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On approximations of the charge ti'ansfer
equation in semiconductor

0.A. Doledenok and V.P. Il'in

1. Introduction

In this paper the approximations of diffusion-convection equation, describing
the charge transfer in semiconductors are concidered. In one-dimensional
case this equation is the following:

d du
—— T —
e f, z € [a,b]. (1.1)

Here ¢(z) and f(z) are known functions, electrostatic potential and source
function, & = 1 if (1.1) describes the transfer of positive charges (holes) and
a = —1 corresponds to the negative charge transfer (electrons). Below, we
suppose & = 1. On the boundary the Dirichlet or Neumann conditions are
given.

The peculiarity of this equation is the existence of inner layers because
of the locally strongly variable function ¢(z).

Equation (1.1) is the part of nonlinear equation system, describing
electrophysical processes in the framework of the so called diffusion-drift
model [1] in the stationary linearized case. For this system the flow density
conservation lows are complited. That is why, it is naturally for deriving the
difference analogues of equation (1.1) to use the integro-balanced approxi-
mation methods (box methods), for obtaining conservative schemes [2, 3].

The open question in the balanced methods theory is the construction
of high order approximations. In paper [4] the set of integral-balanced ap-
proximations, giving each precision order under sufficient smoothnees of the
flow, potential and the right-hand side of equation (1.1) in one-dimensional
case are proposed.

In the article, these approximations are investigated and numerical com-
parision of difference schemes, derived with the help of them, and the widely
used Sharfetter—Gummel scheme [5] is implemented. This scheme may be
obtained, for example, by means of the Marchuk identity [2]. In our paper,
Sharfetter-Gummel scheme is derived as particular case of balanced high
precision approximations, this permites to obtain the error approximation
estimate without the derivatives of unknown solution u.
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In Section 2 the general principle of balanced difference schemes con-
struction is described, and their approximation properties are investigated.

In Section 3 by means of Section 2 we construct some particular schemes,
the Sharfetter-Gummel scheme, and the error approximation estimate in
uniform norm under definite coefficients and right parts approximations is
given.

In Section 4 the numerical experiments are descrlbed and the schemes
derived in Section 3 are compared.

2. Construction of balanced approximations

We define the flow J(z) = —e"‘"j—:, then equation (1.1) may be rewritten
in the following way:

iy} (2.1)

After integrating J(z)e® on the interval [z;, z;}1], we obtain the equality

For approximation of integral on the right-hand side we use some quadrature
formula, supposing that e¥ is the weight function. Then we have

Tit1 Tig1 ng
f J(z)e¥ dz = / e?dz- Y oipdig+ 10,(.:.}1 /20 (2:2)
x zi k=1

here n; — quadrature nodes number, J;x = J(z:ix), i < Zix < ZTit1 (so,
the index k is the node number at the interval [z;, 2i41]), ¥ ‘(i)l /2 — approxi-

mation error of quadrature formula. Multiplier [**! ¥ dz is introduced for
quadrature coefficients a4 ; to satisfy the normalisation condition

ni
Y aig=1 (2.3)
k=1 .
Then we approximate anyway the integral of e?:
Tif1
~ 2
e de = pigay + ¥y (2:4)

T

where 1,b§i)l /2 is the quadrature error. After substitution (2.4) to (2.2), we
obtain
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Uiyl — Uy = (ﬁi+1/2 + 2/)3)1/2) Z ai,kJi,k T '/)S-:-)l/z'
k=1

Dividing the latter equality by p;y;/, we have

Uit1 '/’(2)1 2 o ¢(1)1 2
'%——‘—Zatk']zk'*‘ LARHE Zat, Jz, + — b2
Pit1/2 o Div1/2 1 Piv1/2

We use the analogous expression for the interval [z;_;,z;], and after
subtracting it from the previous one, we have the equation

ni—1

ui..+1_ —Za:k']vk Eat lkJ—1k+¢s +¢p

Pit1/2 Di-1/2 k=1 k=1

Here we note

1 1)
g2 Vi W

= (2.5)
Pit1/2 P.—l/z
"/’(3.)1/2 o ¥; Yi-1/2 icats
p — ———_" (I, , i (s 7 Jl 2'6
v Dit1/2 ,CE::I g Pi—1/2 ,Z: M :5)

Then we should group the flow differences for obtaining the equality

Uil — P
. = it (Jig — Jic1g) + 97 + 97
Pi+1/2 Pi- 1/2 ,Z:7 ( 1)

This may be done because quadrature coefficients a; ;. satisfy the normal-
ization relaionship (2.3).

