Joint NCC & IIS Bull., Comp. Science, 15 (2001), 65-81
© 2001 NCC Publisher

An extensible analyzer of subroutines in
imperative languages*

[. V. Dubranovsky

A lot of work has been dedicated to the analysis of sequential imperative programs.
However, existing tools of analysis seem to lack for clarity and extensibility. That is to say,
although some of them perform powerful context-sensitive dataflow analysis, their efforts
are chiefly directed to the analysis of a particular programming language. In this paper,
we propose a new analyzer for C++4 and Java that can be easily extended to perform
intraprocedural analysis of any imperative program. We discuss the ideas motivating the
choice of one or another approach to analyzer implementation.

1. Introduction

It is well known that program understanding requires different informa-
tion that can be obtained from the source code by using special facilities
performing source code analysis. The deeper is the analysis performed, the
more detailed is data of the program obtained. Actually, the efficiency of the
obtained information heavily depends on the way it is presented to the user.
There may be an analyzer that performs a powerful static analysis but does
not have a worthwhile user interface to explore the knowledge obtained. It
is obvious that weak presentation of information in such a tool reduces the
advantage of deep analysis.

The discussed issue is particularly important with regard to sequential
imperative programs. No one would argue that the function or subroutine
is the basic element in the imperative language. This fact explains the need
for studying subroutines because they finally form the whole essence of the
program. Understanding of functionality and interaction of subroutines suf-
ficiently provides understanding of the program structure and operation.
Knowing the set of arguments and results of a subroutine resolves the prob-
lem of interprocedural interaction within a program. Besides, it enables the
use of the stream criteria [9] to estimate the complexity of program decom-
position. Knowing the order of the use of local variables helps us to trace the
effect of the function call and the side effects. Let us denote this information
as the flow information (FI) of a subroutine.

*Partially supported by the Russian Foundation for Basic Research under Grant
00-01-00820.

66 1. V. Dubranovsky

A lot of work has been dedicated to program analysis. The algorithms
of analysis differ in complexity, kind, and precision of the information ex-
tracted. For instance, the analyzer FLAVERS [8] implements the dataflow
analysis to facilitate program verification. The static analyzer of semantic
properties of programs [4] obtains the properties in the form of term equali-
ties by using the abstract interpretation of the program. The analyzer Wasp
[7] performs a powerful context-sensitive dataflow analysis by approximation
of definite variable definitions. It has been developed to analyse programs
written in the mixture of the Oberon-2 and Modula-2 languages, as well as
Java programs. Therefore, it seems instructive to underline the following.
The algorithm designed for Wasp is undoubtedly of great value. However,
reusing it for another language requires spending an appreciable amount of
time and, actually, rebuilding the analyzer, since no special means have been
provided for this purpose. Besides, the way the information is displayed to
the user (in fact, it is dumped into a set of text files) is not demonstrative
enough. We can mention in addition the visualizer HyperCode [2] developed
basically for the purpose of reverse engineering. It implements the paradigm
of “transparent film” and enables displaying a wide range of program rela-
tionships and attributes for any imperative language.

This observation leads us to the idea that some kind of processor deriving
FT from a program without significant time and resource consumption would
be attractive. An obvious requirement to the processor is that it should
display the obtained information in a convenient form. In addition, it should
be an easy-to-use compact tool. We will call this processor Sap in the sequel.

It is the objective of this paper to discuss comprehensively the proposed
instrument and its functionality, thereby providing the description of how to
facilitate the process of studying and understanding an imperative program.
This includes outlining of the method of utilization of existing facilities. Such
a method will remove the weak points of the existing facilities related to their
user interface or to the absence of the latter.

A few notes on the paper organization. In Section 2, the basic ideas
and the architecture of the proposed processor are reviewed. This section
also introduces requirements to the processor and the application program-
ming interface. The analyzers for the C++ and Java programming languages
are described in Sections 3 and 4, respectively. The discussion concludes in
Section 5, where we examine possible ways of extension of the proposed
processor and provide contact information.

