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Compressibility effects
in lake hydrodynamics

E.A. Tsvetova

A non-hydrostatic version of mathematical model of deep temperate lake is formulated.
Water is treated as compressible, Nonlinear relation corresponds density with temper-
ature and pressure. Numerical procedure is based on variational principle in the com-
bination with splitting methods. Two-dimensional variant of the model is used in the
numerical experiment which presents the influence of differential compressibility of water
on the lateral flow through gravitational adjustment. This experiment simulates the pos-
sible way of the formation of the winter mid-depth temperature maximum in deep lakes.
Such phenomenon is regularly observed in lake Baikal.

1. Introduction

The pressure in deep lakes is high enough to compress water significantly
to lower the temperature of maximum density (TMD). TMD diminishes at
the rate of 0.021°C - bar™!. The bottom pressure in lake Baikal, which has
the maximum depth more than 1600 m, is about 160 bars. Such a pressure
decrease TMD to 0.625° (' while it is 4° C at the normal atmospheric
pressure. Decreasing of TMD versus depth has crucial consequences in
lake hvdrodynamics because it controls the mixing processes.

There are some phenomena in lakes which cannot be explained another
way than the influence of compressibility. As an example, partial spring and
autumn mixing of deep lakes can be considered. One more example is the
existence of winter mid-depth temperature maximum. These phenomena
are regularly observed in lake Baikal [1-3].

The subject under consideration, that is, the pressure influence on den-
sity, has not received much attention in limnology, (this remark, in partic-
ular, concerns numerical models). perhaps because most lakes are not deep
enough, although the question is still open, which lake should be treated as
a deep one. It appears that a lake having the depth of 200 m or more will
feel compressibility effects. Therefore the understanding of the processes
taking place in deep lakes has both theoretical and practical significance. In
this case, our goal is 1o construct numerical models which could reproduce
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the physical events realistically. Various versions of numerical models have
been constructed and are being used for the investigation of hydrodynamics
and transport of contaminants in lake Baikal [4-6]. Two most important
approximations were used there. These are hydrostatic pressure distribu-
tion and Boussinesq assumption. Hereby the non-hydrostatic model taking
into account the compressibility of water is presented.

2. Mathematical model

The governing system of equations expresses the balance laws of momen-
tum, mass and energy

£lz—o:—@—acu BT 9 or —CLQT'-{- (5
pcpdt dt_()ppra appp’a ayppltay q, )

p=p(p,T,5,). (6)

Here u, v, w are the components of velocity vector @ in the a, y, z directions
respectively, { is the Coriolis parameter, p is the pressure, p is the density,
A, v, p, vy are the turbulent momentum and thermal diffusivities in the
horizontal and vertical directions, respectively, T and T are the ordinary
and absolute temperatures, ¢, is the specific heat at constant pressure, ¢
is the energy flux produced by any distributed source, S, is the salinity,
a is the coefficient of thermal expansion. In the given model the state
equation adapted to the limnological problems is used [7]. In it density
is the function of temperature, pressure and salinity. As the parameters
of the model have been chosen according to lake Baikal conditions, the
salinity .S, is supposed to be constant and its value is equal to 96 mg/l.
The governing system of equations (1)-(6) are considered in the domain
Dy = D x[0,1] where D is the domain of spatial variables (2, y, z) and [0,7]
is the time interval. In the real problems D describes the volume of the
lake. Its lateral boundary and the bottom are defined by the configuration
of the lake. They are the given functions of z, y, z. The boundary and
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initial conditions are as follows:
at the lake surface z=10

du Te Bu___'r_y aT @

Ou A = 7
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w=0, p= pa(:cvy,t);
at the bottom z = H(z,y)

T
u=v=w=0, gw=0; (8)
at the rigid lateral boundaries
u=v=w=0, %z(]; (9)
initial conditions in D at t =0
¢ =¢%(z,y.2), (10)
where
@ = (u,v,w,T.p,p).
Here /3N means the co-normal derivative
j ) 0
IN - I cos(n,.r)% + it cos(n, y)t)a_y + vy cos(n, z);, (11)

n is external normal vector to the boundary of the area, p, is the atmo-
spheric pressure, 7, T, are wind stresses in the x and y directions, @ is
the heat flux on the lake surface.

As for the coefficient of thermal expansion «, it should be noted that in
some definite temperature intervals it may change its sign. Such situation
occurs in the vicinity of the temperature of maximum density. This is due
to the specific fresh water properties that are described in the nonlinear
state equation.

