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The non-uniqueness of solution
to the inverse problem of scattering

G.M. Tsibulchik

The inverse problem of wave scattering on inhomogeneities of a medium within
the framework of a scalar wave equation is considered. The scattered field in such a
model can be described in two ways: either with the help of the surface distribution
of secondary sources, or by using volume distribution. These two ways of description
completely coincide in the outer domain and at the boundary. They are, however,
different inside the inhomogeneity: the volume sources reconstruct the “refracted”
field existing inside the inhomogeneity, whereas the Kirchhof description yields zero
values there.

From the point of view of the inverse problem, in which the observation data can
be gathered only in the outer domain, this leads to the following: it is insufficient
to have the full knowledge of the scattered field everywhere in the outer domain
to distinguish between volume scattering and surface scattering. It is important
to note that this non-uniqueness of the solution is fundamental and is not due to
the monochrome character of the wave process under consideration; it is also not
eliminated by observation systems with multiple overlapping,.

Let us consider the following problem statement in the form of a scalar
wave equation as the basic model for description of the wave propagation
process:
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The model under consideration is convenient due to its “utmost” sim-
plicity: the medium is characterized only by one parameter, namely, the
wave propagation velocity ¢(z). In what follows it will, however, be shown
that corresponding formulations of the inverse problem on the determina-
tion of the velocity c(z) are not simple and, in the general case of piecewise
continuous distribution of ¢(z), remain unsolved up to now.

We assume, in the subsequent discussion, that the velocity distribution
can be represented as follows:

c(z) = co+ a1(z), (2)

Here ¢o = const (reference medium), and the support supp ¢; () is finite and
occupies a domain D bounded by a surface S. In short, in this case statement
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(1) is the problem of scattering (diffraction) of waves on the inclusion D.
So far, we do not impose any restrictions to the velocity distribution ¢; (),
except for the requirement of finiteness of its support supp ¢;. The domain
D is assumed to be multiply connected, and the transition from co to ¢;
is jumpwise. In this case, the surface S is an interface of the first kind.
Additionally to (1), we require that the following fitting conditions of the
“rigid contact” type be satisfied at this interface:

[W(2,t) =0, [Ou](z,t)=0 for z€S, t>0. (3)

Here the square brackets denote, as usual, the function jump as it passes
through the surface S.
It is known [1-3] that problem (1), taking into account (3), is a closed
statement, its solution is unique, and can serve as a starting point for further
=DuSuD, investigations. The figure shows the main
M configuration of the data of the problem,
D, in which the point source My (with co-
Mo ordinates @q) is fixed, and point of the
S receiver M (with coordinates z) sweeps
So a closed surface Sy that contains the ve-
locity anomaly D. The inverse prob-
lem consists in reconstruction of the ve-
locity anomaly ¢;(x) by using the field
(m t;xo) observed at points of the sur-
face So. The surface SD, which carries the data of observations, is virtual in
the sense that only the trace of the wave process is fixed at its points. Then
the wave “runs further” in the infinite space R2. These observation condi-
tions, which are not real (in reality, observations are performed at a physical
boundary of the “free surface” type; besides, observations on a closed sur-
face are usually not possible in geophysics), were chosen deliberately. This
was done to make clear the conditions of solvability of the inverse problem
under consideration and to exclude from the reasoning such speculations as
“llghtmg up from below” or “lighting up from the side”, etc., that appeared
in the literature [5].
The next step is to represent the full field u(z,t;zq) as the sum of two
terms:

u(e, t; @) = uo(@, t; xo) + us(x, t; To). (4)

The first of these terms, ug, is the initial field produced by the point
source acting at the point My. The field propagates in the reference medium
co (without the inclusion D). The other term, u,, denotes the wave field
scattered by the inhomogeneity D. Note here that such splitting of the full
field is especially convenient in the consideration of the inverse problem,
as it will be shown below. This splitting is acceptable, since the incident
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wave g is a short pulse not overlapping in time with the scattered waves in
seismograms. The initial field uo does not carry any information about the
anomaly D. Therefore, subtraction of ug from the full seismogram leaves
the scattered field component of the field u, on this seismogram. It serves
as basic data in solving the inverse problem.

Formally, the terms in (4) are determined by the following conditions:

2
(A - lz?-—i)uo(m,t;mo) = §(x — 20)6(t), te€R!, ze RS>
cg Ot

uﬂ(w!t;w()) = 01 t < 0: S RS'
1 9% " 1 3
( - %ﬁ)us(m,t;mo) = m(z)i(z,t;20), t€R', =€ R, ©)
us(z,t;20) =0, t<0, z€ R
Here the field symbols with points over them denote partial derivatives
with respect to time, and the function
m(z) = c*(z) - ¢} )
describes the velocity anomaly that occupies the domain D, i.e.,

D = supp m(zx).