An extensible analyzer of subroutines in imperative languages 67

2. Sap processor

In this section, we discuss the Sap processor that is a combination of a
user interface with static analyzers. We concentrate our attention on the
description of ideas motivating the choice of one or another architecture
principle. These principles will hereafter help us to outline the organization
of the processor components from the standpoint of internal structure and
user interface. Notation and conventions will also be provided to exclude
any misunderstanding.

2.1. Overview: basic ideas and their effects

Let us recall that we consider imperative languages the set of which is large
enough to raise problems in implementing a processor supporting the entire
set. A natural solution is to support a few languages rather than the entire
set, and to enable some kind of processor extensibility for understanding
multiple languages. When using such an approach, we have to distinguish
the terms common to all imperative languages. As it is indicated in Section
1, the subroutine in the imperative language is a fundamental object that
has attributes and an internal structure. It is clear then that the proces-
sor should present subroutines to the user as objects and directly display
their attributes and structure. This provides clarity and simple observation
of information links. The complexity and strictness of static analysis of dif-
ferent languages depend in particular on the information obtained and on
the kind of parser used. On the one hand, a simple parser can be used to
build an internal representation adapted to a particular static analysis. On
the other hand, an existing analyzer can be used to avoid implementing a
custom parser and analyzer. The latter note can be taken into account when
designing the processor.

We can now trace the effects of the above ideas, thereby elaborating
partial requirements to the processor. First of all, the initial set of languages
to be supported has to be chosen. Let us choose C++ and Java — the
most popular languages at present. Next, the way of providing extensibility
should be fully understood. A popular approach to solving this problem is to
implement a user interface (UI) environment and a couple of initial libraries
for C++ and Java. The UI environment should provide a mechanism of
registration and dynamic linkage of language libraries without having to
recompile the environment. The libraries should expose the same interface
for subroutine analysis. For some languages, the processor may obtain FI
just by studying the procedure body only and using flow-insensitive analysis.
For the rest of the languages, it may perform a deeper (but still inexpensive)

68 1. V. Dubranovsky

analysis together with the analysis of the functions called from the analyzed
subroutine.

We will perform the flow-insensitive analysis of C++ and the flow-
sensitive analysis of Java to demonstrate different approaches to program
analysis and implementation of language libraries. In this case, both kinds
of analysis will be intraprocedural. For the same reason, none of the existing
tools of automated parser construction will be used to implement the C++
library. We will try to reuse the existing Java-frontend and the static ana-
lyzer (Java Static Analyzer Wasp [7], in particular) to implement the Java
library.

2.2. Notation and conventions

The notions of defining and using occurrences will be used in the sequel.
They have different meanings depending on the context they are used in.
In the context of syntactic and flow-insensitive analysis, the defining occur-
rence of a variable means its definition in the source program. The using
occurrence means any other occurrence that differs from the defining one.
In the context of semantic and flow-sensitive analysis, it is convenient to call
the defining occurrence of a variable the place where it receives its value. Tt
is also convenient to call the using occurrence of a variable the place where
its value is read under a certain execution of the program.

In this paper, we assume the analysis to be intraprocedural. Under this
restriction, the notions of argument and result are defined as follows. When
speaking about flow-insensitive analysis, we consider the argument as a vari-
able of the subroutine that has a using occurrence in its body. The result
is considered as an argument that may be modified by the subroutine. The
semantics in the context of flow-sensitive analysis is similar to the generally
accepted one (see, for instance, [5]): a variable is called the argument if the
subroutine, under a certain execution, reads its value. Similarly, a variable
is called the result if the subroutine, under a certain execution, sets its value
(not necessarily to each component).

It is necessary to emphasize, just to avoid any confusion, that the pro-
cessor is intended to function under Microsoft Windows 98/2000 and hence
it is written by using Win32 API. For this reason, processor execution is
described in this paper in terms of the operating system and Win32 API
routines.

2.3. Outline of the architectural elements

In Section 2.1, a suitable approach to the implementation of extensibility
has been presented. The approach suggests the creation of a Ul environment

An extensible analyzer of subroutines in imperative languages 69

and language libraries so that each library corresponds to the supported
language. Let us discuss the purpose of these components. One of the main
objectives of the UI environment is to display FI and allow the user to
navigate easily through it. We consider that the ability to analyse the source
code should not be included in the list of aims of the UI environment because
it is only intended to show visually the outcome of analysis carried out
by other components. Furthermore, the Ul environment should be able to
start analyzers residing in their language libraries, since the Ul environment
cannot analyse subroutines by itself.

