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r-solution of an operator equation in
Hilbert space and its application to solve
ill-posed problem

V.G. Doledjenok, V.I. Kostin and V.A. Tcheverda

The notion of the r-solution for a system of linear equation in the finite dimensional
Euclidean space generalizes for an equation in Hilbert space with a compact operator.
The Hadamard correctness of r-solution is proved (i.e., its stability with respect to per-
turbation of right-hand side and operator).

1. Introduction

Let us remind what is the r-solution for a system of N linear algebraic
equations
Az = f, (1)

for M unknowns z = (z1,23,...,z0p)7 (see [1]). Let sy > s > ... > SN, >
0 be the singular values of the matrix A and

A=VDU*,

its singular value decomposition, where D is rectangular N x M matrix
such that
[£:0] for N < M,
D= pN for N = M, (2)

[ﬁ] for N > M,

while X is Ng x Ny diagonal matrix with singular values of A decreasing
along the diagonal. If now for some integer r (1 < r < Np) such that s, >
Sr41, one will introduce the diagonal matrix X, with elements coinciding
with ones for ¥ for j < r and vanishing for j > r and will determine
A, = VD, U*, (D, is the same as in (2) but with £ = X.), then,

Definition 1. r-solution of (1) is the generalized normal solution of the
system of linear equations
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Arz = f.
Remark 1. For s, = $,4; r-solution of (1) is not determined.

If z is any least-squared solution of (1), then r-solution is given by
z, = Pz, P = UIM,rU*’

where Ips, is the diagonal matrix with its first » diagonal elements equal
to 1 and all others equal to 0.

The mapping f — z, is continuous and its numerical calculation is
stable if the condnumber of the matriz A

Ol(A)
(A) = »

the parameter of the rupture in the singular spectrum
i) = — )

5(A) = 5:51(A)’
and the parameter of the non-coincidence

_ ||Aa:, - fll
6-(A, f) = N

are rather small [1]. This mapping defines the continuous r-pseudoinverse
operator A, = UD}V*: RN — RM  where
[E(;]'] for N < M,
D= L, for N = M,
[, :0] for N > M,
with

and the vector x, (r-solution of (1)) may be presented as
z, = A, f.

The main goal of this paper is to generalize the notion of r-solution for
an operator equation

Az = f, (3)
with a compact linear operator from the Hilbert space H; to the Hilbert
space Hy and to justify the advantage to use it to regularize (3).
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2. The geometry of finite-dimensional subspaces
in a Hilbert space

For any two N-dimensional subspaces Xy, X, of a separable Hilbert space
H one can introduce the matrix

6 =[]

1,5=1

where {.7:( )}'_1, {z( )}1_1 are the orthonormal bases in these subspaces.
Any orthogonal transformation of these bases leads to the transformation
of the matrix G — VGU by means of the orthogonal matrices V, U and
one can choose them to come to the diagonal matrix

G = L = diag(o;),
) .

PR J
((z Sl), 52)) = 0 for i # j). Then, for any two vectors

with o; = (z; ) = cos ¢;, where ¢; > 0 — angles between mg ) and 3:{2)

N N
T = cha:gl) € X1, y= qu?) € Xa,

3=1 j=1

”“"”;”y” < V2(1=01) = V2(1 - cos ¢;) = 2sin %

Hence, for orthogonal projectors Iy, and Ilx, on X; and X,

N N
My, = Z (-,zgl)):cgl), Iy, = E (- ,x‘(iz))zgz)
i=1 =1

the equality ||Ilx, — IIx, || = sin ¢, is valid.

Let S : H — H be a non-negative compact self-adjoint operator,
A1 2 A2 2 ... 2 Ay 2 ... - its eigenvalues and {uy,uz,...,Up,...} -
its eigenvectors. This operator generates invariant finite dimensional sub-

spaces
m
= {chuj, ¢ € C}
i=1

and orthogonal projectors I, = IIyy,, onto these subspaces

m

m"‘ZPJa Pj = (-, uj)u;.

