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Animat control system based on semantic
probabilistic inference

A.V. Demin, E. E. Vityaev

Abstract. The paper presents a model of adaptive behavior of an autonomous
adaptive agent (an artificial organism) based on the semantic probabilistic inference
and the functional system theory by P.K. Anokhin. The main distinction of this
model is the possibility for automatic generation of new subgoals, which allows us
to solve more complex multi-level tasks. An autonomous adaptive agent has been
created on the basis of this model, and a number of experiments have been carried
out in order to train it and to compare it with the existing approaches based on
neural networks and reinforcement learning. The results of comparison have shown
that the proposed model learns and acts more efficiently.

1. Introduction

Recently, active research is carried out in the field of adaptive behavior that
involves studies of the fundamental principles enabling natural or artificial
organisms to adapt to variable environment. One of the main approaches
in this research direction is to create and study agents (computer programs
or robots) whose behavior is based on the principles of a living organism
behavior. These agents are called “animats” (animal + automat = animat).

This work offers a general scheme of an adaptive animat control system
which includes an architecture based on a hierarchy of functional systems
and subgoals and a training algorithm which uses the semantic probabilistic
inference and the possibility to generate new subgoals automatically. On the
basis of the proposed model, an elementary animat and its environment have
been implemented in the form of a computer program. Using this program,
we have carried out a number of experiments in the animat learning and
made test comparison with the existing approaches based on neural networks
and reinforcement learning.

2. The theory of functional systems

The structure of the control system we propose is based on the theory of
functional systems developed in 1930–70s by the famous soviet neurophysi-
ologist P.K. Anokhin [9–10]. According to this theory, a functional system
that achieves some results beneficial for an organism (for example, satisfac-
tion of its needs) is considered to be a unit of this organism’s activity. A
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Figure 1. Structure of the control system

functional system with goal-seeking behavior is organized according to two
rules: the sequence and hierarchy of the results. The sequence of the results
is built on the principle of a “dominant”: the dominating need stimulates the
dominant functional system and creates the behavioral act aimed to satisfy
it. With respect to the dominating functional system, all other functional
systems are structured by the principle of “the hierarchy of results”: the
result of one functional system constitutes a part of the result of another
system.

The central mechanisms of a functional system responsible for its goal-
seeking behavior have the same structure. The initial stage of a behavioral
act of any complexity is afferent synthesis that includes synthesis of mo-
tivation, memory and information about the environment. As a result of
afferent synthesis, all possible ways of achieving the goal in this situation
are evoked from the memory. At the stage of decision-making, only one
particular way of action is selected according to the initial need. To provide
for achievement of the results, an actions results acceptor is being created
beforehand which is a model of the parameters of the expected result. Each
action is simultaneously followed with signals about achievement of the re-
sult, called backward afferentation. Actions on the goal achievement are
taking place until the parameters of the action result perceived by the cen-
tral nervous system in the form of the corresponding backward afferentation
would perfectly comply with the properties of the actions results acceptor.

The theory of systemogenesis that studies the mechanism of the func-
tional system formation, is a special branch of the general theory of func-
tional systems. In this paper, we also study the mechanism of formation of
a new functional system on the basis of the subgoal identification.

3. Animat control system

In accordance with the theory of functional systems, we will assume that the
animate control system being modeled has a hierarchical structure, where
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separate functional systems constitute the basic elements of the control sys-
tem. In this structure, the upper level functional systems set the goals for
the lower level systems. At the same time, we can think that each func-
tional system solves the task of achieving the goal using the same methods
as other functional systems. Figure 1 shows the structure of the animat
control system.

The tasks of a functional system are as follows:

• Given a goal (subgoal) and available information about the environ-
ment and the state of the functional system, find an optimal way of
achieving this goal.

• If, on the basis of a forecast, an action is found that guarantees achieve-
ment of the goal, then give an instruction to perform this action.