The language libraries should provide the implementations of required
algorithms, where the main algorithm is the extraction of FI from a given
subroutine. It is also natural that different libraries should expose the same
API (Application Programming Interface) and the same format of data ex-
change. This allows the Ul environment not to be concerned with library
contents. The UI can merely call the interface methods which have similar
sets of parameters. Let us call such an interface Sap API. It is described
in detail below.

2.4. Application programming interface

As it is noted in Section 2.3, it is necessary to unify the interaction of the
UI environment component and the language libraries. To address the issue,
one should specify an interface made up of methods and data types used for
the exchange of information between the caller and the library. In windows
programming, such an interface is usually called an application programming
interface, or simply API. It enables writing new applications that call library
routines through this interface (see, for explanation, Win32 API in [10]). The
primary goal now is to determine what methods and data types should form
Sap API and what kind of work those methods should carry out.

2.4.1. Interface functions

The simplest way to determine the set of methods of Sap API is to look
through the functionality of the processor in order to obtain its baselines. It
is obvious that one of such baselines is subroutine analysis, which should be
encapsulated in a method of API. Another basic functionality, as practice
has shown, may be a search for all the subroutines in the module of the
program, accommodating them into a list or a tree, depending on the par-
ticular language syntax. This, for example, allows displaying the subroutines
of a module in a window immediately after opening the module in the UI
environment. The other API methods do not deserve our attention and are
left out of the scope of the paper.

70 1. V. Dubranovsky

There are some special requirements to the interface methods. They
should not contain complicated algorithms in the sense that their execu-
tion will require a large amount of time resources because Sap must not
force the user to wait for the algorithm finishing its execution. Otherwise,
the user would have to waste time waiting until the subroutine is analysed.
Instead, the interface methods may create new threads of execution, start
complicated algorithms on them, and immediately return. Another impor-
tant remark is that the algorithms mentioned above have no rights to use
global and static variables for writing in order to use the scheme of separate
memory. That is to say, the scheme of separate memory helps us to avoid
thread synchronization.

As a result, the pattern of an interface method has the following form.
The interface method creates a new thread executing an appropriate al-
gorithm. When the new thread finishes execution, the originator thread is
notified with a message. Such a notification should be interpreted as the
termination of analysis. The message provides a pointer to data that need
to be displayed. The presented pattern provides the user with a possibility
to analyse several subroutines simultaneously. Note that Sap can respond to
user commands while analyzing subroutines.

2.4.2. Data types

The description of Sap API would not be complete without illustration of
data types used to transmit the extracted information from the language
libraries to the Ul environment via the interface methods. On the other
hand, it seems justified not to deepen in details while describing the data
types in this paper. Therefore, let us at first simply present two basic types,
each of which corresponds to the appropriate interface method. Next, the
construction of more complicated data types becomes possible.

Note that natural considerations should be taken into account in order
to generate the data types mentioned above. According to Section 2.4.1, we
have got two functionalities. We should elaborate a data type for each of
them. Search for all the subroutines in the module of a program, accom-
modating them into a list or a tree, requires that a tree node should be
specified. Such a tree node may contain the following information:

e subroutine name;

e coordinates of the subroutine in the module;

e pointer to the data identifying the subroutine in the module (for ex-
ample, it may be either the position of the subroutine in the module
or the prototype of the subroutine);

e size of the data identifying the subroutine.

An extensible analyzer of subroutines in imperative languages 71

The upper two items of the list may be used (and they are actually used)
to display visually the subroutine header in the Ul environment. The place
where the subroutine resides in the source code of the program can also be
displayed. The remaining items are reserved for implementation purposes
and serve as a subroutine identifier helping to locate the subroutine when
the actual analysis is started. The same ideas can be applied to the data
types that accompany the other functionality. We will not pay attention to
them here. Instead, it is worth giving a definition of a local variable tree
used to display the hierarchy of local variables of the subroutine in the UI
environment. The local variable tree presents local variables for browsing in
a convenient form (see Figure 1). This tree contains local variables of the
subroutine and the names of statements (such as if, switch, for, while,
etc.) that cause new scopes of visibility of the variables. Each vertex of the
tree corresponds to a statement in the subroutine. The list of local variables
declared inside the statement is associated with the appropriate vertex. Such
a tree can be defined recursively.

