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Spectral inversion method
of wave equations*

G.M. Tsibulchik

The statements of inverse problems of two types are considered within
the framework of the scalar wave equation. The inverse problems include
the reconstruction of sources of the wave field (the right-hand side of the
equation) and the determination of the unknown coefficient (wave velocity).
In spite of some difference in the statements of these problems, they are
closely interrelated: the solution of one of the problems follows from the
solvability of the other problem, and vice versa.

The spectral approach is used to construct and analyze the solution.
Within the framework of this approach, this generality and uniformization
of the solution to these problems manifest themselves most clearly. The
Fourier transforms, which form the basis of the spectral method, will be
used in the following form:

Flkeyw) = / /7/ f(, t)e @R gt 4o = R[],
s . (1)

flz,t) = (2%)4 / /7/ f(k,w)eti@te2) g, dk = F~1[f]

It is assumed that there exist the Fourier integrals that are understood in
terms of the theory of generalized functions. The class of slowly increasing
singular functions turns out to be suitable for this purpose [3].

1. First, let us consider the following model problem of radiation and wave
propagation:

1 82
(A—%@) u(z,t) = f(x,t) for € R? ¢t>0,

(2)

u(z,t) =0 for t <0, = € R®

Here we assume that ¢y = const, and the carrier By = supp f = Dg x[0,#;] is
compact. Besides, f(z,t) = 0 for t < 0, that is, the source function satisfies
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the causality conditions, and f(x,t) = 0 for ¢ > ¢;, where t; is the time of
termination of the sources’ action. _

It should be noted that problem (2) is formulated for the entire space
R3, but not for a half-space. This is done to simplify further computations,
although allowance for the boundary conditions on the plane z = 0 does
not introduce any significant difficulties: this can always be done for the
wave equation and half-space, for instance, by the mirror reflection method
(3, 5, 7).

The inverse problem is in determining the source function f(z,t) by
using the field u(x',t) and its normal derivative u(z', t), known at the
closed surface S containing a source domain Dy. Hereafter, we use the
following notation:

g'=zeS, w(@ t)=ulzest), p,t)= Opu(z € §,t).

The inverse problem formulated in this way does not have a unique solution.
The set of sources {f}, that give, at the surface S, the same values of the
field uo(2', ) and its normal derivative u(z', t), are sources of so-called “non-
radiating type” [1, 13].

However, there are sources of special structure

f(=,t) = f(x)d'(2). (3)

They have the form of instantly “actuated” sources (the Cauchy data). For
such sources, the solution to the inverse problem of reconstruction of the
function f(z) is unique, and this solution can be obtained by the method
of field continuation (reverse in time) [1].

For this purpose, we introduce into our consideration a fundamental
solution G for the wave operator, which represents the “difference” between
the solutions of advanced and retarded types:

G*(a:,E,t—T)zG_(a:,g,t—f)—G+(as,£,tmf), (4)
where
G_(z,§,t—7)=0 for t<r (retarded solution),
Gi(x,&,t—7)=0 for t>r (advanced solution).

G.(®,€,t — 1) is the solution of the following Cauchy problem:

OG.(z,€,t—7)=0 for € R?, teRY; ¢ e D,, T>0;
G*(w,E,O) =0 fOl‘ tmT; (5)
3]

EEG*(E,&O) = —c3d(x — &) for t=r.
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In (5), O denotes the wave operator for the variables (,t), and (§,7)
are the parameters.

In a homogeneous medium, ¢y = const, the solution G, has the following
explicit form:

Gu(x,§t—7) = —i{lw -—£|'16(t—-r— li(_;i‘) =
| —€|_15(t ~T+ I—z—;%l)} (6)

The spectral representation in the space (k,w) of solution (6) [5] is as follows:

2
G.(k,w) = Gu(k,w) = —i21r(signw)6(‘:-—g - |k|2)

pom) oz o

where k = (kz, ky, k;) and |k| = k, k = |w|/co is wave number, k > 0.