• Control the correctness of performing the action, that is check the
compliance between the achieved and the desired results.

4. A model of a functional system operation

Figure 2 shows the model of a functional system operation based on the
works [1–2]. Let us think that a goal P is set to the functional system at
some point of time (this is done in the form of a request to the functional
system to achieve the goal P ). Information about the environment is also
supplied in the form of the situation description P1, ..., Pm. In the process
of afferent synthesis, all information related to achievement of the goal P (it
is stored as a set of patterns of the form 〈P1, ..., Pk, A〉 → P ) is evoked from
memory. Note that only those patterns are evoked, in which the situation
properties are met, i.e., all properties of a situation Pi that are included
in the condition P1, ..., Pk of some pattern should also be included in the
situation description P1, ..., Pm.

The pattern conditions P1, ..., Pk include not only the properties of the
situation, but also subresults P1, ..., Pn that should be achieved in order
to achieve our goal P . To achieve the subgoals, we send the correspond-
ing requests down the hierarchy (in Figure 2 it is indicated by the double
arrow pointing down). These requests activate all information related to
achievement of these subgoals in the same situation (as above) in lower level
functional systems, which, in turn, may require achievement of other goals
at even lower levels, and so on. If some subgoal cannot be achieved in this
situation (there are no patterns predicting its achievement in this situation),
then denial is received in reply to the request and the corresponding pattern
is excluded from consideration.

In the block of afferent synthesis 〈P1, ..., Pk, Ai〉 → P , the pattern ac-
tivation procedure evokes from memory a set of actions Ai (including the
actions required to achieve the subgoals) that may lead to achievement of
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Figure 2. The model of the functional system operation

the goal P . This set of actions, together with evaluations of conditional
probabilities for achievement of the goal and subgoals, is passed to the
decision-making block. Here all actions Ai are examined (together with
the patterns 〈P1, ..., Pk, Ai〉 → P activating them and with the hierarchy
of subgoals and corresponding actions) and an action is selected so that it
provides the maximum estimate for the probability to achieve the goal P ,
taking into account the probabilities to achieve the subgoals. After that the
action A and all actions necessary to achieve the subgoals are launched. At
the initial stage of learning, when there are no rules yet, or there are no
rules applicable in this situation, the action of the corresponding functional
system is randomly selected and no forecast exists.

The forecast for the anticipated result P and all subresults for all sub-
goals is sent to the actions results acceptor. Besides, the forecast for subre-
sults in all lower level functional subsystems is also sent to the corresponding
actions results acceptors.

The data on the achieved result R are sent to the result evaluation block
of the actions results acceptor for the forecasted and obtained results to be
compared. If the forecast coincides with the results with the given degree
of accuracy, then the pattern selected in the decision-making block is re-
inforced, otherwise it is punished. Reinforcement/punishment consists in
increase/decrease of the pattern’s conditional probability. Besides, the set
of rules is refined more precisely after each action, as was shown in [1–2]. If
after this refinement a pattern is found having higher conditional probability
than the earlier used one, then the new pattern will be used for forecasts
and decision-making.
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Figure 3. Two levels of the functional systems hierarchy

The semantic probabilistic inference [6] allows us to find a set of patterns
PR in the form of 〈P1 & ... & Pk & A〉 → P that predict with maximum
conditional probability the result P of the action A under the conditions
〈P1, ..., Pk〉.

5. The hierarchy of functional systems

Let us present a more schematic diagram of a functional system in Figure 3,
where, instead of the whole hierarchy of functional systems, we show only
two its levels. A functional system is not a construction determined once
and for all. They change their form according to goals. Goals and subgoals
in their turn also depend on successful achievement of the final goals. Let
us show how goals and subgoals may be created automatically with the help
of patterns.

