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Group-oriented computation model
for distributed shared memory systems

Mikhail Dorojevets

This paper describes a new group-oriented distributed shared memory (GDSM)
computation model and its hardware support for improving performance in large-
scale shared memory multiprocessors. The GDSM model is based on a concept
of groups as basic computational units representing sets of parallel threads that
cooperate and communicate by sharing an address space to solve large problems.
These threads are assumed to run in parallel on separate processors in a globally-
distributed shared-memory system. We consider parallel loops with inter-iteration
data and control dependencies natural computational groups in scientific applica-
tions. The goal of introducing the group-oriented computation model is to 1) ex-
pose a space (logical group) dimension in the processes of creating and executing a
parallel program on global heterogeneous systems and 2) exploit locality and pre-
dictability in the patterns of data sharing and processor communication by relaxing
the memory release consistency model and providing multi-protocol communication
within groups. This paper shows how GDSM features can be integrated into exist-
ing cache memory systems to tolerate remote memory access latency. An example of
using the group-oriented computation model for parallel calculation of Fast Fourier
Transform (FFT) is given.

1. Introduction

High performance in large scale shared memory systems requires low latency
for memory accesses. Many architectural methods help hide distributed
shared memory (DSM) latencies: multiple contexts [Smi78, Dor84, HaF88,
ACC90], relaxed consistency models [DSB86, AdH90, GLL90, BZS93], co-
herent caches [ALK90, LLG90, LLJ92], and memory prefetching [LYL87,
GGV90, MoG91, DDS94, DDS95]. Studies of performance of both dynami-
cally and statically scheduled processors [LYL87, GGV90, GGH91, GHG91,
GGH92} have shown the merits and limitations of each technique. These
studies form a basis for the Netputer research to find a viable architectural
framework to speed parallel program execution in DSM systems.
Group-oriented distributed shared memory (GDSM) is a new group com-
puting model for scalable DSM systems. Hardware based on this model can
exploit compiler knowledge about expected reference patterns for groups of
processors using descriptor-controlled cache-to-cache communication with
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low processor overhead. Each GDSM sharing descriptor is built from com-
piler-supplied information but allows runtime specification of which remote
processors should receive data shared by the local processor. Shared data
can be sent before they are actually needed. To determine destinations
on-the-fly, memory system hardware performs built-in add operations on
group processor vectors. Extra processor instructions are needed only if
a compiler-supplied sharing protocol must be changed at runtime. Group
processing and conventional non-group computation are both supported.

The GDSM method combines benefits of coherent caches, prefetching,
and memory-based interprocessor communication with flexible runtime se-
lection of data sharing recipients. It avoids almost all slow software control.
Other benefits of the GDSM model come from safely using a more relaxed
model of memory consistency within a group than between groups.

2. The group-oriented DSM model

The GDSM model was created to provide a systematic way to overlap mem-
ory access delays efficiently with useful computations in parallel numeric
applications running on globally-distributed shared memory systems. It is
assumed that such a system is heterogeneous with some its elements con-
nected tighter than others. The latter means that different groups of proces-
sors in the system can have communication links with very different latency
and bandwidth.

The group-oriented shared memory provides a framework to improve
load balance and decrease communication and synchronization latency in
executing parallel programs on such heterogeneous shared memory systems.
In scientific programs, isolated accesses to shared variables are relatively
rare. Most occur within loops with inter-iteration dependencies that have
statically-predictable reference patterns.

The goals for introducing the group-oriented computation model are to
1) exploit locality in the network topology in executing a parallel program on
heterogeneous distributed systems and 2) exploit locality and predictability
in patterns of data sharing and processor communication.

“Parallelization process for the GDSM model goes through decomposition
the computation of a sequential loop into a collection of tasks consisting of
parallel iterations with further assignment of these tasks to parallel threads.
Groups of processors can execute these loop iterations in parallel if they
honor all inter-iteration dependencies. The group-oriented computation
model reflects itself in a way by which the partitioning and mapping steps
are to be done. It provides a notion of groups as computational objects de-
scribing tightly-coupled computation within loops. A group is a collection of
parallel threads sharing the same address space and acting together in some
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specified way. The number of parallel threads created by a compiler/pro-
grammer within a group to execute loop iterations determines the desired
size of some tightly-connected section of the distributed system needed to
execute this group. The operating systems map all threads of the group
to physical processors within the section at run time. Such group mapping
improves load balance especially if the compiler can map the data shared
by these threads to the same section of the distributed system.