The non-hydrostatic model. based on the the equations (1)-(10), is the
development of the hydrostatic model [4-6]. Here the water compressibility,
variations of density and its dependence on pressure and temperature are
explicitly taken into account in the model. The main stages of the construc-
tion of the numerical model and an example of its use for the investigation
of hydrodynamic processes in a deep basin are described here.
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3. Method of the solution of 3D problem

Let us make some transformations in the initial system of equations for
the convenience of the algorithmic realization of the model. At first, let us
represent density and pressure as the sum

p=5z)+p, p=p2)+p, (12)

where p, p are the background values and p', p’ are the deviations from
non-perturbed values for the corresponding fields. It is supposed that p and
p depend only on z and are related by means of the hydrostatic equation

op _
7, = 9P (13)

Under these assumptions the pressure derivatives in the equations (1) and
(2) does not change their form. In the equation (3) the first two terms
on the right-hand side are transformed by means of (11) and (12) in the

following way
10p,  1f{ap .
~L .t _p(az gp)- (14)

Function p' is the dynamic part of pressure. Further p is a desired
function and for convenience the prime in its notation is omitted. In terms
(1/p) grad p of the equations (1)-(3) and in the term div pi of the equa-
tion (4) all transformations and approximations for the function p should
be made identical everywhere. This requirement follows from the specific
properties of the computational algorithms.

Discrete approximations of the model and the algorithms of its realiza-
tion are constructed on the basis of variational principle in the combination
with the splitting method [8]. Following the idea of splitting with respect
to physical essence of processes, we should introduce two stages on each
time step: trahsport with turbulent exchange and dynamic adjustment of
the fields [9].

Let us define the structure of approximations on fractional time steps in
accordance with the symmetric two-cyclic splitting scheme [10, 11]. We ap-
proximate advective-diffusive transport operators apearing in the equations
of the model by monotonic numerical schemes using analytical solution of
local adjoint problems [12]. Realization of the stage of transport and tur-
bulent exchange is carried out according to the scheme that is typical for
the splitting method. It mecans that local one-dimensional problems in
the direction of spatial coordinates z, y, = are solved successively at each
fractional time step.

)

f



Compressibility effects in lake hydrodynamics 95

Specific character of the present problem manifests itself reflected first
of all at the stage of dynamic adjustment of the fields. Taking this fact
into account, the algorithm of realization of this stage will be described
in more details. Let us define the problem of dynamic adjustment of the
velocity and pressure fields as follows:

du 1 dp

o T, (13)
dv 1 op

5‘}'“’-—".0 3y’ (16)
dw 1 (3dp ’

- (3-o) 0
9 | divp =0 (18)
ot pu==

This problem is solved on the time interval t; < t < tj41 with the
length At provided that at ¢ = t; values of all functions u, v, w, p, p,
p are given. It is supposed also that the temperature does not change
locally within the time interval of the dynamic adjustment. Depending
on the assumptions on the approximation p in the interval [t;,t;41] one
may obtain several modifications of the adjustment problem. In this case
the function p is calculated by means of the state equation, and equations
(14)—(17) are used for the calculation of pressure and velocity components.

The system (15)—(18) is linearized with respect to p = p’ and dp/0t
in (18) is excluded by means of the relation dp/dt = c*9p/0t, where % =
dp/dp.

Then, the system is approximated with respect to time by the implicit
scheme and the following system of equations on (t;,t;41] is obtained

ui+;; W “%Q%;’ (19)
&J’i:_ﬁ? (a;;; —gp'j), (21)
%E_l&i‘_f}) +div p@att = 0. (22)

Here and further the netations for the derivatives with respect to spatial
variables are formally used for the convenience. In actual computations
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their discrete analogues are present. Let us solve the equations (18)—(20)
with respect to w/tl, pi+1 i+l

) J+1
W= (gp N ) +h (23)
vitl=—C (g‘;’ lAtgp) + fa, (24)
: At §pt?
w’“:—;; %JZ + fa, (25)

where

fi = a(W + IAWY), fr = a(v’ — lAWY),
fa = (Atgp)/p? + w?, a=1/(1+(1A1)?),
C = Ata/p’.