Let us extend the notion of a result so that it can be generated auto-
matically while working in a complex probabilistic environment:

a) The result should have the property of branching: if some result is
obtained, then further actions may be determined ambiguously;
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b) The result should contain a set of attributes which show that the goal
of this sequence of actions is achieved and it is possible to move to the
next sequence of actions, i.e. the result is a fixation of action com-
pleteness, ensuring the possibility of performing a certain subsequent
action.

The condition a) of the above definition is naturally fixed by patterns,
because they can make a good forecast for the results of a sequence of ele-
mentary actions (of a given level), if this sequence is a standard one, which
means that, once started, it goes on without changes until a certain result
is obtained. In this case the patterns can forecast realization of this se-
quence of actions with a high probability. Figure 3 shows them as actions
A1, A2, A3, A4 leading to the results R1, R2, R3, R4. The actions results
acceptor matches R1, R2, R3, R4 with those predicted by patterns and, if
they coincide, gives the answers P1, P2, P3, P4 to the requests P1, P2, P3,
P4. The answers about achieving the goals are passed to the inputs of other
units (the arrows from the actions results acceptors pointing down to the
subsequent units). These answers will be automatically included into the
pattern conditions for subsequent actions, because a signal telling that the
preceding action is completed increases the probability for the subsequent
action to be completed. According to the definition of the semantic prob-
abilistic inference [6], any signal increasing the probability of a forecast is
automatically included into the pattern conditions.

The condition b) is also met, because the signals from backward af-
ferentation proving that the preceding action has been really completed
increase the probability of achieving the results of the subsequent action.
The process of automatic generation of goals and subgoals at a neural level
is described in more detail in [3].

6. Model description

1. Model description. Let us show in Figure 2 how the animat is working
(according to the scheme of a functional system [4–5]). We assume that the
animat control system works in a discrete time t = 0, 1, 2, .... Let our animat
have a set of sensors S1, S2, ..., Sn characterizing the conditions of its inter-
nal and external environment, and a set of possible actions A1, A2, ..., Am.
From its set of sensors, we separate the sensor SA which provides us with
information about the performed action. We suppose that the history of
animat’s actions is stored in a data table X = {X1, ..., Xt}, where the t-
th line contains the values St

1, S
t
2, ..., S

t
n of the sensors S1, S2, ..., Sn at the

moment t: Xt = {St
1, S

t
2, ..., S

t
n, SAt}. On the set X, we define a set of

predicates P0 = {P1(t), ..., Pk(t), PA1(t), ..., PAm(t)}, where Pi(t) are sen-
sor predicates which specify some conditions on sensors’ data at the moment
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t and PAi(t) ⇔ (SA(t) = Ai) are activating predicates which show that the
action Ai was performed at the moment t.

Let us introduce the concept of a predicate-goal PG(t) = P1(t)&P2(t)&...
&Pl(t) which realizes the condition for achievement of the goal at the mo-
ment t.

Each functional system FS has a corresponding goal G it should achieve
and a predicate-goal PG which characterizes the condition for achievement
of this goal.

Each functional system FS has its own set of predicates P = P0 ∪
{PG1, ..., PGn}, where PGi are predicates-goals corresponding to the goals
of its subordinate functional systems of the lower level. Each functional
system FS contains a set of patterns PR of the form P1, ..., Pk, PG1, ..., PGn,
PA → PG. Each of these patterns is characterized by an estimate p for the
probability of achievement of the goal PG in case the pattern condition is
met.

Let us assume that at the moment t the functional system FS receives
a request to achieve the goal PG. Then all patterns whose conditions are
met at the moment t are extracted from set of patterns PR. If a pattern
condition contains the predicates-subgoals PG1, ..., PGn, then the functional
system sends a request to achieve these subgoals down the hierarchy. From
the set of extracted patterns, we choose that which provides the maximum
estimate f for the probability to achieve the goal. The estimated probability
f of the pattern P1, ..., Pk, PG1, ..., PGn, PA → PG is calculated as follows:

f(PG|P1, ..., Pk, PG1, ..., PGn, PA) = p · f(PG1) · ... · f(PGn),

where p is the estimated probability of this pattern, f(PGi) are the esti-
mated probabilities to achieve the subgoals.