I=
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Remark 2. II,, is determined correctly only if A, > Apys.

Let us suppose now that § is some other nonnegative compact self-
adjoint operator on the same Hilbert space (below we will write ~ for all
objects connected with this operator) and

15 = 81l < éhsll, (4)

then [2] i
1A; = ;] < &Ll

and to provide correctness of the invariant subspace U,, and its orthogonal
projector Il; = II,, it is necessary to claim

Am+1 < Am — 26]|5]]. (5)

By means of dimensionless parameter (the m-th relative parameter of the
gap in the spectrum of the operator §)

51l
— for Ay, > A ,
dm = Am - ’\m+1 ™ mH
o0 for Ap, = At

inequality (5) is rewritten as 2éd,, < 1.

The question is how close to each other are invariant subspaces of these
operators?

To answer it one has to estimate the value ||IT,, — I,,,||. But as

M, -1, = 0,00} - 01,

where

0t =r-nm, 0ot=r1-1m,,

m

and for any z € H
(T = ML)zl = [Tl z]|? 4+ 7 Tz,
Izl < a2l
M |l < (T T | - YT 2],

It

it is enough to estimate ||II,IIL|| and || ~m|[ To perform this let us
denote that § and S commutate with II,, and IIJ- respectlvely, and Y =
I, 1% satisfies the Sylvester equation
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$Y —YS, =9, (6)
where §7 = I, SM,,, So = MLSTL, & = 1,,(S — SHIL (j|@| < 8)|S])).

Lemma 1. For2d,,6 < 1 equation (6) has the unique solution under relation
II,.Y =Y. For this solution the estimation

dné
1—dné

il <

s hold.

Proof. Let us choose p to provide pAm41 < 1 < pAm, then ||pS2|| < 1 and
suppose that §Y; =Y S, (i.e., Y is a non-trivial solution of (6)). Then for
any n

(pS1)"Y =Y (pS2)". (7)
The right-hand side in (7) turns to zero for n — oo as Y is bounded, which
is possible only if 51Y = 0,i.e.,if Y(H) € Ker 5;. But, as Ker 5; = KerIl,,,
that means that II,)Y =Y = 0.

If (pS1)* is m-pseudoinverse operator

m

1
+ - P;
(pSl) Zp)\. 3

i=1 7

with the one-dimensional eigen-orthogonal projectors P; and |(pS1)t|| =
1/pAn < 1, then

((PSI)+)k -0, (Psz)k — 0 for k— o0,

and the operator
<]

Y =3 ((p50)*) " p8(pS,)*
k=0

exists, satisfies equation (6), condition II,,Y = Y, and is estimated by

= (PAmgr ) 8 X (Amar o dlSI
Iyl < kz_:_o (oh e PlIS1Ie = 5~ kgo( . ) S| = P
< diEll SIS O = Amgr))  bd

Am = Amgr = 8[IS] 1= 8(ISI/(Am = Am41)) ~ 1= by’

To complete the proof of the lemma, let us note that ||II,IIL|| may be
estimated by the same technique. a
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Summarizing, we can formulate the theorem

Theorem 1. Let § : H — H be a nonnegative self-adjoint compact ope-
rator. dp,- its m-th relative parameter of the gap in the spectrum, II,,-
its orthogonal projector onto invariant subspace generating by its first m
eigenvectors. Next, let an operator S : H — H be also nonnegative self-
adjoint compact and

s = S|l < 811S],

with d,6 < % Then the orthogonal projector Il,, is determined correctly

and the inequality ;
d

10|l <
My = My < 144

is hold.