Each group is characterized by two parameters: its data sharing policy
and its set of member processors. Initial definitions of group parameters are
based upon specifications from either a compiler or a user. Parameters can
be updated at runtime. Multiple groups can exist and execute simultane-
ously on separate subsets of processing nodes in a distributed system.

GDSM speeds program execution within groups by imposing fewer re-
strictions on event ordering within a group than between groups, and by
providing group communication protocols supported directly by hardware
for sharing data rapidly within a group. The first improvement results
from group release consistency (GRC), an enhancement of release consis-
tency (RC) [GLL90]. Besides allowing write buffering and pipelining like
RC, GRC reduces times for write operations executed inside groups by not
waiting for completion acknowledgments from processors outside the group.

To a conventional invalidation-based protocol with many readers or one
writer, GC adds replication and migration to deliver data, before they are
requested, to any subset of processors in a group. To know where to send
runtime data, hardware-visible descriptors created at compile time specify
group members and sharing protocols. Group communication messages pass
data blocks of cache-line size among group caches linked by a low-latency
network. Each node has one group cache on its memory bus, as shown in
Figure 1.

A. Group release consistency

Group-oriented distributed shared memory is based upon a new group re-
lease consistency (GRC) model. Like other relaxed consistency models, weak
[DSB86], release [GLL90], and entry consistency [BZS93], GRC enforces
consistency on sets of operations done within critical sections of parallel
programs.

Like RC, GRC requires the compiler to use special acquire and release
operations to access shared data, namely load and unload (group) descrip-
tor. In any RC model, acquire is a read operation that gains permission
to access a set of data, and release is a write operation that relinquishes
such permission. GRC uses the rules of RC with one small change: it
treats them locally, applied only to all processors in one group, not to the
whole system. Rule two of the release-consistent DSM [GLL90] applied to
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Figure 1. Multigroup computation in a group-oriented DSM system

a group release (unload) becomes: Before a group release operation is al-
lowed to be performed, all reads and writes previously started by all processors
inside the local group must be performed.

The small change makes a significant difference between global RC and
local GRC in completing write operations. Both RC and GRC assume that
until a write operation has been performed, all requests from remote proces-
sors to read (share) the value must be rejected or delayed. For traditional
global RC synchronization, after writing a new shared value, a processor
must receive update or invalidate completion acknowledgments from all pro-
cessors with copies, including distant (non-group) ones, before honoring a
read or write request for the new value. With group-local GRC, a processor
can share a new value immediately after receiving acknowledgments from all
processors within its group. Using GRC, a request from a processor in the
current group to read local data written by a peer processor in the group
can be serviced earlier than a read request for remote data written by a pro-
cessor outside the group. No processor outside the currently active group
can access data written within it until group execution ends.

The GRC model allows write operations to complete within a group of
processors that interact frequently by sharing data, even while some proces-
sors not belonging to the group have yet-valid older copies of the variable.
To erase these copies, “external” invalidations are sent to processors outside
the group. They officially complete when their acknowledgments return to
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the processor that has written the new value. Old external copies may ex-
ist where invalidations have not yet reached or when acknowledgments of
invalidations have not yet been received. A GRC-consistent system must
distinguish intra-group and external memory access events, including inter-
processor invalidation, update, and acknowledgment messages.

B. Multiprotocol group communication

Conceptually, group membership is organized as an indexed vector with one
bit per processor. In fact, processor identity in a group is specified by two
values: the number of processors in the group (GPN); and its home index
(0 <=H-index<GPN), or bit position in the logical vector. Network inter-
face hardware for each processor keeps a runtime map table (MT) pairing
the H- index and GDSM system physical address for each processor in the
currently active group. Processors in a group have the same MT and GPN,
but distinct H-indices. Membership of a group cannot change after creation.

Three group communication data sharing protocols can be used within
groups:

1. A conventional write-invalidate protocol allows multiple readers or a
single writer per cache line. After a processor writes a new value for
a shared (Copied) memory block, only its cache has a copy.