Replace the flow differences by the integrals of the right-hand side f.
Equation (2.1) is integrated on the interval [z;;, z;—;]:

zi

Ju=diu== [ f@)ds. 2.7)
Tt
After substitution of the latter equality we receive:

Tig

Uipr — Uy | Ui — Uy
. o =-Y'y; / 2)dz + ¢ + ¥P 2.8
A Pt Zv, f(z) dz + ] + 9L (2.8)

Ti-1,1

Finally, approximating with satisfactory precisioﬁ the rest integrals, we
have the system of the difference equations
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1 Uiy — U
Pi+1/2+T +P;—1/2'3";
£

i-—-l

= Z‘Tsiqulkf Zilk) +z‘¥-.l¢,;+¢p+¢;’, i=1,...,n, (2.9)

=1 k=1 )
that is complited by equations that approximate boundary conditions. Here
Pix1/2 is ordinary definition of difference equation coefficients, p;y;/2 =

P-illlz’ Pi-12 = 5{'_1—’2, 1/;‘! ; is the approximation error of the integral

L f(z) dz, ¥ and ¢f are the approximation errors of the flow and co-

efficients defined above by formulae (2.5), (2.6).

3. Examples of difference schemes

3.1. Approximation properties of the Sharfetter-Gummel
scheme

In formula (2.2), we replace the flow J(z) by their value in the middle point
of integration interval, denoted by J;;,/3, i.e., we use the central rectangular
quadrature formula:

Tig1 Tit1
f J(z)e¥ dz = Jiyy )2 _[ e’ dz + d’:(:-)lﬂ’
x o

Ti41

¢1(-:-)1[2 = J’(‘fl) f (:E - 33;'4.1/2)8“’ dz.

We obtain the approximation of the integral of exponent p;;;/; from
formula (2.4) by replacement the potential ¢ with the linear function @
at the interval [z;,z;11] (3(z:) = ¢(2i), G(2i+1) = ¢(2i+1)). In this case
the integral of ¢¥ may be calculated exactly. So, we have the following
approximation for the flow value at the point z;,,/:

U ¢(41—)1/2

1 —

Jitr2 = ,,.,':— + Jig1/26i — m:—’ (3.1)
[ e?dz [ e®dx
z; Ti

where §; is the quantity of the order h?, because §; € (0, 1/;53)(171)), where

o9(g) = (z - a:.-)(;: — Tiyy) ¢"(m)y  &,m,m € (70, Tig1)-

The multiplier f7™*'(z — %;41/7)e® dz has the second order with respect to
hi. This may be proved by using the theorem on averaging and the Taylor
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expansion of exponent function. So, the complete error of approximation of
Jit1/2 may be estimated as

h? 1
[W2aal + 18041l < 5 (Winrjae" ()l + 21 (60)¢ (),

where 73 € (2, Tiy1).
Finally, we have the difference equation

Uit — % Pit1 — Qi Uil =% i1 =P 7,
ePi+l — e¥i  hiyy evi-1 —e¥i R, = fi+ ¥ (3.2)

Here f; is_some approximation of the integral of the right-hand side, for
example, f; = f(z;)« (ki + hiy1)/2. :

After dividing equation (3.2) by the quantity A’ so that the right-hand
side of (3.2) has the order O(1), we obtain in the uniform norm that scheme
(3.2) approximates differential equation (1.1) at nonuniform grid with the
first order on h (h = max; h;). In the case of uniform meshes the approx-
imation order increases to the second order. It is interesting that the ap-
proximation estimate does not contain the derivatives of unknown solution,
only the flow derivatives that are more smooth functions in practice.