Let us consider now a compact operator A : X — Y, where X and Y are
the separable Hilbert spaces with singular values s; > s3 > ... > s,...> 0
and right and left singular vectors {z;} and {y;}:

Az; = s;y;, Ay = sz,

(A*: Y — X is adjoint operator for A) and introduce the Hilbert space
H = X xY (the Cartesian product of X and Y). Then the operator

0 A
A= :H—-H

is compact and self-adjoint. One can generalize all previous consideration
for this operator [3] and formulate the theorem

Theorem 2. Let A : X — Y be a compact operator from the separable
Hilbert space X in the separable Hilbert space Y, d,, - its m-th relative
parameter of the gap in the spectrum, Hﬁ, ITY - its orthogonal projectors
onto invariant subspaces for generating by its first m right and left singular

vectors. If A: X =Y is any compact operator such that
A - Al < 8]j4],

then for 26d,, < 1 the orthogonal projectors fl,),‘z, fI,‘fL are determined cor-
rectly and

od
1-6d’

od

X X
— < 3

Iy, — I <
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3. Generalized normal r-solution of the
operator equation in a Hilbert space

Any compact operator 4 : X — Y from the Hilbert space X to the Hilbert
space Y generates decomposition of the spaces X and Y ([4])

X = KerA® R(A*), Y =Ker A" @ R(A), (8)

(as A and its adjoint A* are compact, their ranges R(A) and (R(A*) may
be non-closed).

On the basis of this decomposition it is possible to describe the structure
of R(A).

Lemma 2. \
f€R(A) < Z _(f,sy?.) < 00
3;>0 t
and
(f,2)=0 Vz¢€ KerA* (9)

(here y; are left singular vectors of A).
Proof. Vf € R(A)Iz € X: f= Az, butVz € X
z=2a"+ Z(a:,:c.'):t:.-, 2% € Ker 4,
8:>0 .
(z; are right singular vectors of A) and
f=Az=) si(e,z)y = > v,
8 >0 8; >0
but that means (Frui)?
y Yi
> = =z = zol® < el
8*
8 >0 i
The equality (9) follows from (8).
If f is orthogonal to Ker A*, it is decomposed as f = 3 (f, ¥i)yi, where

the sum performs with respect to left singular vectors with nonzero singular
values only. But by the assumption the vector

T = Z ——(f’ yi)m,‘ € X,
5;>0 J
and. Az = f. O

This lemma allows to determine the solution # € X of the equation
Az = f for f € R(A) as
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. x:zgl'f—)xg, -

. . >0 °F
but it is not valid ¥ f € Y as the relation
' 2
Z (fa gt) < o0

S
5, >0 t

may be not hold. Nevertheless, one can generalize it for f with nonzero
projection onto Ker A*.

Lemma 3. Vf € R(A)® Ker A“ ezists the unique vector T € (Ker AL such
that

7 = argmin [| Az — f|*

and
T = Z ——-—-—(f;y')w, (10)

5;>0 t
Proof. VfeY f=f) 4 fO 70 ¢ R(A)L, f() € R(A), therefore,
Az — f|I* = |4z = FOR+ [ FOR 2 1fO)? Ve e X,

But, as we supposed f(1) € R(A), there exists the unique 7z € X such that
Az = f“)' a

Definition 2. The vector z determined by (10) is called generalized normal
solution of the equation

Az = f, (11)
for f € R(A)® R(A)* [5].

The mapping f — # produces the linear operator A* : ¥ — X with
the domain R(A) ® R(A)L - pseudo-inverse operator with respect to A
or .generalized inverse ([6-8]). If R(A) is not closed, this operator is not
bounded. As one can easily check

1 .
Aty = —z;, Atyd = 0.
83
The domain of A* is dense in Y, so the operator (A*)* : Y — X exists

and 1
(A*)z; =~y (A%)af =0,
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If

Ix:X—X, Iy:Y-oY,
lx = Z('axj)mj’ Iy = Z('9yj)yja )

;>0 . 5;>0
are the orthogonal projectors onto R(A*) and R(A) respectievly,-. then
AtA=Tx, AA* =Tly.

The second relation means that the operator IIy is the unique continuous
extension of the operator AA* with dense domain in Y. If there is a gap,
within the singular values of the operator A, i.e., 3r : s, > s,41, then one
can introduce the finite-dimensional operator

r

Ar =) 85(+535)y;5.

i=1
Definition 3. The generalized normal r-solution (r-solution) of the equa-
tion (11) is the general normal solution of the equation

Az = f.