2. A replication update protocol writes a new shared value to local cache,
then immediately multicasts it to all other processors in a group.

3. A migration protocol sends a value newly written by a producer pro-
cessor to a single destination processor and invalidates any copies in
producer caches. If the producer is also the destination, migration acts
like the conventional invalidate protocol.

The single-destination migration protocol handles common “ping-pong”
cases where two processors alternately read and write a shared variable.
It is also generally useful in guarding data protected by synchronization
variables that provide mutually exclusive access to critical variables. Data
can migrate from processor to processor as critical regions are entered and
exited, but must not be replicated.

The migration protocol uses a home-relative M-index to specify which
processor in the group will receive values written by the current processor.
The destination processor number results from hardware addition or sub-
traction of sender H-index and M-index values, modulo group size. Runtime
hardware can increment, decrement, and rotate M-index values. Operations
based on H- indices let all processors within a group use the same descriptor,
but send their data to different members, if needed.

Replication and migration protocols can provide other processors with
data they may need in the future. These shared data are assumed to be
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" Figure 2. The Netputer multiprocessor distributed shared memory system

loaded only in the second-level (group) caches for network nodes. For all
protocols, a read request fetches data only to the local processor.

3. The netputer GDSM architecture

The group-oriented distributed shared memory (GDSM) model is supported
in planned hardware for Netputer, a large-scale parallel network system.
Netputer consists of many processing nodes connected by a high-bandwidth
low-latency network, as in Figure 2. Netputer physical memory is distributed
among the nodes, but each processor can access all of memory.

Each Netputer node contains a processor with on-chip write-through
caches for instructions and data, its portion of globally shared memory with
the corresponding part of the memory directory, a second-level write-back
group cache, and a group controller that supports GRC-coherent memory
through a runtime line tagging mechanism, cache-to-cache communication
and a write-buffer. Each processing node can be a symmetric, bus-based
multiprocessor with shared memory. For simplicity, most of this paper talks
of only one processor per node. The first-level on-chip cache is a subset of the
second-level cache. The second-level cache also holds all cache lines received
from remote processors. The group controller monitors the local processor
memory bus to detect all writes and to maintain shared data consistency.
It also provides the interface between the network and local processors. A
write buffer several words depth holds parameters for each on-going write
request until each block is owned exclusively by the local processor and has
its cache changed to complete the write. The processor itself does not wait
for writes to be completed.
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Netputer provides hardware support for group processing. It has hard-
ware-recognizable group descriptors, operations on them, and a scalable
coherent (GRC) memory interface controlled by a distributed directory and
tagged caches.

A. Architectural support for group-oriented computation

Group descriptors (GDs) are synchronization variables to provide group ac-
cess to shared data within critical regions. Each encapsulates all information
about members of one group and their data sharing protocol. The compiler
loads group descriptors into protected pages. Read or write accesses to these
pages via TLB cause traps which call system library procedures such as en-
ter_group and exit_group, which jointly form the group manager for a
Netputer. In executing enter_group to request group_acquire for a par-
ticular lock, the group manager grants the request if there is no competition
for the lock. To create a new group, the manager allocates as many proces-
sors as needed for the group and provides each with a unique group number,
a home processor pointer and a map between logical and physical processor
numbers. The enter_group procedure completes by prefetching descriptors
for the new group into the group cache of each processor node in the group.

The group controller for each processing node has a current group register
(CGR), given in Table 1.

Table 1. CGR (current group register) in group controller

Field Description of operation

GID unique group identifier (used to tag group cache lines)
WPR current group write protocol (how share all new data)
GPN number of processors in the group

ROF read-only flag (1-Rd, 0-Rd/Write) (for read requests)

M-index | migration index (new processor id minus old) [Migrate]

H-index | home index (bit of this processor in id vector for group)

A processor switches into the group execution mode after fetching a
group descriptor into its CGR by a loadCGR (GD-address)
(group_acquire) operation. When its CGR is loaded, group cache hard-
ware applies the group sharing protocol specified in CGR to all writes gener-
ated by this processor for variables shared within the group. Each processor
can control sharing policies by executing runtime CGR-operations, such as
setCGRrpl, as shown in Table 2.
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Table 2. Netputer group memory access operations