Let us apply Green’s formula [5, 14] to the pair of functions u and G..
Using zeroes for all IR¥*! in the source function carrier By, we obtain the
following basic integral equation of the convolution type in R3*!, which
relates the continued field w,(x,t) to the source function f(z,t):

f(z,t) * Gi(z,t) = wi(z, )
[ ar [[[1&76.(= - &t =) dé = wi(a,1), ®)

where the continued field w, is determined by the surface integral in Green’s
formula:

il = 7 i //{uo(E',T')b%{G*(m _¢t—1)—
—00 S

u(g',m)Gu(m — €t —7) b 9)
where ¢' = ¢ € S, u(¢',7) =u(¢ € S,7), p(¢',7) = Opu(é € S,7).
The solution to equation (8) in the spectral space (k,w > 0) is as follows:

iTl,} f(k,w)&(% = |k|) = ;%W.(k,w). (10)

Equation (10) shows that the spectrum of the source f(k,w) can be deter-
mined only at points of a conoid:
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k=2, w>0. (11)
co

At other points of the 4D space, the spectrum f(k,w) remains undeter-
mined. This is the “secret of non-uniqueness” of the solution to the inverse
problem on the reconstruction of sources of the field f(x,t): one can con-
tinue the spectrum from the conical surface (11) to the entire (k,w)-space
in different ways, not changing values of the field uo(«',t) and its normal
derivative u(x',t) at the observation surface S. The set of spectra obtaired
in this way is for sources of “non-radiating type”. Their radiation is “invis-
ible” to an observer on S.

In the case of instantly acting sources of the type (3), the situation is

different: " 1
F003 (22 = k1) = —W (k). (12)

mCo

Now, at continuous frequency variation from 0 to oo, the sphere |k| =
w/cy passes through all points of the 3D space (kz,ky,k.), allowing us to
determine the 3D spectrum of the source f(k) by using the known 4D spec-
trum of the continued field W (k,w).

2. The inverse problem was considered above in a somewhat refined state-
ment: the trace of the field ug and its normal derivative u, “observed” at the
closed surface S were considered as “initial data”. A model more realistic
from the point of view of geophysical applications is that in which the plane
z = 0 dividing IR? into two half-spaces serves as an observation surface, at
whose points only the trace of the field ug(z1,2,0,t) is recorded. It turns
out [12] that in this case of homogeneous half-space all reasoning of Section 1
is repeated. The basic integral equation (8) remains the same, except that
the source function f(z,t) must be oddly extended to the second half-space:

f-(w7t) = f(mit) - f(wl)x2) —$3,t). - (13)

The second remark concerns the field continuation algorithm (9). It is
simplified considerably in the model under consideration, and takes the form
of the 3D convolution of the variables (z,y,t). This, in turn, admits the use,
at their numerical realization, of fast Fourier transform algorithms [4]:

we(x,t) = 2 / dT//uo(ﬁ',T)aingG*(m—ﬁ,t—T) dS;

1 £ 8 uo(ﬁ',t+lzc;fl)—uo(€',t—%[)
==l el Joen

|z — ¢

= ug(a, t) x H(z,y,t; 2), o (14)
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where the symbol * is the convolution of the variables (z1 = z,z2 = y, 1),
and 3 = z plays the role of a transformation parameter;

z' = (z1,27,0); ¢ = (&,6,0);

&~ & = (1~ &) + (22— &2)? + 23]
H(2,,8i2) = ~ 5 5o lal0(¢ + lalfeo) = o] (¢ ~ lel/e0)}.  (15)

It is shown in [10, 11] that the Fourier transform of the variables (z,y,t) for
the kernel (15) is

F[H] = +2isin(zk?), (16)
where
0 AT
k) = T k2 — k2. (17)

It should be noted that here only homogeneous plane waves are of interest
to us. Therefore, radical (17) is real (Figures 1 and 2).

k. A L ks
kO/‘ k
k.
Figure 1. Space (w, k,,k,) Figure 2. Section k, =0

Now, applying the Fourier transform of the coordinate z to both parts
of equality (14) and taking into account the known formula [3], we have

F,[24 sin(2k2)] = d(k, — k) — 8(k, + kD), (18)
and obtain the following expression for the continued field spectrum:
Wi(k;w) = Uo(kz, ky; w){8(k — k2) — 8(k, + k2)}. (19)