It should be emphasized that the system of equations (5)-(6) is totally
equivalent to problem (1). At the same time, as noted above, it is more
convenient for analysis of the inverse problem: relation (6) shows that the
scattered field u, is generated by the secondary sources induced in the do-
main of inhomogeneity D by the incident signal uo. -

Further analysis is performed in a frequency w-domain. For this, we
define the Fourier transforms by the following relation:

o0

U(e,w) = fe_i“’tu(:n;t) dt, ‘t.:(:.r:;t):%r f et (z;w) dw.  (8)

—00

In this case, the wave operator (1) is replaced by a Helmholtz equation,
and problems (5)—(6) are replaced by the following statement:

(A + B)Uo(z, 20;w) = d(2 - 20), = € R?, (9)
(A + KU, 20;0) = —w*m(2)U(z,2z0iw), z€R®  (10)

Here ko = w/cp is the wave number, and the zero initial data in (5) and
(6) are replaced by the following so-called “radiation conditions at infinity”:
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waves far from the inhomogeneity and the radiation source must asymptot—
ically have the form of diverging spherical waves.

In accordance with equality (9), the fundamental solution of the Helm-
holtz equation completely coincides (at the same “radiation condition at
infinity”) with the incident field ug, which goes through the medium. It has
the following form:

G(zo, z;w) = Up(z, Tojw) = _%r— M—)-, (11)
where r = |z — x|

The scattered field u,, considered as a solution to problem (10), is de-
termined by the volume potential for & € R® and x¢ € Sp:

U (2, 2010) = jf/" = Dn@ue siwave. (2

For the points & that lies in the domain outside to D, i.e., z € R®\ D,
expression (12) determines the wave field scattered by the inhomogeneity D
into the external medium. For the points @, however, that lie inside D there
exists only one “refracted” field U (individually, the terms Uy and U, inside
D do not have a physical meaning). This field satisfies, in accordance with
(4), the following integral equation of the Fredholm type of the second kind
for # € D and z € Sp:

U(z,zo;w) = Up(z, :to,t-«J)+ yp /‘j‘fexp( zk0|:c El)m(f)U(E, xo;w) dV.
(13)

Due to the properties of smoothness of the volume potential [1, 2] in the
case of a jumpwise velocity transition c(z) at the boundary of inhomogeneity
S, conditions of “rigid contact” of the type (3) (continuity of the field u and
its normal derivative J,u) are satisfied.

Applying Green’s formula to the outside domain, one can obtain the
following expression for the same scattered field:

Vol 20iw) = 4ﬂff{exp( = a0 muie) -

- &
e (D) s
z € R®*\ D, z¢ € So; (14)

Us(z,20;w) = 0, =€ D, z¢ € Sp.

Here n is the unit normal to S directed from the outside into D (see the
figure).
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Using surface delta-functions to describe the density of the secondary
sources, which are distributed over S in the form of simple and double
layers, we can write the following conditions, which are satisfied by U, from
(14), in the uniform form (see [1]):

9
A+ kAU, (z, zo;w) = —8,U8, — —(US,), € R3, € So,
( o) ( 0 ) 3n( ), =z Lo ] (15)

Us(z,zo;w) =0, =€ D, xo€ Sp.

Here “radiation conditions at infinity” are assumed to be satisfied.

If we follow the approach of the direct problem of scattering (diffrac-
tion), we should again use Green’s formula, only we apply it to the internal
domain D characterized by the velocity distribution ¢;. Then we should
match the appearing Kirchhof integrals of the type (14), in accordance with
the boundary conditions (3). As a result, we obtain a system of two bound-
ary integral equations for the determination of the field U and its normal
derivative 8,U on S. Note once again that this is the solution scheme of the
direct problem of scattering based on the integral Kirchhof representation.
In this paper, however, we are interested in the inverse problem, in which
observation data can be obtained only in the outer domain D; = R3®\ D
(see the surface Sp in the figure), and there is no information about the
“refracted” field existing inside D. A comparison of (10) and (15) shows
that the knowledge of the scattered field U, everywhere in D; turns out to
be insufficient to distinguish between the volume scattering in (12) and the
surface scattering in (14): both representations coincide in D; and on S,
and differ in D.

It is important to note that the ambiguity of the solution mentioned
above is not associated with the monochrome character of the wave pro-
cess under consideration (a similar Green’s formula is valid also in the time
representation of the field); it is also not eliminated by systems of multi-
ple overlapping. This is, in our opinion, the main challenge of the inverse
problem of scattering, which many researchers failed to see.

In an explicit form, this difference in the description of the scattered field
manifests itself further in an approximate solution of the inverse problem
of scattering, when the following linearization of the problem is used: the
full field U under the sign of the integrals (12) and (14) is replaced by
the incident field Uy as a result of the first iteration in the solution of the
corresponding integral equation.

To be more exact, the following approximate boundary conditions (see
[4]) are used in the case of equation (14):

U(z;w) = (1+ K)Up(z;w), 8, U(z;w) = (1 - K)0,Up(z;w), for = € S,l

where K is the reflection coefficient.
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Summing up, the approach of (14) leads to a high-frequency Kirchhof
representation of the scattered field which corresponds locally to a plane-
wave description of the process of wave reflection within the framework of
the ray method, whereas the approach of (12) gives a low-frequency Born
representation of the scattered field. It is important that in both cases the
linearized statement of the inverse problem has uniqueness of the solution,
and this solution can be constructed in different ways. It should be noted
that the Kirchhof approach (14) can be used in algorithms of migration types
that are widely used in the practice of processing of seismic prospecting
data; the Born description (12), however, is now being introduced into this
practice, and will find its place in the interpretation space of seismics.
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