Group operation {param) Description of operation

load CGR(GD.mem.adr) group_acquire shared data operation

unload CGR(GD.mem.adr) group _release shared data operation

setCGRcnv, write protocol=Conventional

setCGR rpl write protocol=Replication

setCGR mga, mgs write protocol=Migrate to H + M-ind

CGR++/- [Allowed increment /decrement CGR M-index 1

CGR<</>> only rotate left /right CGR M-index 1

inc/decCGR(val) for increment/decrement or rotate

Ift /rgt CGR(val) migrate/ left /right M-index by val

{group, global, local, processor}_sync wait for completion of all memory
accesses for a given type

read/writeCGR(R) fetch/save CGR from/to register R

read/writeMT(MT.adr, mem.adr) * fetch/save Map Table contents from/to
memory

A group_sync operation, used before a group_release, stalls a proces-
sor until all memory accesses started by group processors have been per-
formed in the group. A global sync stalls until all accesses from the group
have been performed globally. A local_sync stalls a processor until all its
own outstanding operations complete in the group. A processor_sync stalls
a processor until its outstanding operations have been performed globally.

A processor finishes group execution by performing “an un-
load CGR(GD.address) (global_release) operation that frees it from the
group in the current group register. This operation completes only after
all accesses from this group have been performed globally. Once the op-
eration is completed, the group controller for the processor which issued
the loadCGR(GD-address) (acquire) operation sends a writeCGR(GD-
address) request to memory. The write request to the protected GD-variable
causes a trap which calls an exit_group system procedure which unlocks
access to the critical region.

B. Memory directory and cache coherence protocols

Each processing node has a local part of the memory directory to service
all accesses to distributed shared memory residing on the node. Netputer
memory uses tagged directories based on the pointer cache directory scheme
[Lil91, Lil93] and a group-oriented invalidation-based ownership protocol.
This scheme maintains a node pointer of log, p bits for each address tag
of log2m bits, where p and m are the number of processors and memory
blocks of cache line size in the whole DSM system. When multiple processor
caches have the same memory block, entries with the same address tag are
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allocated as distinct pointers in the directory. The degree of associativity
of the cache directory limits the number of processors sharing one line. If
too many processors try to share a block, an older pointer to the block is
chosen at random to be eliminated after its cached copy of the shared block
is invalidated.

A read request completes when the requesting processor receives data (D-
Reply). Writes send many invalidate requests to other processors. Until all
requests are acknowledged, a write access is not officially done, and remote
processor requests to read (share) the value must be rejected or delayed. For
Netputer consistency, each D-Reply to a memory access contains a count
(nACKs) of other requests issued as part of the access that processors must
acknowledge before the access is complete.

Netputer supports three protocols: a conventional invalidation pro-
tocol for group and non- group sharing; plus replication and migration
protocols, for interprocessor sharing in a group. A pointer with Dirty-state,
left by conventional- or migration-write, means a modified copy of the
now-stale memory block is cached by the processor specified in the p-field.
Copied-state, after a data-read or replication-write, means that an un-
modified copy of the block in memory is cached by the specified processor.
To perform a replication-write in a group, the directory for the address
stores the data in memory, sends invalidations to the processors in the p-
fields of all valid pointers to the block, and allocates a lone Copied-state
pointer. The pointer specifies the processor issuing the write as the new
owner of the block. If a block newly written in any way was previously
copied by a replication-write, cache copies may exist without explicit
memory directory pointers. This indirect pointer strategy can greatly re-
duce the count of memory directory pointers needed when sharing by using
one replication-write in a group instead of many conventional reads from
individual processors.

Before loading a new value into a cache block, stale values are invalidated.
An invalidation to an old owner normally causes it to invalidate all its copies
replicated without directory pointers. However, to avoid old invalidations
of new values, if replication is in the same group, the old owner lets the
group controller for the new owner handle all invalidates and updates within
the group.