On the other hand, the spectrum of fundamental solution (7) also has
a special structure: it is concentrated at points of conical surface (11). In
expression (7), we transform the surface delta-function
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2
w' o2 g2 42)_ 1 1.0 0
(% k21— 2) = ol — ) + 6k, + ),

where k0 is given by (17), and obtain the following solution of integral
equation (8) in the spectral space for sources of the type (3): for w > 0,
k., >0 i

f(kza ky; kz) = (i—w);ikgﬁb(kz, kva)' (20)
Here, we restrict our consideration to the domain k, > 0: as for real func-
tions, this information is sufficient for the unique reconstruction of f(zx).
It should also be noted that in expression (3) the time derivative of the
delta-function can be removed, and we can consider sources of the following
form:

f(=,t) = f()d(t), (21)

for which the form of the inversion formula is very simple:
~ 1 ) .
flkas ey, kz) = = (i) U0 (ka, by, ). (22)

Recall that the appearance of §'(¢) in (3) is associated with the solution of the
inverse problem in the space-time domain (,t) by the inverse continuation
method, namely, it is necessary to reconstruct, at ¢ = 0, the wave field
itself (“displacement of particles”), and not its time derivative (“velocity of
particles”). One can see from (20) and (22) that there is no such strong
coupling in the spectral space. If the structure of the sources is

f(w)t) = f(:l:)(p(t), (23)

where ¢(t) is the known (given) pulse, the inversion formula in this general
case has the following standard form:

¢~ (w) (k) Vo (kz, ky, w), (24)

3| =

f(kzykyakz) =

here $~!(w) is the deconvolution of the signal () in the frequency domain.

The standardized form of the solution to the inverse problem of sources’
reconstruction in the (k,w)-space is an attractive feature of the entire spec-
tral approach. For instance, to pass over to the 2D problem, it is sufficient
to assume that k, = 0, and all above formulas remain valid in the plane
case: it is known (3] that in the space-time domain (z,t) the structure of
the 2D and the 3D solutions differs considerably, and the “transition” to the
2D space will require special adjustment of the algorithm.

One should comment briefly on the algorithm for the solution to the
inverse problem. It follows from comparison (20) with similar formula (12)
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of the preceding section that, in contrast to (12), in the case under consid-
eration there is no field continuation stage, which is most labor-consuming
from the point of view of computations. Instead of it, a 3D Fourier trans-
form is performed. First, the input data observed in the space (z,y,t), are
transformed to the spectral domain (kz,ky,w). Then they are transferred
through half-spheres (17) to the space (k,ky,k;). Since we assume that
these transforms can be performed with the use of the FFT algorithms [4],
we obtain an obvious increase in the speed and accuracy of calculations in
comparison to the direct calculation of integrals of the type (9) or (14).

3. In the final part of the paper, we consider the inverse problem of wave
scattering from medium’s inhomogeneities. Also, we show that the spectral
inversion formulas presented in the preceding sections are suitable in this
case. Now we consider, instead of (2), the following problem statement:

2
(A - H:W—;—z)u(m,t) =§(t)d(x — x¢) for x € R®, t e R!,

u(z,t) =0 for z € R? t<0.

(25)

In this statement, the wave field is excited by a concentrated source
acting at the point ¢ of the plane z3 = z = 0. The source comes into
action at ¢ = 0, and the wave velocity is represented as the sum

c3(x) = cg? + m(z). (26)

Here, ¢y = const is considered to be known (the reference model), and the
sought-for addition is considered to be small. It is assumed that the anomaly
m(x) occupies the local domain Dy (in the preceding sections, it served as
a carrier of the source function of the field), which is entirely located in the
half-space z3 = z > 0.

As in Section 2, the plane z3 = 0 is a fictitious surface, at whose points
only the trace of the wave field ug(z',¢; @) is fixed, and the boundary con-
ditions are absent. It is assumed that the variable velocity c(z) has appro-
priate smoothness, so that there are no boundaries with jumpwise velocity
variation. Therefore, it is not necessary to formulate additional conditions
for the contact of media.