1. Consider a statement that does not have nested statements; let it
contain the declarations of local variables v, ..., v,,. Such a statement
is a leaf of the tree. An ordered list of variables vy, ..., v, is associated
with this leaf.

2. If S'is a statement and vg1, ..., Vomg, S1sV1i1y- -« Vlmys 92y -+ -y Ok Vkl,
.+ Ukm, is a sequence of declarations of variables v;; (0 <i <k, 1<
j < m;) and statements S; (0 <7 < k) nested in S, then the vertices
S1,..., Sk are descendants of S and the ordered list vgy, ..., vom,, S1,
Vlly ey Vlmys 52543 SkyVkly - - -, Ukm, 1S associated with S.

3. The body of the subroutine is the root of the tree.

3. C+H+ analyzer library

The next question is implementation of the analysis for the C++ language
(we remind that C++ is considered in this section).

First of all, we are restricting the input language and the input program.
There is a variety of different extensions of ANSI C++. Companies devel-
oping the C++ programming environment sometimes add new keywords
to the C++ character set. Thus, to avoid confusion, we assume the input
string to belong to the common subset of different versions of the language.
The common subset is called ANSI C++!. This is not a rigid restriction

!The specification of this standard can be found in [3]. At present, this specification is
close to the current one although is not ultimate.

72 1. V. Dubranovsky

Objects | Arguments I

[=-a int init_aray [const TArayimp &]
o _initializer
Elﬁ-zh if gtatement

El@ for statement

X

= T & GetCurrent [int]

.
----- & operator T &[] const
[—]qh template < » inline void ® TListElement < »:; operator new [size_t |

& 9 _sz

-----) :IpcszMsg
s (;Th if statement
I'_—'Iéu itling TSymbal :: TSembal [TCHAR |

Figure 1. A window displaying the result of analysis in the form of a tree of local
variables and statements

because the inclusion of new keywords is basically related to separate com-
pilation and to platform for which programs are written. In particular, it is
related to linkage specification, procedure calling conventions, etc. (e.g., the
__declspec, __fastcall keywords are new with respect to the ANSI C++
standard). That is why the majority of new keywords take place outside
the function definition or in function headers, which does not influence the
functionality of the processor.

Another remarkable detail is that, before analyzing a program with Sap,
the C++ preprocessor should process the program to perform macro ex-
pansion and conditional compilation. The reason is that we analyse solely
function definitions, not considering the whole program. The macro def-
initions can reside outside function bodies. Therefore, the recognition of
constructions hidden under those macro definitions becomes impossible. If
preprocessing has not been performed, Sap provides inaccurate information.

Let us now discuss the analysis algorithm, i. e., its input, transforma-
tion, and output. The input is a string of ASCII characters that represents
a phrase in C++4. The output fits the description of the application pro-
gramming interface presented in Section 2.4. Before we start the discussion
of the transformation, we need to mention inaccuracy of FI obtained by the
analyzer.

An extensible analyzer of subroutines in imperative languages 73

As it has been noted, the global semantic analysis is not performed. As a
result, certain constructs are interpreted incorrectly (see Section 3.2), since
type and function declarations are usually placed outside function bodies.
Therefore, the algorithm is not aware of the majority of the declarations.
To simplify the analysis, it was decided to ignore completely the type def-
initions, since such a restriction practically does not influence the result of
the analysis. The differences between type names, function names, and other
names are revealed using the right context of the name. Nevertheless, such
a context does not always provide a successful differentiation. This leads to
inaccuracy of flow information, that is, the analyzer treats certain types as
global arguments, certain expressions as declarations, etc. (see Section 3.2).
We should say that the analyzer is implemented so that the inaccuracy of
obtained FI is minimized as much as possible, although it cannot be fully
avoided in static analyzers.