In the paper [6] the questions of convergence were investigated. By
means of power functions the first order of convergence for nonuniform grid
and the second order for uniform one was proved in the uniform norm. The
approximation error of flow J;4,/, was obtained in the following form:

h? e~ Pit1/2 [y
[%it1/2l < ?' 2 (l ng)l + |“:'+1/2‘P”(95)|), N4, M5 € (Tiy Tiy1).

We see that the former estimate posesses the derivatives u"’ and u'.
Let u = e¥, then J = —¢', and now we have the estimates

h? ¢"(€
172l + [¥F41/2l < Y (l‘P:'+1/290"(772)| + uifﬂn),

and

h? ’ "
Wivayal < —2‘(|‘Pi+1/29°1‘+1/2| +
e?(m)=vit1ya

3@ (1)* + 3¢ ()" (1) + ¢"(na)]) .

In the first estimate we have the additional terms posessing the third deriva-
tives of ¢ and (¢’)3. So, we improve the constant in approximation error.
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3.2. Schemes, derived by means of the Gauss and Markov
quadratures

Now for approximation of the integral in formula (2.2) we use the Gauss
and Markov quadratures (with different number of nodes); e is considered
as the weight function.

Under using the Gauss quadrature, coefficients a; . are calculated in the
following way:

Tig1
[ €*Qpn;(z) dz
Cik T
ik = T Cik = 7 : ) (3.3)
f e(ﬂ dx Qk,n,‘ (:Ei,k)
' wn, (z
Qpni(2) = ;%')k’ wn; (2) = (T = i) X .- X (T = Tipny)-

Here wy, (z) is the node polinomial. The quadrature nodes z; ; may be found
from the following relations:

Tii
[ on@ata)dz=0, (3.4)
where g(z) is the arbitrary polinomial of the degree less or equals to n; — 1.

The approximation error 1,bg_)1 PR the quantity of the order h?™+1,
h = max; h;, really

Jmi(p,
1,[;3_)1!2: (ZnE;?;) fe"wf“(m)d:c, n; € (i, Tit1)- (3.5)

Tig1

In equation (2.2) under application of the Markov quadrature with two
fixed nodes, the rest quadrature nodes zj may be obtained from the rela-
tionship (s, (z]) = 0, where Cni(z) = D};.-/Dﬁn

wp, (2) wn, (24) wn, (Tit1)

D, = |wni-1(&) wni-1(20) Wnia(Tig1) |y
wn;—2(7)  wni—2(2i)  wni—2(Ti41)
p? = Wn—2(2i)  Wni-1(Ti41)
2 = :
' W, —2(2i) wn,‘—2(37t'+1)

Quadrature coefficients are calculated by

1 Tit1 e¢cni (m)

a‘o! = Tid1l — I\ !
T evdr z; (E xi)cm (wz)
T

dz,
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and approximation error has the form

m_ 1 JOn-(y) e?¢2 (z)
V= s @n)! f @) - &

Here 7; € (%i,zi4+1). It is obvious that ¢ is the term of the order A2%i-2,
After application of the quadrature formulae it is possible to group the

flow divergences (relationship (2. 3) is implemented). We obtain an equation

of the form (2.9). The errors '¢1 1 and ¢! may be different (this depends

on the method of coefficients and the right-hand side approximation), ¥y =
O(h?*™), that is the consequence of formulae (2.5) and (2.6).

So, under the increasing of integral approximation accuracy we can ob-
tain the scheme of any approximation order (if functions J, ¢ and f are
enough smooth). It is also important that we can use these constructions if
J, f have the given jumps and the singularities with known a priori asymp-
totic behaviour are nearby the singular points.

We hope that because of high approximation order, these shemes will
give higher order of solution accuracy than the Sharfetter—Gummel scheme
when ¢ derivatives increase.

Below we describe three types of the difference schemes distinct by the
method of flow approximation.

Scheme 1. Flow approximation by the Gauss formula with one node
(Gaussl scheme).
In accordance with formulae (3.4) the nodes z;; may be calculated as
i1 = 9i1/gio. Here
Tit1
Gik = f e’z dz.

zy

The coefficients a;; are equal 1 for every i. Equation (2.8) in this case is
the following;:
Zi,1
Uigl — Ui | Ujo] — Ui
eH Myt e
[ evdz [ etdz  zli,
zi Ci=1

Under approximation of the rest integrals with definite accuracy we have the
difference equation of the first approximation order on nonuniform mesh and
of the second order on the uniform one.