One other optimization reduces memory directory size. A read-only flag
in each group descriptor (Table 2), accompanies each read request to mem-
ory. Netputer memory directories do not allocate new pointers for accesses
to data flagged as read-only. Several studies [AgG88, EgK88, We(G89] show
that programs heavily access read-only blocks. One [LiY93] shows how shar-
ing analyses by compilers can reduce tagged directory size by allocating only
pointers needed to keep coherence.
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C. Group cache control

In Netputer, caches are kept coherent at runtime by hidden exchanges of re-
quests between memory directories and group controllers. Possible states
for lines in first-level (processor) caches are: INValid, EXclusive and
SHared. Second-level (group) cache lines have those three states, plus
Group-Shared (GShared) for replications. The group controller in each
node executes group operations, manages the local group cache, and keeps
the first-level and group caches consistent.

As Figure 3 shows, each line in a Netputer group cache has four fields:
state, group tag, block address and data parts. A cache line in EXclusive
state implies that a block has been modified; this cache holds the only copy.
SHared state marks a cache line when the line is exactly like the same as
the block in memory and there are probably its clean copies in other caches.
GShared state marks a cache line modified by a replicate-write; it may
be shared by other processors without directory pointers. When the line was
last replicated to the group caches for the processors, memory was updated
to hold the correct value for the block. The one processor with a cache entry
in GShared state is the current group owner of this block.

State bits: | GrouptagN¢: | Memory block address A.: | Data:
2 14 : logs m 64-256
States: INValid, EXclusive, SHared, Group-Shared (or GShared)

Figure 3. Fields for one cache line in the group cache

After a replication-write, only the owner processor has a pointer in
any memory directory even though there are many other cache copies. The
strategy of not registering some memory block copies within a group re-
quires group cache hardware for each owner to manage sharing of replicated
blocks. Netputer group cache control mechanisms guarantee that the direc-
tory together with the group caches can find and invalidate all cache copies
of a block, registered in a memory directory or not.

At any time only one group has parameters loaded into each CGR and
network interface and is active for a given set of processors. After the
threads composing a group finish executing, processors can be allocated to
a new group of threads. The final unloadCGR/(GD-adr) ending group
execution followed by the initial loadCGR(GD-adr) operation for a new
group defines a “group boundary”. When a group starts, on-chip and group
caches may have lines in any state (INV, EX, SH, GS) left from older
group executions. Processors executing the current group of threads and
receiving invalidations from the memory directory cannot find and invalidate
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unregistered replicated copies produced within other groups. Each processor
has a processor membership table (MT) for only one group at a time.

There are many ways to invalidate unregistered copies. A poor method
is to force group controllers to flush local caches to memory at group bound-
aries. Valid cache lines registered in a directory are removed too. By losing
temporal locality between groups, this poor solution would cause many cache
misses at the start of each group. A more selective solution is to provide a
GShared cache line state to mark the owner copy of each line loaded by
a replication-write. All other (unregistered) copies within the group are
in SHared state. Registered lines in cache after a load (read) are also in
SHared state. Only one copy from each set of replicated lines needs to be in
GShared state and registered; the rest can easily be found given the first.
Before crossing a group boundary, processors can scan their group caches
for all GShared lines. -All processors in the group must be sent invalida-
tions for unregistered (SHared) copies of all GShared lines. This second
solution preserves temporal locality across group boundaries, but uses se-
quential scans and invalidations that can greatly increase execution times
for programs with many groups of short duration threads.

Netputer uses a third, better method that avoids sequential scans when
crossing group boundaries. Besides a GShared state, each line in a Netputer
group cache has a group tag telling which group was active when it was
loaded. The group software manager guarantees unique identifiers for all
group descriptors in one program. When group numbers may need to be
reused, the manager forces nodes to flush caches to memory to ensure that
no tagged lines remain. Group tag number zero is reserved for non-group
execution. The use of group tags makes all lines produced by replication-
writes in one group, and only these writes, automatically become stale
after the group finishes. All other group cache lines, either read into cache
from memory or produced by conventional- and migration-writes, cross
group boundaries. Lines in conventional first-level on-chip processor caches
are not affected by group boundaries.