The transformation of an input string builds a simplified derivation
tree. The lookahead recursive descent® algorithm generates this tree im-
plicitly. We should underline that a simplified tree is built, because the
specificity of the problem allows us to perform incomplete parsing of some
constructs. For instance, it is not obligatory to perform full parsing of us-
ing::unqualified_identifier; . It is enough to skip tokens up to the semicolon.

Let us now consider the transformation at a higher level of details. It is
carried out by:

e lexical scan,
e parsing,

e primitive semantic analysis.

These algorithms interact through the standard single-pass scheme of trans-
lation: the parser is the primary algorithm using the scanner to get a new
token from the input string. Syntactic and semantic analyses are performed
simultaneously. Since the scanner algorithm is simple and clear, we will not
describe it in this paper® and turn directly to the discussion of problems one
may face while implementing a C++ parser.

’In general, the C4++ grammar is not LL(1), and speaking of the recursive descent
makes no sense. However, we may consider an algorithm similar to the recursive descent.
The difference is that the deterministic decision what production should be chosen from
the set of productions with the same left parts is made not only by the observed symbol
(as it is in the recursive descent). The right context that can be unlimited in general is
taken into account in addition. Such an algorithm can be called the lookahead recursive
descent, because it also performs top-down parsing. Besides, the derivation tree of a chain
is built implicitly by a set of recursive procedures, just like it is usually done by the usual
recursive descent.

3The description of the scanner algorithm can be found in [6].

74 1. V. Dubranovsky

3.1. Left recursion issue

Our goal is to implement a parser that uses the lookahead recursive descent
algorithm.* However, the C++ grammar in [3] is left-recursive; hence, it
is impossible to implement the recursive descent. We have to transform the
grammar so that it fits our needs. To achieve this, we use the transformation
from [6] called the change of direction of recursion. Consider an example.
The productions for the declarator in C++ have the following form:

declarator ::=
dname
modifier-list declarator
ptr-operator declarator
declarator (argument-decl-list) cv-qualifier-list opt
declarator [constant-ezpression opt]
(declarator)

Let us recall how the change of direction of recursion looks like just to make
the discussion more demonstrative. Let a grammar I' = (T, N, S, P) contain
the following productions:

JrA—= Aoy | ... | Aam | B] .-]| Bns (1)

where A € N, aq,...,am € (TUN)", B1,...,8, € (T UN)*, and none of
the chains f3; begins with the nonterminal symbol A. Consider the produc-
tions:

ji: A= Bu[Bl]...|BnlBl, (2)
jo:B— a1 [B]]...|an[B], (3)

where B ¢ N. Then the grammar I = (T, N U{B}, S, (P \ {j}) U {j1,j2})
is equivalent to I'. Let us apply this transformation to our productions. First,
we introduce a new nonterminal symbol declarator-tail. Then we have:

declarator ::=
dname declarator-tail opt
modifier-list declarator declarator-tatl opt
ptr-operator declarator declarator-tail opt

“There are several reasons for implementing the lookahead recursive descent. First,
there is no need to parse expressions in the same way it is done in compilation. Imple-
menting an LR(2)-parser would therefore be expensive and irrational. Second, the recur-
sive descent enables — without breaking its ideology and transformation of the language
grammar — to combine procedures constructed according to grammar productions with
those for simplified parsing of language constructions.

An extensible analyzer of subroutines in imperative languages 75

(declarator) declarator-tail opt

declarator-tazl ::=
(argument-decl-list) cv-qualifier-list opt
declarator-tail opt
[constant-ezpression opt | declarator-tail opt

As one can see, the latter productions do not contain left recursion.

3.2. Grammar ambiguity

We should note a grammar ambiguity [3] with regard to the expression-
statement and the declaration. Ambiguity resolving is purely syntactic, i. e.,
the meaning of a name (ignoring the difference between type name and other
names) is not used for resolving. A practical rule for resolving ambiguities
can be formulated as follows:

1. if something looks like a declaration, then it is a declaration, else
2. if something looks like an expression, then it is an expression, else

3. this is a syntax error.

