), delay(dl,d2) and delay(dl, ).
The delay-clause delay(dl) is semantically equivalent to delay(dl,d1). The
intention of the delay-clause is to indicate that the execution of the E-
transition should be delayed. The value d1 denotes the minimum time which
the E-transition must remain enabled until it may be offered for execution.
The value d2 is the maximum time the E-transition may be delayed. The
delay-clause delay(dl, *) means that the delay time has no upper bound.
If the specification contains the E-transition with the delay-clause, then
all E-transitions are modelled by more than one N-transition. It is possible to
say that the modelled net of each E-transition consists of three parts. The
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first one represents the provided-clause. The second part is the auxiliary
subnet which medels the delay of the E-transition. The last part represents
the block of the E-transition.

Let us consider the auxiliary subnet for the delay-clause of the form
delay(dl,d2) presented at Figure 7. We give some explanations to this
picture. The places enbl and switch have the color set {0,1}. Both places
initially contain the tokens with the value 0. The place fir can contain
uncolored token. The delay of the E-transition is determined by the N-
transition tiémer. This N-transition is connected only to the places switch
and fir and has the firing interval [d1,d2]. All the other N-transitions of
the modelled net have the firing intervals [0, 0].

0

end
r—— -1
| transition ||

L _block |

[v=1]

T

Figure 7. Net modeling the E-transition with delay-clause delay(dl, d2)

The box provided in Figure 7 denotes the subnet which models the pro-
vided-clause of the E-transition. When the E-transition is newly enabled,
the token 0 at the place enbl is replaced by the token 1 after the execution
of this subnet. After that the N-transition set fires. The token 1 appears at
the place switch and the N-transition ¢imer becomes enabled. Firing the
N-transition timer is allowed between d1 and d2. It adds the token to the
place fir. If at this moment the place enbl contains the token 1, the N-
transition start can fire. Firing the N-transition start begins the execution
of the net modeling the block of the E-transition.

Denote the considered E-transition by E1. If the execution of the net
modeling the other E-transition (let E2) occurs, the re-evaluation of the
provided-clause of E1 is made. Further “the execution of E1 (E2)” means
the execution of the corresponding subnet. Let us assume that the N-
transition timer did not fire. There are two possibilities. If the execution of
E2 does not disable E1, the token at the place enbl keeps the value 1. The
N-transition timer remains enabled, i.e., the timer of E'1 remains turned on.
If E2 disables E'1, then the execution of the provided-clause of E1 replaces
the token 1 at the place enbl by the token 0. The N-transition set is enabled
in the resulted marking. It fires and disables the N-transition timer.
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There are also two possibilities, if the execution of E2 is completed after
firing the N-transition timer. Remember that the execution of E1 can-
not begin before the completion of the execution of E2, because the place
State/Manager is empty. The check of the provided-clause and the N-
transition start are simultaneously enabled after the completion of E2. We
assign the maximum priority to the first N-transition of the net modeling
the provided-clause. Thus, the re-evaluation of provided-clause is always
made before the execution of the E-transition can be started. The place
s_ch guarantees that the re-evaluation of the provided-clause is made only
after the execution of some E-transition. If F1 remains enabled after the
execution of E2, the place enbl keeps the token 1. The N-transition start
is firable. Otherwise, the token 1 at the place enbl is replaced by the token
0. After that the N-transition start is disabled, but the N-transition reset
is firable. Its firing disables the net modeling E1.

The re-evaluation of the provided-clause determines the enablement of
the E-transition. We assign the maximum priority to the first N-transition
of the net modeling the provided-clause because the start of the check of
the provided-clause and the N-transition start can be simultaneously en-
abled. Thereupon, the execution of the nets modeling only the enabled
E-transitions is possible. The place s_ch guarantees that the re-evaluation
of provided-clause is made only after the execution of some E-transition.

Observe that the delay of the E-transition is modelled by the N-transition
isolated from the places which can be used by the N-transitions corre-
sponding to the other E-transitions. Therefore, the E-transition turmng
on/turning off depends only on the validity of its enabling clauses.

The modelled nets of the delay-clauses of the forms delay(dl) and
delay(dl, *) differ from the considered case by firing intervals. The N-
transition timer has the firing interval [d1, d1] in the auxiliary subnet model-
ing the delay-clause delay(dl). In all the other respects the net is the same.
The delay-clause delay(dl, #) is represented by the firing interval [d1,d1] of
the N-transition timer and by the firing interval [0, o] of the N-transition
start.