If all conditions of the selected pattern are met, then the action A is
launched. If the set of patterns PR is empty or there is no pattern applicable
in this situation, then the action is randomly chosen from the whole range
of actions available.

After the action is performed, the sensor data are renewed, the action
result is estimated and the set of rules PR is refined (see below).
2. Evaluation of the action results. Each functional system FS stores
the estimates for the results of its actions d(t) for each moment t. Let us
describe the method of derivation of these estimates.

We assume that at the moment t0 the functional system FS received a
task to reach the goal G, and the result R was obtained after the goal was
achieved at the moment t1. Then the estimates for the results of actions
d(t), starting from t0 up to t1, are calculated as follows:

d(t) = r
t− t0

(t1 − 1)− t0
, t0 < t < t1,



64 A.V. Demin, E. E. Vityaev

where r is a function of estimating the quality of the obtained result,

r =
{

0, if PG = 0
mes(G,R), if PG = 1 ,

where mes(G, R) is a degree of proximity between the obtained result R and
the goal G. We use

mes(G,R) =
{

0, if G 6= R
1, if G = R

in our experiments.
3. Rule generation. To obtain the set of patterns PR used by functional
system FS, we use the semantic probabilistic inference [6].

The semantic probabilistic inference allows us to find all patterns of
the form P1, ..., Pn → P0 which predict the predicateP0 with maximum
probability. Inference is made on a set of training data Y with the use of
the given set of predicates {P1, ..., Pm}.

This method is based on the following definition of a probabilistic pattern
proposed in [7].

A rule P1, ..., Pn → P0 is a pattern, if it meets the following conditions:
1. p(P1, ..., Pn) > 0,
2. ∀{P1, ..., Pk} ⊂ {P1, ..., Pn} p(P0|P1, ..., Pn) > p(P0|P1, ..., Pk).
Here p is the estimate for the conditional probability of the rule.
Let us introduce the concept of a rule refinement. A rule P1, ..., Pn,

Pn+1 → P0 is a refinement of a rule P1, ..., Pn → P0, if it is obtained by
addition of an arbitrary predicate Pn+1 to the rule’s premise P1, ..., Pn → P0,
and p(P0|P1, ..., Pn+1) > p(P0|P1, ..., Pn).

The algorithm of the semantic probabilistic inference is as follows:

• At the first step, a set of refinements of the rule → P0 is generated
(that is of the rule with empty premise). This set will consist of rules
of a unit length of the form P1 → P0, for which p(P0|P1) > p(P0).

• At the k-th (k > 1) step, a set of refinements is generated for all rules
created at the previous step. That is for each rule P1, ..., Pk−1 → P0,
generated at the (k− 1)-th step, a set of rules of the form P1, ..., Pk−1,
Pk → P0 is created so that p(P0|P1, ..., Pk−1, Pk) > p(P0|P1, ..., Pk−1).

• It is checked whether the obtained rules are patterns. The rules that
do not comply with the pattern conditions are eliminated.

• The algorithm stops when it is impossible to refine any rule.

In order to avoid generating statistically insignificant rules, an additional
criterion is introduced — estimate of statistic significance. Rules that do not
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Figure 4. The tree of semantic probabilistic inference

comply with this criterion are eliminated even if they have high accuracy on
the training set. To evaluate statistical significance, Fisher’s criterion (exact
Fisher’s criterion for conjugation table) is used in our algorithm.

It is evident that all rules obtained with the help of this algorithm are
patterns. Figure 4 shows the inference tree which describes this process.