Parsing with backtracking, together with this rule, may be used to resolve
the ambiguities.

So, this rule resolves the ambiguities if differences between the type name
and other names are taken into account. However, generally it is impossible
to do this in the context of the function definition because types can be de-
fined outside function bodies. Thus, there are constructs for which ambiguity
cannot be resolved. Example:

id(a); // if id is a type name, then it is a declaration,
// else it is a function call

id1*id2; // if idl and id2 are not type names, then it is
// an expression, else it is a declaration

For such constructs, ambiguity is resolved in favour of a declaration. An
exception to this rule is the construct scope-qualifier id(a), where scope-
qualifier is a qualifier of the visibility scope and can be an empty string.

Note that parsing is still deterministic since the analyzer makes use of
the right context to choose one of the following: the string should be parsed
either as a declaration or as an expression. Thus, determinism of the ana-
lyzer is guaranteed. Moreover, if in the process of looking ahead the analyzer

76 1. V. Dubranovsky

decides that the next construct is a declaration, this means that it is actu-
ally parsed and can be skipped in the further analysis. In other words, an
expression should sometimes be parsed twice while a declaration is parsed
only once.

3.3. Notes on the primitive semantic analysis

According to the original statement of the problem (see Section 1), we have
to determine what kind of semantic information the analyzer should collect.
As we know, the task of the analyzer is to collect arguments and results,
including the hierarchy of local variables of the subroutine. For this purpose,
it is needed to perform the semantic analysis of declarators, blocks, and using
occurrences of the variables.

The semantic analysis of declarators serves to determine whether a vari-
able is a reference. To implement this analysis, we have to supply the declara-
tor productions with some attributes. A simple consideration allows us to
do this as follows:

productions attribute rules
a1 ::=
dname d-tatl opt dname .bRef = dl.bRef
m-list d2 d-tail opt d2.bRef = d1.bRef
ptr-op d2 d-tail opt d2.bRef = ptr-op.bRef
(d2) d-tail opt d2.bRef = false
ptr-op ::=
* cvu-qualifier-list opt ptr-op.bRef = false
& cv-qualifier-list opt ptr-op.bRef = true
scope-qualifier * cv-qg-list opt ptr-op.bRef = false
dname ::=
name name .bRef = dname.bRef
g-name g-name .bRef = dname.bRef
name ::=
1d id.bRef = name.bRef
" 4d

operator-function—-name
converston—function—-name

An extensible analyzer of subroutines in imperative languages 7

The semantic analysis of blocks (visibility scopes) is needed to determine
the visibility of local variables. A well-known approach to implementation
of the analysis of visibility scopes is to use a stack of lists of objects visible
in a given place in the subroutine. When the analyzer enters a new block, a
new empty list is pushed into the stack. When the analyzer exits from the
block, the stack pops the list. Using the stack, the analyzer distinguishes
local and global variables in any place of the subroutine.

Finally, in the process of the analysis of using occurrences, the analyzer
determines whether a subroutine uses or modifies a given variable. To im-
plement this analysis, the analyzer extracts the context of the variable. Tt
consists of four tokens on the right of the variable (practice has shown that
four tokens are sufficient for the problem solution). This context is used to
determine the type of the construction containing the variable as its leftmost
token. Then the type of the construction allows the analyzer to compute the
values of the attributes.

4. Java analyzer library

The next question is implementation of the analysis for the Java language
(we remind that Java is considered in this section).

We will not implement a custom analyzer this time and try to make use
of an existing one. However, we need some changes in its construction. To
achieve this goal, let us use the Wasp analyzer since it performs a powerful
static analysis and the Wasp source code is available.

So, there is the Wasp analyzer as a console application written in the
mixture of Oberon2/Modula2. It is necessary to implement a Java library
that exposes the Sap API interface and conforms the Ul environment from
the standpoint of data exchange format. There are at least two approaches to
solving this problem. The first stands for calling the analysis procedures from
Wasp object modules. In this approach, all the Wasp code is linked together
with the library. Such a solution is motivated and plausible if Wasp is written
in C/C++, because both the Ul component and the Sap API are written
in C++. In the second approach Wasp is used as a separate process using a
file for data exchange. In this case, there is a library that starts Wasp as a
separate process and receives the result of analysis in a file. This approach
seems to be more realistic and should be chosen to solve the problem.