The inverse problem of scattering is in determining the velocity anomaly
m(z) (and, hence, the velocity c(z)) by using the field ug(z', t; ), observed
in the plane z3 = 0, to which points of the receiver z' = (z1,22,0) and the
source Xg = (Zo1, Z02,0) belong.

In accordance with the idea of linearization, the full field is represented
as the sum of two terms:

u(x, t; o) = uin(x, t; 2o) + us(x, t; zo). (27)
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Here, the “incident” field (sounding signal) wy, is caused by the action of
the concentrated source in the reference medium ¢y (without anomaly), and
the scattered field us is determined by the following conditions:

14 92
ARt . — i . f 3
(A e 6t2)u5(m,t,a:0) m(m)6t2um(a:,t, xg) for z € R?, ¢ >0, (28)

us(e,t;xg) =0 for e R?, t < 0.

The problem of linearization consists in the fact that there is the “inci-
dent” field u;, instead of the full field u, in the right-hand side of (28), which
would be produced at the exact transition from (25) to (28). Physically, this
means that we consider only single-scattered waves.

Below we consider an observation system with a fixed source. A point
of this source can be taken as the origin of coordinates:

xzy = 0; :czrex;}

z (29)

r=|z); e, = -

A more detailed problem statement is given in [2]. In this paper, it is shown
that the inverse problem of scattering in the space-time representation is
reduced to the Radon transform:

/ ff 1©5(5—¢-e:) dé = wlre), (30)

Here, the sought-for function f(z) is related to the anomaly m(z) as

f@) =~ 4?)2 4’];(—;) (31)

and the continued field is taken at ¢ = 0:
w(z) = w,(z,0): (32)

In this case, not the trace of the full field u from (27), but that of the

scattered field us (and only its low-frequency part) is continued into the
medium: , ,
ug(x', t) = us(z', t);
B( : ) s( ) ) . (33)
UD(m :t) =14 * ‘U.Q(GB st):

where ¢, = tH(t) = H(t) + H(t), H(t) is the Heaviside function, and the
symbol * denotes time convolution. Taking into account these remarks, the
field continuation algorithm is given by the following equalities:
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w(z) = f/aza{v()(li, ﬁ'l )}dﬁld&.

= [’Uo(w 7t) * H(m 4 z)]t:O
1 " :
@3 f / 2i sin(zk2) Vo (kz, ky; w)e i ke=tht) dke, dky dw.  (34)
Qo
Here, the symbol * denotes the convolution of the variables (z,y,t), the

function H is given by (15), k2 is given by (17), and € is the domain of
existence of homogeneous plane waves:

K2 +k2 < (35)

The solution to the inverse problem in the statement under consideration
is, in principle, given by the inversion formula of the Radon transform (30).
The purpose of this paper, however, is a more detailed development of an
alternative spectral approach to the solution of this problem outlined in [2].
First, let us introduce additional notation. Let D(k, ky, k.) denote the 3D
spectrum of the field w(z,y, z), continued at ¢ = 0, that is,

D(k) = / 7/ e * 2y (2) de (36)

with the corresponding inversion formula

w(e) = @ et (k) dk (36b)

We need the same spectral transforms in spherical coordinates:

0
b(k10’ ‘P) = /d'l‘ 7'2 //‘LU(T, a,ﬁ)e'ikr(e"'e’) sz,

-~

37)
w("" a’ ﬂ)

(% / dk k? / f Dk, 0, p)etikr(eres) gq,

/

Here

S is the sphere of directions of a unit radius;

df); = sinadadf is an element of the solid angle in the coordinate space
(z,y,2);
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dQ; =sin@df dy is an element of the solid angle in the spectral space
(k-'m kya k. );

€ - ez = cosacos f + sinasin @ cos(p — B) is the “cosine of angle” given
by the directions of the basis vectors e, and ex;

e; = (sinacos B,sin asin 3, cos ) is the basis vector of direction in the -
coordinate space (z,y, z);

ex = (sin 6 cos p,sin @ sin, cos §) is the basis vector of direction in the
spectral space (kz, ky, k,); /

T = (z,y,2) = re,;
k = (kg ky, k) = key.