To find all patterns P1, ..., Pk, PG1, ..., PGn, PA → PG predicting achie-
vement of G with maximum probability, a tree of the semantic probabilistic
inference is built over the set of data on the history of actions of the animat
X and the set of action estimates d(t) with the use of the set of predicates
P from this functional system. The estimate of conditional probability p for

a rule is calculated as follows: p =
∑
i∈I

di

/
||I||, where I is a set of moments

when this rule can be applied.

4. Subgoal identification. Initially the animat control system has a
hierarchy of its functional systems given a priori. In the simplest case it
may consist of only one functional system. In the process of functioning,
the control system may automatically identify new subgoals and generate
the corresponding functional systems.

Let us define a subgoal as a situation which significantly increases the
probability of achievement of a higher-level goal, and actions following this
situation cannot be defined unambiguously.

In order to identify a subgoal, the set of rules PR of the functional sys-
tem is analyzed. We denote by Cond(R) = {P1, ..., Pn} the set of sensor
predicates in the premise of the rule R = P1, ..., Pn, PA → PG. The situ-
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ation described by the predicate PGnew = P1 & ... & Pk is a subgoal
Gnew, if the following conditions are satisfied:

1) ∀R1 ∈ PR such that {P1, ..., Pk} ⊆ Cond(R1) and ∀R2 ∈ PR such
that Cond(R2) ⊂ Cond(R1) and {P1, ..., Pk} 6⊂ Cond(R2), we have
p(R1)− p(R2) > δ.

2) ∃R1 = P1, ..., Pn, PA1 → PG, R1 ∈ PR, and R2 = P1, ..., Pm, PA2 →
PG, R2 ∈ PR, such that {P1, ..., Pk} ⊆ Cond(R1), {P1, ..., Pk} ⊆
Cond(R2) and A1 6= A2.

The first condition says that addition of this situation to the conditional
part of the rules should considerable increase the estimate of the conditional
probability for these rules (more than by δ, where δ is a threshold, for ex-
ample δ = 0.2), which means that achievement of this situation considerable
increases the probability of achievement of a higher-level goal. The second
condition says that different further actions are possible after this situation
is achieved.

Thus, for each functional system FS, its set of rules PR is analyzed
and new subgoals are identified. For each identified subgoal Gnew, a new
functional system FSnew which realizes this subgoal is generated at the
lower (with respect to FS) hierarchical level. A set of patterns PRnew is
created for the newly-generated functional system FSnew using the semantic
probabilistic inference. To do this, the whole set of data on the animat X
is examined in search for cases when the subgoal Gnew was achieved, and
the set of action estimates d(t) of the functional system FSnew is calculated
as described above. For all functional systems one level higher than FSnew,
the set of their predicates is replenished with one more predicatePGnew,
and new rules are generated. Thus the set of patterns for these functional
systems is enriched with patterns that contain a new subgoal Gnew.

7. The experiments

1. Experiment description. To study the control system described
above, two experiments were performed differing in the task complexity
level. A virtual world and an animat were modeled with the help of a com-
puter program, and the main goal for the animat in both experiments was
to pick special objects of the virtual world — “food”. The animat has to
learn how to find and pick the food efficiently.

The animat’s world is a square field divided into cells which contains
the following objects: empty cells (“grass”), obstacles (“obstacle”), and
food (“food”). Objects-obstacles are located only along the virtual world’s
perimeter thus forming its natural borders. The animat may move across
the field and perform 3 types of actions: to step one cell forward (“step”),
to turn left (“left”), to turn right (“right”).
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In the first experiment, some amount of food is randomly distributed over
the field. To pick food, the animat has only to turn to the cell containing
food. When the animat steps to the cell with food, it is assumed that it
“eats” the food, the cell is cleaned and new “food” object appears at random
in another place of the field. Thus the amount of food in this virtual world
is always constant.

The animat has nine sensors helping it to orient itself in the virtual world,
eight of them are located around the animat: “in front of-to the left”, “in
front of”, “in front of-to the right”, “to the left”, “to the right”, “behind-to
the left”, “behind”, “behind-to the right” and one is in its center: “center”.
Each sensor informs the animat about the type of object located in the
corresponding cell and it may take the following values: “grass”, “obstacle”
or “food”.