To ignore stale lines at runtime, Netputer group cache hardware repeat-
edly compares the group tag N of cache lines to the group number N, from
the processor current group register (CGR). It also gives current tag N, to
each newly created line. After a processor performs a replication-write
to a block, its group cache has a new line with state GShared and tag
N¢ = Ng. All other group caches have copies of the line with N = Ny,
but SHared state. Only replication-write creates non-zero tags. All other
read and write operations, executed both in and out of a group, produce
group cache lines with tag Nc¢ = 0. The group cache operations involving
N. and Ng can easily be implemented by hardware. The rule for determin-
ing if a group cache has a hit at a cache line with address A, and tag N
for an access seeking address A from group Ny is:
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if((A == A.)&&((Ngbit — ORN,) == N;)) then the group cache line
matches, yielding a hit.

4. An example using groups for parallel FFT

This section shows how group communication can speed execution of a large
application code, parallel linear Fast Fourier Transform (FFT) [Pea68)]. Fig-
ure 4 gives the heart of Netputer group- oriented parallel FFT.

/* Parallel linear FFT by P CPUs on array A of N complex data */
/* Transform data in A into Fourier coefficient sums in place */

int N, P, S; /* number of data, CPUs, & passes: S= log2(N) */
int ID, otshx, SZ, ZR; /* CPU id, outsharing distance in A */
int isp; /* result pair separation, *2 = size of segments */
int j, k, le; /* loops: FFT pass(1..5), index in left segment */
complex A[N], AR[2,NJ; /* local inputs, shared partial results */
complex T, U, W; /¥ local variables */
main() /* each CPU shares results one way per pass */
{loadCGR(GD); /* start execution of process group GD */
P = CGR.GPN; /* number of CPUs in group */
ID = CGR.Hndx; /* home CPU running this code */
SZ = N/P; /¥ size of segment of A done by each CPU */
ZR = ID*SZ; /* index of first A,AR result pair for this CPU */
CGR.Mndx=1<<(log2(P)-1); /*CPUs share P/2 data apart */
setCGRmga;
for (k=ZR; k<ZR+SZ; k++) AR[(k+N/2) mod N] = A[k];
for (j=1; j<=5; j++){ /* MAIN LOOP: sum FFT in A,AR.*¥/
group_sync; /* complete all group migrations for pass-1 */
isp = 1<<(5-j-1); /* isp = 2°(8-j-1), result offset, spans angle PI */
U = complex(1.0, 0.0); /* angle 0, for initial e"i-angle = 1 */
W = complex(cos(P1/isp), sin(P1/isp)); /* interdata e’i-angle */
CGR.Mndx>>1; /* halve M-index, CPUs get closer */
if ((ZR div isp) mod 2) /* will new AR sums be ..*/

{ M = setCGRmga; otshx == +isp }  /* shared right or right */
else { M = setCGRungs; otshx = -isp }/* left in this pass? */
for (k=ZR; k<ZR+min(isp,SZ); k++){  /* FFT KERNEL sums */
for (lc=k; le<ZR+SZ; le+=2*%isp){ /* Did last AR go right? */
if ((ZR div (2*isp)) mod 2) T = (AR[(j mod 2), lc}-A[lc])*U
else T = (A[le]-AR[(j mod 2), 1c])*U;
Afle] = Afle]+AR[(j mod 2),1c]; /* Update part sum */
M:: AR[((j+1) mod 2),lc+otshx] = T; /* Sum for next pass.*/

U=U*W; /* ¢’i-angle for next point in segment */
} /* end of FFT KERNEL */
/* Done, no sync: last pass all local. Odd-index sums in AR.* /
for (lc=ZR+1; lc<ZR+SZ; k+=2)

Allc] = AR[le+(S mod 2)*NJ; /* put final AR sums in odd A’s*/
unloadCGR /* await global completion of all group writes * /
} /* FFT end: Fourier coefs for freqs in order in A on P CPUs */

Figure 4. Netputer code for computational heart of 1-D FFT .