Scheme 2. Flow approximation by the Gauss formulae with two nodes
(Gauss2 scheme).
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The quadrature nodes at each interval [z;, z;4,] are derived as the solu-
tion to the algebraic equations system
Tig1
e¥(z—ziy1)(x —zi2)dz =0,

T
Tit1

e?(z — zi1)(z — zi2)zdz =0,
z;

from which it follows that z;; and z;; satisfy the relationships

9i29i1 — 9i,39i0
Ti1+ Tig =
ST (9i0)? — gingio
(9i2)* — 9i19i3
2o g g = Gi2) ~ 9ingi3s
W2 T (9i1)? - gigbio

From (3.3) we have relations for the coefficients ;; and a; 2:

ai = 9—' 1=1,2,
gi0
C. - %2 = 2%iagin + (zi2)%gi0
t,1 — 1

(zin — i 2)?
Ciy = 2= 2%ingia + (i1)%gi0
' (253 — Ti2)?

The quantities +; x from (2.7) are determined by the equalities

Yil =041, Yig = Q4 Vi3 = Q2 — Oy,

and equation (2.8) has the form

i1 zi2 o
Uipr — Uy | Uil — Uy
T + = =i f fdz+7via f fdz+vi3 f fdz.
f e? dz evdz Tiw,1 Ti—1,2 Zil12
z; i-1

After approximation of the rest integrals we have difference equation of the
third approximation order for the nonuniform grid and of the fourth order
for the uniform one.

Scheme 3. Flow approximation by the Markov formulae with three nodes
(Markov3 scheme).

For construction of Scheme 2 we should calculate two intermediate nodes
and approximate functions ¢, f in these nodes; it leads to the additional
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solution error. That is why it is interesting to compare this scheme with
the scheme derived by using Markov’s quadrature formula with two fixed
nodes and one intermidiate. The order of approximation is the same as in
Scheme 2, but it is necessary to approximate functions in one node only.
So, we use Markov’s quadrature with the fixed nodes (z;, Zi+1) and
intermediate node z} that can be determined from the relationship (3(z) = 0,
where
wa(z) ws(z:) ws(zisr)
wa(2z) wa(z:) wa(@isr)
wi(z) wi(zi) wil@iy1)
wg(z,-) Uz(l'i+1)
wi(z;) wi(zig1)

Gs(z) =

The quadrature coefficients are detemined in the following way:
Tit1
e¥(3(z)
oy =— [ —222 g
"o ] GoaGE

+

and approximation error has the form

1 J9m) P ecd(a)
—_ dz,
gi0 4! J (z— z;)(z - :r,-+1)

¥l =

where 7; € (2, zi41). It is obvious that 97 is the quantity of the fouth order
with respect to h.

As in Schemes 1 and 2, we calculate the nodes and coefficients of quadra-
ture using g;x. Equation (2.8) in this case is the following:

Uiy — Uy Uj—y — Uy

Ti4l i
J evdz [ evdz
z i—1
z; z! Tig1 ”:-1 zi
=ia [ fdotia [ fdrta [ fdotoa [ faots [ fan
Ti-y zi_, x4 Ti-1 zl_,
where

—_ o= al Y Rt N S S |
Tt =01, Yi2=0y Viz=0a3, Yia=0; -0, Yis=03-ay .

Approximation order is the same as in Scheme 2.
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4. Numerical comparison of balanced methods
Consider two model problems.

Problem 1. We seek a solution at the interval [0,1]. Potential function

and precise solution u are the following:
p=qz, u= elat)e,

In this case, the function f on the right-hand side of (2.1) and flow J are
described as

f=—(qg+1)ef, J=—(g+1)¢.

In the experiments we consider the values of parameter ¢ = 2, 4, 8, 16.