The second experiment is more complicated than the first one. In this
experiment the virtual world has one more object conventionally called a
“pill”. Pills, like food, are randomly distributed over the field. Before eating
food, the animat has first to find, pick and keep a pill. When it eats food,
the pill disappears and, to eat the next portion of food, it again has to find
and pick a pill, and so on. The pill is picked in the same way as the food is
eaten: the animat has just to step to the cell containing the pill. However,
if the animat has one pill, it cannot pick any more pills until it uses it to
eat food. When the animat picks a pill, the cell is cleaned and a new pill
appears in another place of the field at random, so the number of pills in
this virtual world is always the same.

In the second experiment, the animat has ten sensors, nine of which are
located in much the same way as the sensors in the first experiment and
they get values “grass”, “obstacle”, “food” or “pill”. One more sensor “pill
availability” informs the animat if a pill is available and it gets the values
“yes” or “no”.

In order to evaluate efficiency of the control system we proposed,
during our experiments we also made test comparison with systems built
on the basis of Reinforcement Learning theory, described by R. Satton and
E. Bartow [8].

For comparison, we have selected two control systems built on the basis
of a popular algorithm for Reinforcement Learning — Q-Learning. The
essence of this algorithm is in consequent refinement of estimates for the total
reward value Q(st, At) the system will obtain after performing an action At

in a situation st, which is calculated by the formula:

Q(i+1)(st, At) = Q(i)(st, At) + α(rt + γ max
A

Q(i)(st+1, A)−Q(i)(st, At)).

The first of these two systems (Q-Lookup Table) is based on the table that
contains Q-values for all possible situations and actions. Initially the table
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is filled in a random way. In the process of functioning, at each moment the
system performs an action and refines the corresponding Q-values.

The second system (Q-Neural Net) uses an approximation of the function
Q(st, At) with the help of neural networks. In this case each possible action
Ai uses a separate neural network NNi. At each moment the system selects
an action so that its neural network gives the highest estimate for Q-value,
and after that the action is performed and the weights of the corresponding
neural network are adapted.

Test comparison was made on a field 25 by 25 cells. The whole period
of animat’s functioning was divided into stages of 1 000 steps (cycles). We
have evaluated and compared the amount of food the animat with different
control systems could gather at each stage. It is evident that after the
control system is fully trained and reaches its optimal behavior, the animat
will start gathering approximately the same amount of food at each stage.
Thus it is possible to evaluate both the efficiency of each control system on
the whole and the speed of its learning.
2. Results of the first experiment. In the first experiment, the set
of animat’s predicates consists of twenty-seven sensor predicates – three
predicates for each sensor: (s = “grass”), (s = “obstacle”) and (s =
“food”), and three activating predicates: (A = “step”), (A = turn
left”) and (A = “turn right”).

Initially the animat control system has only one functional system, and
its goal is to find out if the food is available using its central sensor, and the
corresponding goal-predicate is of the form (“center” = “food”). When
the animat reaches this goal, it is assumed that it “eats” the food.

In this experiment, the animat control system did not find any subgoals,
which is quite natural, because in this task there are no situations satisfying
the definition of a subgoal given above. The main aim of this experiment
was to estimate working efficiency of a separate functional system.

Figure 5 shows the results of test comparison. The average values were
calculated for each control system using the results of 20 tests. Each test
lasted 50 000 steps. The amount of food on the field was kept constant and
equaled 100.

From the diagram, it can be seen that the control system based on the se-
mantic probabilistic inference is fully trained after 2 000 steps and it reaches
its optimal behavior, i.e. it starts to react to all sensor data quite adequately.

The control system based on neural networks (Q-Neural Net) is learning
more slowly and reaches its optimal behavior approximately after 40 000
steps.