This application code performs a linear FFT for P processors and N
complex-valued data points, with P and N being exact powers of 2. For
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each inner loop (le) within an outer pass (j), each CPU merges a partial sum
AR/[lc] produced by a possibly remote CPU and one local one Alle] to form
two complex sums and send one AR to another CPU. Each CPU figures SZ
result pairs (A, AR) in each mid-level (k) loop. To avoid AR results for the
next pass overwriting AR inputs to this pass, AR contains two values per
index, one written in odd passes and one in even. For simplicity, the initial
0 or 1 index for AR are ignored in Figure 3. This code sums the input data
in their original order by using a second array AR as well as initial input
data array A. Before pass 1, each CPU migrates a copy of its local segment
of data in A to AR on the one other CPU. Since the migration distance is
exactly P/2 CPUs and destination indices are calculated modulo group size
P, additive migrations — setCGRmga — can be used to prefetch initial
AR data inputs shared both right and left N/2 data positions. After the
last pass, successive Fourier coefficients are in A[2n], AR[2n+1] pairs on
each CPU. Odd-indexed AR[2n+1] are moved to A[2n-+1] to leave all in
A at the end. The group-oriented code uses migration-writes to share each
new partial sum with at most one other processor as soon as it is calculated.
After log, P passes, the Mndx index offset is zero in its low bits; new AR
values stay on the CPU where they are calculated. Only ten bold lines must
be changed to convert a more standard demand fetch version of this code
into a much faster Netputer version.

5. Related work

The new group-oriented model for DSM systems allows an efficient hybrid
of software and hardware mechanisms to provide global shared.memory.
Many investigations of weak consistency models and coherent caches have
influenced this work.

Group release consistency (GRC) is a local relaxation in groups of classic
release consistency RC [GLL90]. GRC lets interprocessor sharing accesses
in groups finish earlier than does global RC.

The Stanford DASH [LLJ92] demonstrates how mechanisms needed to
support cache coherence in DSM systems can be implemented with a pro-
tocol-engine associated with each private cache and each memory module.
DASH uses a distributed directory invalidation protocol between processor
clusters [LLG90] and snooping within. It supports RC by counters and fence
operations. DASH uses a (p+1)-bit full memory directory [CeF78]. DASH
supports invalidation and two update mechanisms: 1) Update-write: newly
produced data are rapidly sent to all processors with a cached block copy;
and 2) Deliver: after completing a sequence of writes into its cache using
invalidation, a processor issues a deliver instruction to specify which clusters
should receive a copy of the new block.
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The Paradigm multiprocessor [CGB91] uses full-bit vectors to maintain
coherence between and within processor clusters. Besides an invalidation
ownership protocol, Paradigm memory passes messages to allow cache lines
for shared memory to be message buffers. It supports message exchanges
by two additional bits in each cache directory entry and one special bus
operation, Notify. A Notify issued for a given line sets its state to re-
quest_notification and its P-bit vector bit to 1. A later writeback for a
request_notification line interrupts every processor registered as a receiver
of the line.

MIT Alewife [ALK90] has multithreaded nodes within a mesh. It has a
LimitLess directory[CKA91] with hardware for 4 pointers per address tag
and software interrupts if multiple shared copies or a (p+1)-bit full directory
is needed.

Netputer directory methods allow multiple readers to share a block, de-
pending on both processor activities and types of memory requests. In
non-group execution, at most S processors can share any block, where S is
memory directory associativity. S is much smaller than the number (P) of
processors in a Netputer. By using group caches and controllers, Netputer
memory directory supports a full (p+1)-bit scheme in hardware with nei-
ther a full (p+1)-bit vector per memory block nor software interrupts. Full
physical processor addressing is achieved via a single full logical-to-physical
CPU map table per group controller. Multiple processors in a node share
one group cache and controller. Netputer hardware supports full processor
sharing only for memory blocks replication-written during group execution.

At runtime, Paradigm forms lists of processors requesting a block; Net-
puter uses compiler analyses of group interactions to specify which proces-
sor(s) must be sent new data in advance. There are only two ways to send
data within a group: to all processors or to one. Having only replicate
(all) or migrate (one) variants simplifies Netputer cache maintenance. It
avoids using slow interrupts, as Paradigm does. Netputer replication-write
operations use one list of destination processors per group, not per separate
memory access as DASH deliver operations do.

Dahlgren et al. [DDS94] show that a basic directory-based write-invali-
date protocol augmented by simple extensions including a migratory sharing
optimization and a competitive-update mechanism can eliminate a substan-
tial part of the memory access penalty while keeping the hardware com-
plexity of the memory controller moderate. These results have influenced
our choice of the Netputer protocols to be implemented for the intra-group
computation.