Problem 2. We seek a solution at the interval [-0.5,0.5). The potential
and solution are the following:

o= qarctg(c), u= et

that provide the functions
2qz

f=(1+:52)2’ 142
Now ¢ = 2, 8, 16, 20, 27.

On the boundary, the Dirichlet conditions are hold. For domain dis-
cretization we use the uniform mesh with the step h = 1/2*, where k changes
from 3 to 6 and nodes number n - from 9 to 65.

Under approximations described in Section 3, in one-dimentional case
we have three-point equations systems, for its solving the sweeping method
is used. All calculations are implemented with double precision.

In these problems, the flow is the more smooth function than the solution.
Really, in Problem 1 we have:

W= (g + D2, T = (g4 1),

in Problem 2:
2gx
(1+22)

Derivative of the potential ¢ linear depends on the parameter g. The global
variation of ¢ is real even for maximum ¢ in practice.

The aims of numerical experiments are, firstly, to show high approxima-
tion order of schemes derived in Section 3, secondly, to confirm the hypoth-
esis about the higher efficiency of these schemes under greatest derivatives
of ¢ (i.e., under growing parameter g) than the Sharfetter-Gummel scheme.

o = T _varcts(z) g —
T 14 22 k -
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The methods are compared by the relative error of precise solution

precise uc_iiﬂ'erence

du = m?,x{|u‘ : I}

u? recise

Firstly, the problem of linear potential (Problem 1) is investigated. The
quantities g; x are calculated exactly, also we can compute exactly coefficients
and the integral of the right-hand side. So, the errors ¢;{ 1 ¥ from formula
(3.6) equal to zero, and the total approximation error is defined only by xb;-{ I

The results of calculations are shown in Table 1. Here (and in all tables
bellow) éu is given for different n, ¢ in each square, and for four schemes:
Sharfetter-Gummel scheme (the first line), Gaussl scheme (second line),
Gauss2 scheme (third line) and Markov3 (the fourth line).

Table 1. The problem with linear ¢

g 2 4 8 16
n

1.310-3 3.710—-3 1.010—2 2.410—2

9 2.610—4 4.110—4 5810—4 6.410—4
2.310—8 3.610—8 5.010—8 5610—8
2.110-5 3.710—6 5.510—6 6.6:0—6
33104 9.4,0—4 2610—3 6.310—-3

17 6.610—5 1.010—4 1.510—4 1.80—4
1.410-9 22109 33109 4.030—9
23107 4.340—-7 7.310—-7 1.0,0—6
8310—5 24,0—-4 6.510—4 1.610—3

13 1.710=5 26105 3.810—5 4,8,0—5
9.0,0—-11 1.410—10 2.1,0—10 2.610—10
2.4,0-8 4610—8 8.2,0—8 1.2,0-7
2.110—-5 59105 1.610—4 4.010—4

65 4.2,0—6 6.510~6 9.610—6 1.230—5
5.110—12 7.710—12 14,011 1.60—-11
2310-9 4.9,0-9 86109 1.3;0—-8

From Table 1 we can conclude that Schemes 1, 2, 3 calculate the solu-
tion more accurate and give smaller error under greatest ¢ than Sharfetter—
Gummel scheme. It is interesting that the error of Scheme 1 is less than
error of Sharfetter-Gummel scheme in 4 times for small ¢ and in 33 times
for ¢ = 16. Markov3 demonstrates here only third approximation order
(theoratical estimate gives the fourth order), the other schemes confirme
the results of Section 3: Sharfetter-Gummel and Gaussl schemes have the
second order, Gauss2 — the fourth one.

Now consider Problem 2. It is different from the first one because it is
necessary to approximate quantities g;, that gives an additional error in
computation of quadrature nodes and coefficients.
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In all experiments, we approximate the integrals of the right-hand side
from (2.9) by the Simpson quadrature formulae, and the quantities ;4 /2,
gi,k in two ways:

1) by the Simpson formula;

2) by using the Gauss quadrature with four nodes of the 9th accuracy
order.
Tigl
The simple linear approximation of integrals [ e¥dz gives the big error
Zi
P, therefore there is no sense to approximate flows accurately. Under the
precise computation of the right-hand side of equation (2.9), the results are
similar to the given below.