The equation for pressure pit! is obtained by the substitution of u*1,
v/ +1] w/*! into equation (22)

1 pitl —pi [a (Rap Bap) 8( dp BBP) 321’]j+1= F, (26)

2 At 0 oz dy 6‘_3;. dy dx ﬁ

where
R = aAl, B = alAt?,

I'= —c!ivpjf, fZ(f],fz,fg).
Boundary conditions for the closure of the system of discrete equations
approximating (19)-(25) are the consequence of conditions (7)—=(9) for the
initial problem.

For relatively small water basins it is possible to take I = const. Then
the equation (26) is simplificd because the sum of terms with the coefficient
B vanishes. The algorithm structure for the solution of equation (26)
depends on the form of domain D and its discrete approximations. The
iterative procedure is used for the water basins with real shorelines and
non-homogeneous bottom relief. After the determination of function P!
the calculations of the functions @+ = (u,v,w)*! are provided by (23)-
(25). Then the discrete analog of equation (5) with the given functions
i+ and 1! is solved. For this purpose the same splitting scheme as for
the stage of transport with turbulent exchange for the functions u, v, w is
used. Finally, the density p?t! is calculated by the equation of state (6).
At the next time steps the whole cycle of computations is repeated.
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4, Two-dimensional version of the model

For the description of the non-hydrostatic processes in lakes the numerical
model should have fine spatial and temporal resolution of discrete approx-
imations, because it is necessary to simulate the processes, horizontal and
vertical scales of which are comparable. The corresponding sizes of domain
D itself for real lakes may differ greatly. It is obvious that to carry out a
set of numerical experiments on the basis of the three-dimensional model
with high resolution is problematic. An admissible compromise between
the wish to use a sufficiently complex model and the real possibilities of
computing numerical experiments in the desired volume can be reached, if
to construct both the 3D model and its 2D modification. It is important
that the both versions should have the similar properties. Experience shows
that 2D models are a convenient scientific instrument for the solution of
the methodological questions with relatively low expenses [6, 13, 14].

It is proposed to construct the 2D non-hydrostatic version of the model
(1)-(10) in the same way as the corresponding hydrostatic 2D model de-
scribed in [6]. As a domain D let us define a 2D transverse section of the
3D domain on the vertical plane (y, z). It is supposed that all the functions
are homogeneous along the coordinate x, and their derivatives with respect
to z in the 3D model are equal to zero.

The realization of such a model requires not so many calculations as
for the basic 3D model, though the general structure of algorithms and
splitting schemes is almost the same for the both models. In particular,
at the stage of transport and turbulent exchange the solution of local 1D
problems in the direction 2 is excluded.

In the problem of dynamic adjustment in all the formulae (15)-(26) the
substitutions dp/dx = 0, d(pu)/dx =0, 8f;/0x = 0 are made.

The 2D variant of the equation (25) at [ = const, has the form

1 pitt—pi o2p't! , a2’ 9=
a A Rap A= =F (2n)

From (24)-(25) it follows that, using the boundary conditions
Y =0 at y=a.b. wtl=0 at z=0H . (28)

one obtains the Neumann conditions for the function p. The simplest
algorithm for the solution of the problem (27) is obtained when H = const,
and the grid domain in D is regular and homogeneons in the direction z.
Under these conditions the variables are separated and the algorithm can
be direct. The main elements of this algorithm are spectral expansion on
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eigenfunctions of the vertical operator from (27) and the solution of the
discrete equations in the direction y in order to find the corresponding
Fourier coefficients of the function p.

5. The results of numerical experiment
and conclusions

Now let us consider the numerical experiment realized on the basis of the
2D non-hydrostatic model. Domain D is supposed to be rectangular in
the plane (y,2). The grid domain with 49 levels in the vertical direction
and 121 points along y is used in the calculations. The grid lengths are:
horizontal Ay = 30 m, vertical Az = 20 m, time step At = 30 sec. The
chosen parameters of the domain D and discrete approximations of the
model make it possible to describe the local fluid motions with the same
scales in both directions. The depth H of D is chosen according to the
conditions of lake Baikal.

The example suggested by E.C. Carmack and R.F. Weiss [3] was taken
as the basis for the design of the simulation scenario. The same experiment
was fulfilled in hydrostatic version of 2D model [6]. From the physical point
of view the essence of the problem is in the following. It is supposed that
at the initial time moment the water in the domain D is conditionally
vertically divided into two parts. The temperature in each part is constant
from the surface to the bottom and is equal to 3.0° C in the left part and
to 4.0° C in the right part.