The summarization of the aforesaid ideas yields the following. It is still
necessary to implement an algorithm for search of method headers in a
module. At the same time, it is possible to use Wasp for the analysis of
subroutines. This can be fulfilled by using the so-called ezternal analyzer
scheme.

78 1. V. Dubranovsky

Ul Thread

SapParseChjectd

|: CreateThread) Analyzer

| L Thread

CreateProcess()

[e

WaitForSingleObject()

[«

Posthessagel)
K SAP_WWM_PARSE_DOMNE

T X

Figure 2. External analyzer scheme

4.1. External analyzer scheme

We assume that the interface method (let us call it SapParseObject) starting
subroutine analysis should be implemented in accordance with the Sap API
architecture. Figure 2 will help us to concentrate on the subject.

It shows a sequence of actions that SapParseObject should perform in
order to analyse a subroutine. Note that we require the algorithm of anal-
ysis to run in a separate process. According to Section 2.4.1, SapParseOb-
ject creates a thread (Analyzer Thread in Figure 2) by using the Cre-
ateThread system function and returns control immediately to the user in-
terface thread (UI Thread). The newly created thread performs the analysis
of the subroutine. Whereas we want to use the external analyzer, Analyzer
Thread runs Wasp in a new process by using a system call of CreatePro-
cess. After this, WaitForSingleObject causes Analyzer Thread to sleep un-
til Wasp finishes its work. After Wasp terminates, Analyzer Thread wakes
up and calls the asynchronous PostMessage system function to post the
SAP_WM_PARSE_DONE message to the Ul Thread message loop. Then
Analyzer Thread terminates.

Let us consider the analysis of subroutines containing syntax errors. In
this situation, Wasp does not reach the stage of analysis. It outputs to the
console an error message that should be displayed to the user and interrupts
its execution. Sap API provides a list of errors to allow the UT environment to

An extensible analyzer of subroutines in imperative languages 79

display error messages. The address of the list is passed to the library when
the interface functions are being called. Thus, it is necessary to intercept the
Wasp console output as well as to form a list of errors before PostMessage
is called. Besides, the Wasp format of error messages should be converted
to that of Sap API.

4.2. Wasp — the XDS Java Static Analyzer

In this section, we will investigate necessary modifications of Wasp. They
are obligatory since the direct use of Wasp is impossible in the context of
the Sap architecture.

4.2.1. Modifications made to Wasp

Wasp obtains the desired FI (and even much more) and converts it into an
internal representation. Traversing the internal representation and mapping
FI to a special format (we will discuss this format later in detail) is nearly
all that remains to be carried out.

We would like to underline that the Wasp internal representation con-
tains a list of arguments and results for each class method. However, we also
need a hierarchy of local variables that does not exist in the representation.
Nevertheless, the representation provides us with a list of local variables.
The list does not indicate whether a local variable is an argument or a re-
sult. In this case, the hierarchy of local variables is obtained by using the
list of local variables and traversing the method’s body. A different matter
is to distribute local variables among arguments and results. In this case,
the list of local variables and the list of arguments and results may be used.
We apply a simple algorithm: for a given local variable, the list of arguments
and results is searched through to determine whether the variable belongs
to the list. The complexity of such an algorithm obviously is O (nZ), where
n = max ([, k), [is the number of local variables in the method and & is the
number of arguments and results of the method. This complexity is fully
acceptable, taking into account that the average number of local variables,
arguments, and results is not too large.

4.2.2. Exchange format

The format of data exchange between the Java library and Wasp has been
chosen to be a subset of the standard vCard version 2.1 format that can be
found in [11]. Let us discuss why such a choice has been made.

In fact, the format should reflect the hierarchy of local variables. The hi-
erarchy is usually represented as a tree. Formally, we should build a one-to-
one correspondence between the set of trees and a certain language. There-

80 1. V. Dubranovsky

fore, any context-free language that is able to express nesting fits our needs.
One should use this opportunity to make the language simpler both for
parsing and generating.