The operator
.

1
Al = Z ;(" Y;);

j=1"7

is the r-pseudo inverse with respect to A.
Remark 3. A,, Af, r-solution etc. are not defined if s, = s,41.

The r-solution and the r-pseudoinverse operator are continuous with
respect to the right-hand side f of the equation and the operator itself.
Really, let us consider two operator equation

AeM = fO) Az = f@)

with the same operator. Then the r-solutions of these equations are:

20 =% Uow), 2 > U2,
=1 sj ji=1 85

and
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2t - o) < = (Z(f‘” 5®,5:2) " < a1 - 5.

To get the low estimation of ||z,|| let us introduce the parameter of uncon-
sistency of an operator equation (for a system of linear algebraic equation
such parameter was defined in [1])

oinne L (EEealhn) + 087"
r( :f)-—;- (Zr 1@{2_)1/2 .
= 3_,'

Then, we have

- f(l)sy' 2 1 :
||$s.1)|!2 - Z( ; ;) > 8—22()'(1),.%')2

J=1 7 T =1

= (1A= 3 2 - YY)

J=r+1

1
= (U1 - B2 0)),

from it follows that

ILf]
=) > ,
1Al (1 + E40)

and the relative error of the r-solution with respect to a perturbation of
the right-hand side is given by

It =22 g (1 B f))mnf“) - )
(XS O
W — @)
82 A, f)+ 1/2“f .
Now let us consider two equations:
Az = f, Az = f:
A - Al <84l 11f - fll < ellfl, (12)

e., there is a perturbation not of the right-hand side only, but of the
operator itself too. Then the difference of two r-solutions is -
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o — & = A f— AFf = (AF - AN f+ AF(f - ). (13)

It is necessary to suppose again that 2d,.6 < 1, because otherwise one
cannot provide the existence of the r-pseudoinverse operator A} for any A
satisfying (12).

Let us introduce the biorthonormal bases

£1,&2,...,& — the basis in (Ker 4,)*,
£1,6,...,& — the basis in (Ker A,)*,
M, M2,--+, 7 — the basis in (Ker A2)*,

i1y 712y -+, 7 — the basis in (Ker A})*,
where

(7 =0, (6&)=0 fori#j
(m:ﬁi) = 61'% (‘Et':&) = gy,
and

d262 )uz V=243

0; > 01 =cos¢y = (1—sin?¢;)/? > (1

©(1-d,6)2 1-d6
Vi—2d,8
R =

Then r-solutions z,, £, may be presented as
r o~
=) iy E=) 46
i=1
and, taking into account that A : (Ker 4,)* — (Ker A})*, and
T B r
AG = aigm,  Afj =) ai
=1 =1

let us rewrite (12) as two systems of linear algebraic equations:

T

.
dagei=di, Y aiyé=di, i=1,...,7,

1=1 1=1

with d; = (f,m), d; = (f,#), or, in the matrix form
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Ac=d, Aé=d. (14)

Now let us estimate the right-hand sides in (14)

lld - d||2 Z(d - d; )2 = || zdﬂb Zdﬂb +Ed (n; — WJ)”

=1 J=1

But, as the bases {7n;} and {#;} are biorthonormal:

ld = di| < ||, - B, il + (Zdz) max n; - 7
< (1L, = T, ) A1 + 5o = Pl + maxlins = il 1, i,

where II, (II,) is the orthogonal projector onto (Ker AXYE ((Ker A*)L),

lin; = @l|* = 2(1 - 8;) < 2(1 - cos ¢1) = 25in? 6, /2,

therefore,

- d,é
Id =il < (=g +<+86) I, (15)
with
V2d,
VI=3,8-1-d,é6/1-2d,8

To estimate |4 — Al| let us consider how A acts on the vector p =

E;=1 p;€;

8=

AZPJ‘EJ = AZP}&J +(A- A)ZPJEJ +AZPJ (& - &)

Jj=1 i=1
Thus,

r

{32( 2@* —aps) Y < WA= Al ol + 1Al 1ol %

k=1

(mAXIlfj — &l + max ||7; — TF:‘H)-
7 J

And, taking into account the special choice of the bases {£J} {£;} and
{m;}, {7}, we get the estimation-
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A = Al < (6 +268) || All

The singular values of the matrices A and A coincide with the first r
singular values of the operators A and A respectievly, i.e., ||A|| = ||4],
[ Al} = ||A]| and the last estimation may be rewritten as

4 - Al < pllAll, where p=5(1+28).