The Netputer descriptor mechanism allowing logical processor addressing
and run-time selective sharing for data migrations was inspired by the inter-
thread communication mechanism implemented in the Russian MARS-M
computer [VGD87, DoW92], a tightly-coupled multiprocessor system with
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multithreaded processors and shared memory. MARS-M threads communi-
cate with each other through logical channels (hardware pipes), and channel
hardware maps logical to physical channel numbers at runtime. However,
MARS-M channels are not mapped into shared memory space.

Software cache-coherent systems [ChV89, MiB89| first used the idea of
marking cache lines with tags (called version numbers [ChV89] and times-
tamps [MiB89]) to determine whether these lines are up to date when they
are referenced. Another hybrid approach [ChV91] uses a directory only
to ensure that all cached blocks are updated with the correct state at the
parallel- task boundary, and to avoid dynamic invalidations. The directory
monitors memory references generated by a program and dynamically up-
dates its state to specify which caches contain which memory blocks, and
whether they are modified. At each parallel task boundary, a processor
sequentially scans its cache and invalidates cache entries that the stored
directory information specifies should be invalidated.

Netputer needs neither separate memories to hold tags nor dedicated
instructions to use tags as software coherent schemes do. Netputer relies
on a software system manager only once during runtime, just to provide a
unique number for each group. Executing a group, Netputer uses the current
group number to mark lines produced by replication-write operations. In
contrast to the hybrid approach [ChV91], Netputer processors do not use
sequential scans at group boundaries. However, a weakness of Netputer
tagging versus compiler-directed mechanisms is that to provide correctness,
Netputer treats all replication-produced cache lines as stale whenever it exits
their group.

Netputer shares many goals with Munin [BCZ90, BCZ90b] that uses
software to implement the release consistency model. Munin relies on anno-
tations by programmers to declare synchronizers and other shared variables.
The main difference between Munin and Netputer, besides implementation,
is that Munin is variable-oriented and Netputer is parallel-task or group- ori-
ented. Netputer also distinguishes synchronizers (group descriptors) from
other variables and uses either compiler or programmer assistance to define
sharing groups and protocols.

Another Netputer goal, not otherwise discussed in this paper, is to opti-
mize sharing along highly likely program paths, not just in sharing individual
variables as Munin does. Usually Netputer protocols specified by descriptors
apply to groups of memory references, not just to individual ones. Proto-
cols can be changed at runtime. If necessary, a programmer or compiler may
specify different protocols to access the same variable along different paths
within the same or other groups.

To decrease the hardware costs and provide flexibility of hardwired me-
mory-protocol engines like the DASH one [LLJ92|, the Stanford FLASH
KOH94] and the Wisconsin Typhoon [RLW94] designs have provided ded-
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icated programmable processors to emulate memory protocols by software
handlers. These designs allow users to access these communication proces-
sors directly. Much (perhaps even all) of the functionality of the GDSM
coherence protocol can be implemented using these dedicated communica-
tion processors. Thus, we plan to analyze advantages and disadvantages of
using special programmable dedicated processors rather than a pure hard-
wired support proposed in this paper to support the group-oriented model
of computation.

The current status of the Netputer project is the building of simulation
models to refine our design choices. We plan to simulate the memory be-
havior expected from complex parallel systems that are executing realistic
application codes, and to explore compiler analysis techniques to determine
how much critical information about processor and memory usage patterns
we can easily extract before execution.

6. Conclusions

This paper describes new architectural features for distributed shared mem-
ory (DSM) systems optimized for joint computations by groups of logically-
related processes. It shows how Netputer features can be integrated into
existing cache memory systems to speed parallel scientific computations,
especially on heterogeneous distributed systems with thousands of proces-
sors. Novel features in this approach include: group release consistency,
fast ways at runtime to modify compiler optimizations of data sharing em-
bedded in software-modifiable write protocol designators, practical ways to
provide update-based data replication to speed computations in huge sys-
tems, indirect pointers to replicated data to reduce need for explicit pointers
in memory directories, efficient use of tagged caches for fast group context
swaps, and ways to chain memory systems together for fast hardware con-
trolled distribution of shared data.
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