Poor performance of the control system using Q-values table is explained
by a large number of possible situations: if all three actions are taken into ac-
count, the number of different possible situations is 2 496. The results of our
experiments show that, even after 50 000 working cycles, the control system
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Figure 5. Amount of food collected by animats with different control systems in
the first experiment

examines on average only about 1 450 situations. So, even after a long-term
training, there occur situations when the system reacts inadequately.

The results of this experiment show that the semantic probabilistic in-
ference allows a functional system to work efficiently enough and, at least,
no worse than that on the basis of the Reinforcement Learning.

3. Results of the second experiment. This experiment differs funda-
mentally from the first one, because the task can be divided into two stages:
first it is necessary to find a pill, then to find food. So, one of the main aims
of this experiment was to demonstrate the possibility of automatic genera-
tion of the hierarchy of goals and results during the goal-seeking behavior.

Initially the set of animat’s predicates consists of thirty-seven sensor
predicates — four predicates for each sensor s that inform the animat about
the conditions of the surrounding cells: (s = “grass”), (s = “obstacle”),
(s = “food”) and (s = “pill”), and one more predicate that informs if a
pill is available (“available pill” = yes). There are also three activating
predicates: (A = “step”), (A = turn left”) and (A = “turn right”).

At the beginning, the animat control system has only a basic functional
system, and its goal is to achieve the situation when, at the same time, a
pill is available and the central sensor indicates that food is found. The
corresponding goal-predicate is of the form PG0 = (“center” = “food”
AND “available pill” = yes). When the animat achieves this goal, it is
assumed that it “eats” food.

At each test started during our experiment, the animat control system
did stably identify a new subgoal described by the subgoal-predicate PG1 =
(“available pill” = yes) and created the corresponding functional system
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Figure 6. Amount of food collected by animats with different control systems in
the second experiment

for it. The control system was working in the following way. When the
animat had no pill, the pattern PG1 → PG0 was launched as the most
probable one in this situation. It passed the control functions to a lower-level
functional system that performed the pill search. And when the animat had
a pill, rules with a higher probability were launched in the basic functional
system and, as a result, food was found.

The results of this experiment are shown in Figure 6. The diagram shows
the average values for every control system based on 20 tests. In each test
the animat was given 100 000 steps, and during this time the animat had
to learn how to accomplish the given task efficiently. The amounts of pills
and food on the field were kept constant: 100 objects of each type.

As it can be seen from the diagram, the control system based on the se-
mantic probabilistic inference surpasses the Reinforcement Learning systems
both in the speed of learning and in the quality of its functioning.

The control system based on neural networks (Q-Neural Net) has shown
in this experiment a poor learning ability and unstable functioning. The
main problem was related to the fact that it could not learn to stably and
adequately react to sensor data about pill availability and often passes the
pills by, even after 100 000 steps of training.

Additional experiments have shown that the control system based on
neural networks (Q-Neural Net) is in some cases capable to learn to react to
all sensor data correctly when the training period is increased up to 300 000–
500 000 steps. But in our opinion such a long learning time is unacceptable
for an adaptive system.

The control system based on the Q-values table could not reach optimal
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behavior even after 500 000 steps. In many respects it is related to the great
number of possible situations: when solving this task, the animat can face
137 538 different situations.

8. Conclusion

The results of our experiments show that, when the environment is getting
more and more complicated, the ability to identify and achieve subgoals be-
comes the fundamental one for efficient achievement of a final goal. Even
though this model of an adaptive control system uses a rather simple method
of subgoal identification, this possibility provides considerable advantages in
learning. As it can be seen from the experiment, the use of functional sys-
tems hierarchy and of the algorithm for subgoals identification allows the
proposed control system to learn and accomplish the given task quite effi-
ciently. The existing approaches based on neural networks and Reinforce-
ment Learning are unable to identify subgoals automatically and thus are
inferior in more complicated experiments.
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