Let us consider the translation of the E-transitions with the priority-
cdauses. The priority is assigned to the modelled N-transition or to the first
N-transition of the modelled net (if the E-transition is modelled by more
than one N-transition) in the specifications which do not contain the E-
transitions with the delay-clauses. Otherwise, the priorities are assigned to
the N-transitions start of the auxiliary subnets in such a way that the first
N-transition of the net modeling the provided-clause keeps the maximum
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5. Organization of comﬁutation step

The behavior of hierarchical specifications depends on the classes which are
assigned to module instances. Translation of such specifications requires the
additional structures to be constructed. These structures model the organi-
zation of the computation step. They are building when construction of the
modelled net for each module instance has been completed. The construc-
tion of the structures completes the translation of the specification. There
are two different kinds of structures. They are used for the module instances
attributed as (system)activity and as (system)process, respectively. The
separate structure is constructed for each subsystem. It connects the parent
instances with their children instances inside the subsystem.

ystemn A

step pass

/ser }R’erv

n | [

pass . 7 . J]L pass
serv out nea:t _step serv

pass A< €1 >_ -< X1 } pass
out out
nexrt_step nezxt_step

Figure 8. Modeling the computation step

Figure 8 gives the additional structure for the subsystem rooted at the
instance of systemprocess. The structure models the parallel execution of all
selected E-transitions. For this goal, the place step and the transition pass
are created in the system module. In addition, the N-transition next_step is
created for each module instance which has the children instances attributed
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as process. Also, each subnet modeling the process instance contains one
N-transition pass and two service places serv and out. If the E-transition
of the process is represented by one N-transition, the places serv and out
are input and output places, respectively, for this N-transition. If several N-
transitions correspond to the E-transition, the place serv is an input place
for the first N-transition and the place out is an output place for the last
N-transition of the subnet which models this E-transition.

The input place of the N-transition pass is the place serv connected
to the considered module instance. The output places of pass are all the
places serv connected to the children instances of the considered process.
The place out is the output place of the N-transition pass, if the module
instance does not have children. The N-transitions pass are used to model
the parent/children priority. The execution of the subnets modeling the
children instances is possible after firing the N-transition pass corresponding
to their parent.

The execution of the subnet modeling the E-transition from some module
instance adds the token to the place out corresponding to this instance.
If all the places out corresponding to the module instances with the same
parent contain the tokens, the N-transition nezt_step is firable. If the parent
is the system instance, firing next_step adds the token to the place step.
Otherwise, the token is added to the place out of the parent instance. The
next computation step is possible when the place step contains the token.

Let us outline the differences of the additional structure for the subsys-
tem rooted at the instance of systemactivity. One place serv is connected to
all the subnets modeling the module instances with the same parent. One
place out is connected to all the subnets modeling the module instances of
the same nesting level.

Observe that the similar way of the construction is used, if the process
instance has the children instances attributed as activity. In this case the
process instance plays the role of the system instance.

6. Net size estimation

Let us consider the particularities of the resulted nets. It is clear that all the
places except representing arrays and FIFO queues can contain at most one
token. In addition, the nets are “dense”. It means that most of the places
have a large number of surrounding arcs because a lot of the E-transitions
mse the same variables. Also, all subnets modeling the E-transition use the
place State/Manager.

Now we give some estimate of the net size. We suppose that the module
imstance contains M variables including var local variables, arr arrays, ip
imteraction points, par parameters, N statements including k, for-loops, k2
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while-loops, ks repeat-loops, k4 if-statements, D procedure and function
definitions, C call statements of procedure and function. Let us denote

k =kl +k2+ k3 + k4 and

att = var + arr + 1 + 4 * ip + par.
If the module instance does not contain the delayed E-transitions, then the
resulted net has at most

TN = (N +4xk)*(C x D +1) transitions and

PN = (att + 4 x k) x (C * D + 1) + N places.

At most 5 places and 4 N-transitions are added to the net per each
delayed E-transition. Priorities do not increase the net size.

_ The net modeling specification has PS places and T'S N-transitions. Let
[ be the number of the module instances in the specification. Then PS is the
sum of the number PM for each module instance and 2 x [ service places of
the additional structure. T'S is the sum of the number T'M for each module
instance and 2 x [ additional N-transitions.

This is an upper bound. The resulted net has a smaller size. If the spec-
ification does not contain procedures and functions, the estimate is linear.

Conclusion

The paper represents the procedure of translation of the static Estelle spec-
ifications into extended colored Petri nets. The nets created during the
translation are semisafe nets: all places except places corresponding to ar-
rays and interaction points can contain at most one token. All constructions
are described with some informal justification. It is obvious that the formal
justification will be cumbersome. The paper gives an upper bound of the
size of the created nets.

This work is a part of the large project aimed at validation of distributed
systems, in particular, communication protocols. At present, development of
the program system is completed. The system consists of two parts. The first
one automatically constructs the modelled net for the Estelle specification
using the described procedure. The second part is the extended NetCalc
system [6] which allows us to edit and simulate the nets being created. A
number of protocols were used when developing the system of the automatic
net construction, for example, sliding window [11, 12], InRes [13] and ring
[14] protocols.

In future, we intend to develop formal justification. The other goal
is application of Design/CPN system [5] to the nets created during the
translation in order to validate complex protocols.
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