Such distribution of the temperature is characterized by the fact that
its values are in the interval which is critical in the definite sense. Tt
is connected with the changing of the temperatures of maximum density
with the increase of the depth or pressure. Really, near the surface warm
water is heavier than cold water and in the deep layers the situation is
vice verse. And the second fact is the relatively opposite position of actual
temperature values in the cells of D with respect to the temperature of
maximum density curve. :

The values of the density itself increase with the increase of the depth
due to the influence of pressure and its contribution is rather great. At the
time moment { = ¢, imaginary wall between the cells is taken away and
the process of mutual adjustment of currents, pressure and temperature
in the continuously stratified fluid in the gravity field begins. One more
condition is given additionally, that is on the lake surface the wind stress
7y = 1dyne/em? is given. Iragments of the computational scenario pre-
sented here illustrate the behaviowr of the processes of the field adjustment
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simulated by the model.

In the figures one can see distributions of temperature and velocity com-
ponents u, v, w at t = 125 min (Figures 1-4) and at ¢ = 335 min (Figures
5-8). The figures are provided with the identification tables which show
the correspondence between numbers designating isolines (1-15) and values
of the displayed functions - temperature (°C’) and velocity components u,
v, w (cm/sec), respectively.

The analysis of the results of numerical simulation shows that the for-
mation of the mid-depth maximum takes place at the initial stage of the
processes in the temperature field. Figures 1, 5 illustrate the temporal
development of this phenomenon. The temperature maximum appears at
the depths of 200-300 m in that part of the domain where due to the non-
linearity of state equation the densities of the cold water and the warm
water are equal. This resembles the situation when the warm water wedges
into the cold water in the shape of a “tongue”. Simultaneously cold water
moves near to the bottom and the surface of the basin. In the vicinity of
the bottom the effects of the boundary layer appear, and the propagation
of cold water intensifies under the influence of wind stress on the surface
of the basin.

Convective cells are formed in the current field. This is clearly seen
in the figures of the distribution of the vertical velocity component w. In
Figure -1 one can see two cells near the boundary of the separation of the
water mass, the left cell being an upward flux and the right cell being
a downward flux. In Figure 8 there are three such cells, the central one
being downward motions, and two lateral ones being upward motions. In
the fields of horizontal velocity components (Figures 2, 3 and 6, 7) the cells
with opposite by directed fluxes are formed, too.

Change of the signs takes place in the transition region of the tem-
perature contrasts. With the increase of the time interval the cells are
deformed and their number increases. At the same time the influence of
the boundary conditions is felt. And if the sizes of the experimental do-
main D are smaller than the horizontal sizes of the simulated basin it is
also necessary to extend the domain for the model definition when the time
interval increases.

The temperature field tends to the steady state. This means that the
temperature comes to such a state that the lighter water is distributed over
the heavier water, and the fluid is in the hydrostatic stable state. Mutual
adjustment of the fields takes place under the influence of wind stress on the
surface, and this results in asymmetry of the temperature and velocities.
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Figure 1. Temperature at ¢ = 125 min
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Figure 4. Horizontal velocity component v at { = 125 min
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Figure 5. Temperature at ¢t = 335 min
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In general, the results of this numerical experiment are in agreement
with the theoretical assumptions in [1-3] about the role of water com-
pressibility in the appearance of the mesothermal maximum in deep lakes
and the role of the gravitational factor of its formation. There is also a
good qualitative agreement with the results of simulation by the hydro-
static model [6]. However, the spatial configuration and horizonal sizes of
the domains in these two models are different. That is why the results
of simulation may be comparéd only in the neighbourhood of the inter-
face between the water masses and only in a relatively short period of time
from the initial point. The combined account of non-hydrostatic effects and
water compressibility in the models makes it possible to describe in more
details the transient behaviour of the adaptation processes when unstable
situations appear.

In the computations using the non-hydrostatic model the mechanism
of the formation of mesothermal maximum and temperature front propa-
gation manifests itself better. For the adequate model presentation of such
phenomena it is very important to use monotonic numerical approximations
with the transportivity property for advective-diffusive operators. The de-
velopment of this model for the investigation of natural phenomena in deep
lakes is in progress now. The model of a variable structure combining hy-
drostatic and non-hydrostatic approximations in the governing equations
seems to be usefull in future. It will make us possible to have an agreed
description of the processes with different scales. In the framework of such
a hybrid system, control over the simulation processes is provided taking
into account the relations between the sizes of the lake domain and the
scales of the investigated phenomena.
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