Since recently the XML language has become very popular. It fits con-
ceptually our needs. However, using XML makes sense only if an existing
parser is reused. At the same time, using an existing XML parser is not
optimum in this situation. A better way is to use a subset of a standardized
language to implement a constrained (simple) parser. A possibility to extend
the subset to the entire language will thereby be provided. That is to say, a
standard parser has to be used only when it is really needed. This is an ad-
vantage that enables an inexpensive extension of the analyzer library when
moving to a next version. The vCard format just satisfies the mentioned
conditions and may be used as a prototype for our purpose.

A subset of the selected language should now be obtained and some
keywords replaced. A formal description of the format of data exchange is
left out of the scope of this paper and can be found in Application B of [1].

5. Conclusion

In this paper, we propose an extensible facility intended to extract properties
of the C++ and Java subroutines. This facility simplifies and accelerates the
process of program understanding. It provides a convenient user interface
and does not require much resources to operate. The description of user
interface has been left out of the scope of this paper. However, one can
easily learn them by reading the Sap on-line help system (see a reference
below). The deterministic analyzer of the ANSI C++ function definition
has been discussed. The analyzer implementation resides in a dynamic-link
library enabling its late binding with the user interface. We have also studied
modifications that should be introduced into Wasp in order to reuse it for
the Sap processor. The format of data exchange has been described as a
related issue.

The primary advantage of the proposed facility is believed to be the pos-
sibility of its extending, which has been verified for two languages. There-
fore, creating analyzer libraries for new imperative languages might be a
well-appreciated enhancement of Sap.

Finally, in order to make the discussion consistent, we provide the fol-
lowing information. Sap 1.0 and 2.1 can be downloaded from the web site
http://www.iis.nsk.su/cppsap. The documentation on version 1.0 and
the API for version 2.1 can be obtained from the same place.

An extensible analyzer of subroutines in imperative languages 81

Acknowledgements. The author would like to thank A.V. Zamulin for his
constructive comments.

References

[1]

2]

3]

[4]

[5]

[8]

[9]

[10]
[11]

Dubranovsky I. V. The Analysis of Information Links of Subroutines in C++
and Java. — Term Paper, Novosibirsk State University, 2001 (in Russian).

Baburin D. E., Bulyonkov M. A., Emelianov P. G., Filatkina N. N. Visualization
facilities in reverse engineering // Programmirovanie. — 2001. — Ne 2. —
P. 21-23 (in Russian).

Ellis M., Stroustrup B. The Annotated C++ Reference Manual. — AT&T Bell
Laboratories, Murray Hill, New Jersey, 1992.

Emelianov P. Analysis of the equality relation for the program terms // Proc.
of the 3th Intern. Static Analysis Symposium. — Lect. Notes in Comput.
Sci. — 1996. — Vol. 1145. — P. 174-188.

Kasyanov V.N. Optimizing Program Transformations. — Moscow: Nauka,
1988 (in Russian).

Kasyanov V. N., Pottosin I. V., Methods of Compiler Construction. — Novosi-
birsk: Nauka, 1986 (in Russian).

Kuksenko S.V., Shelekhov V.I., The static source code checker of run-time
errors // Programmirovanie. — 1998. — Ne 6. — P. 2743 (in Russian).

Naumovich G.N., Clarke L. A., Osterweil L. J. Verification of communication
protocols using data flow analysis // Proc. ACM SIGSOFT ’96 Fourth Sympo-
sium on the Foundations of Software Eng. — San Francisco, 1996. — P. 93-105.

Pottosin I. V. A “good program”: an attempt at an exact definition of the
term // Programming and Computer Software. — 1997. — Vol. 23, Ne 2. —
P. 59-69.

Microsoft Developer Network Library. — October 1999.

vCard — The Electronic Business Card Exchange Format. Version
2.1. — The Internet Mail Consortium (IMC), September 18, 1996
(http://www.imc.org/pdi/vcard-21.doc) plus the IrDA Telecom Exten-
sions to the IMC vCard Format, Version 1.0, October 15, 1997 (p/o IrMC
Specifications Package).

82