To rewrite the estimation (15) in the relative form, one can use the param-
eter of the inconsistency 6,(A, f) again:

1A% = el® + 1| Az, = £II? = |ldf* + 6%sE]1<|)?
= {ld|I* + 6%s7[|LA7"d||? < (1 +6)]1d]*.

Therefore, )
lld - dl| < r||d|

with

) V2d,6
=+ 2 r r
T=Vite [€+ (l“dr6+\/l - E,?s'-\/1-d,6\/1—2d,.6)]'

If the condnumber of the matrix A is not rather big, i.e.,

pu(A) = pur(A) = —p<1

then

[le — &| p+T
< pA)—LTT
<1,

and, taking into account that

| Xeites - )] < maxli; - iz < ol I,
2

lell = (&)™ = e,

we come to the final estimation

ller = &l < WAV (A) ll= |l + B]|2-|

(A )(p + 7)(1 + B36)
= pur(A)p

Summarizing, we can formulate the theorem

IA

llz-|l-

Theorem 3. If Az = f, Az = f are equations with compact operators from
the Hilbert space X to the Hilbert space Y and are closed to each other
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|4 - Al < 8llAll, 1If = Fll < €l fll

and there is a rupture in the spectrum of the operator A

2,6 <1, ' (16)

then the generalized normal r-solutions z, and %, of these equations exist
and B
”2.‘,- _:BT” < }.LT(A)(P+T)(1+ﬁ6), (17)
“‘Tr” 1- ,ur(A)p :
under the constraint : '
pur(A) < 1. ‘ (18)

Here

0 = o4, == rnf“’ e(4) = 3

V24,
= , = §(1+28),

m[e+( ual +5ﬁ)]

1—d,0

Remark 4. The inequalities (16) and (18) depend from each other. Usually
the first one is more stiff.

T

Remark 5. We do not pretend these estimations to be optimal, but would
like to note that they are similar with the same for linear algebraic systems
([1]) and, so, are not very rough at least.

Remark 6. The technique we applied here to get the estimation (17) is
different with respect to the same from [1], as to realize the last it would be
necessary to attract the singular value decomposition not for the compact
operator only, but for the bounded (with the bounded inverse) ones also.
We suppose, one can prefer one technique to another only by means of
comparison of the final estimations.

Remark 7. The estimations (17) are rather far from the estimations with
“guaranted accuracy”, as

e the algorithm how to calculate r-solution is not pointed out;

o the possibility to simulated all possible errors by means of equiva-
lent perturbatlons of input data for the systems of linear a.lgebralc
~ equations is not checked
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But, nevertheless, if the way how to approximate an operator equation
by means of a system of linear algebraic equations is chosen, one has to
estimate the accuracy of this approximation and to attract next (17) to
estimate the accuracy of r-solution.

4. Regularization on the basis of r-solution

Theorem 4. Vf € R(A) @ Ker(A*) there exists a sequence {r;} (r; — oo
for j — o0), such that ||A;';,f — At fllx — 0 for j — oo.

Proof. As
A;" = A;"Hy, At = AtIly,

it is enough to prove this theorem for f € R(A). But then one can apply
Lemma 3 and the property of the compact operator (there exists a finite
quantity of the linear independent singular vectors with the same singular
value) which provides the existence of the sequence of integers {r;} for
which operator A,‘,'; is determined. o

Corollary. The linear operator At is regularized on R(A)dKer A* by means
of the sequence of the operators {A,}.
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