As in practicle problems, the functions ¢, f are given by the values in
mesh nodes, and it is necessary to derive their values in quadrature nodes.
We must interpolate these functions at the intervals [z;, zi41]. Under linear
interpolation miscalculation is very great, that is why we suppose that the
values of derivatives in mesh nodes are also known and we can interpolate
@, f by cube polinomials.

‘Results of calculations are shown in Table 2 under the first method of
coefficients approximation and in Table 3 under the second one.

Table 2. Problem 2: Simpson’s approximation of coefficients

7 2 8 16 20 27

n

9.0,0—4 8.710—3 1.810—2 2.310—2 29,0—2

9 1.910—4 8910—4 4510—3 9.110—3 2.410—2

2.810—6 3.110—4 3.710—3 8.210—3 2.310—2

2.010—6 3.140—4 3.710—3 8.210-3 2.310—2

2.210—4 2.210—3 5.310—3 6.610—3 8910-3

17 4.810—35 1.910—4 4.710—4 8310—4 2.110-3

1.810—7 19,05 2610—4 6.110—4 1.9;0-3

1.310—-7 1.910-5 26104 6.1,0—4 1.916—3

5.610—5 5410—4 1.310—3 1.710—3 2.410—3

33 1.210-5 4.410—-5 7.310—5 9.810—-5 1.9,0—4

1.1,0—8 1.2,0—6 1.910—5 3.910~5 1.3,0—4

8.210—9 1.2;0—6 1.710—5 39105 1.310—4

1410-5 1.410—4 3410—4 4.410—4 6.210—4

65 3.010—6 1.1,0—5 1.510—3 1.710-5 2449 0-5

7.110—10 7.710—8 1.110—6 2.510—6 8.010—6

5.110—10 7.810—8 1.1,0—6 2.510—6 80,0—6

Here we can also see that Scheme 1 gives the greater accuracy than the
Sharfetter—-Gummel scheme. Under the greate g, the error of the Sharfetter—
Gummel scheme is greater than the error of Gaussl in four times under
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Table 3. Problem 2: Gauss approximation of coefficients

9 2 8 16 20 27

9.00—-4 890—-3 2.010—2 2610—2 3.510—1
9 1.910—4 6.610—4 7440~4 7.110—4 6.010—4
2.610—6 1.80—-5 3.810—5 4610—5 5.510—5
1.6,0—5 4.410-5 3610—5 2.810—5 1.810—5

22104 2.210—-3 5410~3 6.9,0—3 9.610—3
17 4810—5 1.710—4 2.210—-4 2.210—4 2.210—4
1.710=7 1.1,0—6 2.510—6 3.210—-6 4.310—6
1.840—6 5610—6 6.210—6 5910—6 5.310—-6
56105 5.610—4 1.310—-3 1.810—-3 25103
33 1.210—5 4.310—5 5.7]0—5 5.910—5 6.1 10—5
1.1,0—-8 7.110—8 164107 21307 2.810—7

1.810-7 6.310—7 79107 82107 82107

1.450-5 1.410—4 3.410—4 44,04 6.210—4
65 3.0,0—6 1.130=5 1410—-5 1.510—-5 1.610—-5
6.6 10— 10 4.5,0—9 1.0,0-8 1.31,0—8 1.810—8
1.8,0—8 6.810—8 9.010~8 9.510—8 1.040—-7

small ¢, and approximately in 22 times under the greater g. The results of
calculations by Schemes 2 and 3 in the case of the first method of coefficients
approximation are nearly the same, and Scheme 3 has the preference under
more precise approximation of p;4, /2 and g; k.

For all experiments we can conclude:

e all schemes confirm theoretical estimates, only Scheme 3 (flow approx-
imation by the Markov formula) showes lower approximation order;

¢ schemes constructed by the Gauss quadrature formulae for flow ap-
proximation gives more accurate solution than the Sharfetter-Gummel
scheme under greater gradients of potential;

e under the same approximation order, Scheme 1 (Gauss1) gives smaller
error than the Sharfetter-Gummel scheme, and Scheme 2 (Gauss2) is
“better” than Scheme 3 (Markov3).
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