On the basis of the remark [8, 9] that the N-dimensional Fourier trans-
form is a composition of the 1D Fourier transform and the Radon transform,
let us introduce into consideration the 1D spectra, W (k; a, B), of the same
continued field w(r; a, 8), calculated by using the following rule:

o0

W(k;a,ﬂ)——' /e_ikrw(r;a1ﬂ)dr’ (38)

—00

that is, for each direction given by the angles (a, B) in the coordinate space
(z,y,2), we take the 1D Fourier transform of the parameter r. In this way,
we formally extend the function evenly to negative values of this parameter:

w(r; asﬂ) = w(—r; aaﬁ)'

Substituting the second formula from (37) into (38), we obtain:

(o o] o o]
A 1 % i
W (ki) = G / dk' k" //koD(k',B,go){ / oHirlk (esvex)—] dr}.
-0 S1

—00

Owing to the properties of the delta-function [3]:

o]
/ e+i7‘[k'(ez‘ek)_k]dr = 27r6(klez c € — k)’ (39)

—00

we obtain the following relation between the 1D- W and the 3D- D spectrum
of the same continued field w:

R 1 7 L
Wikia) = G / dk' &2 / /D(k',@,cp)&(k'ek-ez—k)dﬂk, (40)
—00 S1

or, in a compact way, in the Cartesian coordinates:
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Wik) = ; 21

o0
= [ [ D(Ks(K' - e, — k) dE!, (41)
—0Q

where
k = (kz, ky, k) = ke, E = (k;,k;,k’) =k'e;.

Thus, the 1D spectrum W is related to the vector of space frequencies k,
and the 3D spectrum D corresponds to the vector k’. There is an mtegral
relationship, (41), of the type of the Radon transform, between them, but in
the spectral space, because the argument of the
delta-function (41) includes the expression for
the plane

k'-e.=k (42)

of the variables (kj, k,, k;), through the point k
orthogonally to the radius-vector k = ke, (Fig-
ure 3). :

Now, we apply the Fourier operator
oo

f e~ **Pdp, where p = r/2, to both sides of (30)

a.nd obtain the following equalities.
In the right-hand side of (30), we have

(o o]

[ e Pulen, ) dp = SW ez, k/2). (43)

—00

In the left-hand side of (30), we have

fdpe-“’*{ ff def(e)a(p—_e-ez)}
= f[w déf(é){fﬂ"“‘”é(lﬂ'—é'ez)dp}

= f ff F(©)e*C=8) ag = f(ke,). (44)

It follows from a comparison of (43) and (44) that the solution to the inverse
problem of scattering in the spectral domain has the following form:

f(k) = %W(%k) (45)

and in the coordinate space the sought function is found by the Fourier
inversion (1):
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f(z) = F[f(k)], (46)

where k = ke;, k = w/(2¢). R

In the solution (45), the function W (k/2,, () is a 1D spectrum of the
continued field w(r; @, B), calculated by using rule (38) and related to the
3D spectrum D(k, 6, ) by integral transform (40). In these formulas, the
length of the vector of space frequencies k is related to the frequency w and
velocity cg as follows:

2 .24 12 w)?
kz + ky + kz = (%&) . (47)

Asymptotic analysis of an integral of the type (40) performed in
[6, Ch. 11] by the saddle-point method has shown that at large values,
kr — oo, the domain of angles (8, ¢), close to (a,3) make the main contri-
bution to the integral. Thus, in the far observation zone we have

W(k,a,B) ~ D(k,0 = o, p = ). (48)

In this case, with allowance for (14)-(19) and (33), solution (45) takes
the following simple form:

forw>0, k>0 f(k)= —Vb (kmkya ) (k. — k), (49)

2
where k? = 412— — k2 — k2 and is in agreement with (47).

As in the case of algorithm (20) from the preceding section, the most
labor-consuming stage from the point of view of computations associated
with wave continuation is also avoided in (49). Instead of it, there is a
sequence of direct and inverse 3D Fourier transforms (observation data),
which make it possible to reconstruct the “source” spectrum f (k), the func-

tion f(z) itself from the spectrum and, hence, the anomaly m(z) from (31).
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