
Joint NCC & IIS Bull., Comp. Siene, 15 (2001), 65{81

© 2001 NCC Publisher

An extensible analyzer of subroutines in

imperative languages

?

I. V. Dubranovsky

A lot of work has been dediated to the analysis of sequential imperative programs.

However, existing tools of analysis seem to lak for larity and extensibility. That is to say,

although some of them perform powerful ontext-sensitive dataow analysis, their e�orts

are hiey direted to the analysis of a partiular programming language. In this paper,

we propose a new analyzer for C++ and Java that an be easily extended to perform

intraproedural analysis of any imperative program. We disuss the ideas motivating the

hoie of one or another approah to analyzer implementation.

1. Introdution

It is well known that program understanding requires di�erent informa-

tion that an be obtained from the soure ode by using speial failities

performing soure ode analysis. The deeper is the analysis performed, the

more detailed is data of the program obtained. Atually, the eÆieny of the

obtained information heavily depends on the way it is presented to the user.

There may be an analyzer that performs a powerful stati analysis but does

not have a worthwhile user interfae to explore the knowledge obtained. It

is obvious that weak presentation of information in suh a tool redues the

advantage of deep analysis.

The disussed issue is partiularly important with regard to sequential

imperative programs. No one would argue that the funtion or subroutine

is the basi element in the imperative language. This fat explains the need

for studying subroutines beause they �nally form the whole essene of the

program. Understanding of funtionality and interation of subroutines suf-

�iently provides understanding of the program struture and operation.

Knowing the set of arguments and results of a subroutine resolves the prob-

lem of interproedural interation within a program. Besides, it enables the

use of the stream riteria [9℄ to estimate the omplexity of program deom-

position. Knowing the order of the use of loal variables helps us to trae the

e�et of the funtion all and the side e�ets. Let us denote this information

as the ow information (FI) of a subroutine.

?

Partially supported by the Russian Foundation for Basi Researh under Grant

00-01-00820.

66 I. V. Dubranovsky

A lot of work has been dediated to program analysis. The algorithms

of analysis di�er in omplexity, kind, and preision of the information ex-

trated. For instane, the analyzer FLAVERS [8℄ implements the dataow

analysis to failitate program veri�ation. The stati analyzer of semanti

properties of programs [4℄ obtains the properties in the form of term equali-

ties by using the abstrat interpretation of the program. The analyzer Wasp

[7℄ performs a powerful ontext-sensitive dataow analysis by approximation

of de�nite variable de�nitions. It has been developed to analyse programs

written in the mixture of the Oberon-2 and Modula-2 languages, as well as

Java programs. Therefore, it seems instrutive to underline the following.

The algorithm designed for Wasp is undoubtedly of great value. However,

reusing it for another language requires spending an appreiable amount of

time and, atually, rebuilding the analyzer, sine no speial means have been

provided for this purpose. Besides, the way the information is displayed to

the user (in fat, it is dumped into a set of text �les) is not demonstrative

enough. We an mention in addition the visualizer HyperCode [2℄ developed

basially for the purpose of reverse engineering. It implements the paradigm

of \transparent �lm" and enables displaying a wide range of program rela-

tionships and attributes for any imperative language.

This observation leads us to the idea that some kind of proessor deriving

FI from a program without signi�ant time and resoure onsumption would

be attrative. An obvious requirement to the proessor is that it should

display the obtained information in a onvenient form. In addition, it should

be an easy-to-use ompat tool. We will all this proessor Sap in the sequel.

It is the objetive of this paper to disuss omprehensively the proposed

instrument and its funtionality, thereby providing the desription of how to

failitate the proess of studying and understanding an imperative program.

This inludes outlining of the method of utilization of existing failities. Suh

a method will remove the weak points of the existing failities related to their

user interfae or to the absene of the latter.

A few notes on the paper organization. In Setion 2, the basi ideas

and the arhiteture of the proposed proessor are reviewed. This setion

also introdues requirements to the proessor and the appliation program-

ming interfae. The analyzers for the C++ and Java programming languages

are desribed in Setions 3 and 4, respetively. The disussion onludes in

Setion 5, where we examine possible ways of extension of the proposed

proessor and provide ontat information.

An extensible analyzer of subroutines in imperative languages 67

2. Sap proessor

In this setion, we disuss the Sap proessor that is a ombination of a

user interfae with stati analyzers. We onentrate our attention on the

desription of ideas motivating the hoie of one or another arhiteture

priniple. These priniples will hereafter help us to outline the organization

of the proessor omponents from the standpoint of internal struture and

user interfae. Notation and onventions will also be provided to exlude

any misunderstanding.

2.1. Overview: basi ideas and their e�ets

Let us reall that we onsider imperative languages the set of whih is large

enough to raise problems in implementing a proessor supporting the entire

set. A natural solution is to support a few languages rather than the entire

set, and to enable some kind of proessor extensibility for understanding

multiple languages. When using suh an approah, we have to distinguish

the terms ommon to all imperative languages. As it is indiated in Setion

1, the subroutine in the imperative language is a fundamental objet that

has attributes and an internal struture. It is lear then that the proes-

sor should present subroutines to the user as objets and diretly display

their attributes and struture. This provides larity and simple observation

of information links. The omplexity and stritness of stati analysis of dif-

ferent languages depend in partiular on the information obtained and on

the kind of parser used. On the one hand, a simple parser an be used to

build an internal representation adapted to a partiular stati analysis. On

the other hand, an existing analyzer an be used to avoid implementing a

ustom parser and analyzer. The latter note an be taken into aount when

designing the proessor.

We an now trae the e�ets of the above ideas, thereby elaborating

partial requirements to the proessor. First of all, the initial set of languages

to be supported has to be hosen. Let us hoose C++ and Java | the

most popular languages at present. Next, the way of providing extensibility

should be fully understood. A popular approah to solving this problem is to

implement a user interfae (UI) environment and a ouple of initial libraries

for C++ and Java. The UI environment should provide a mehanism of

registration and dynami linkage of language libraries without having to

reompile the environment. The libraries should expose the same interfae

for subroutine analysis. For some languages, the proessor may obtain FI

just by studying the proedure body only and using ow-insensitive analysis.

For the rest of the languages, it may perform a deeper (but still inexpensive)

68 I. V. Dubranovsky

analysis together with the analysis of the funtions alled from the analyzed

subroutine.

We will perform the ow-insensitive analysis of C++ and the ow-

sensitive analysis of Java to demonstrate di�erent approahes to program

analysis and implementation of language libraries. In this ase, both kinds

of analysis will be intraproedural. For the same reason, none of the existing

tools of automated parser onstrution will be used to implement the C++

library. We will try to reuse the existing Java-frontend and the stati ana-

lyzer (Java Stati Analyzer Wasp [7℄, in partiular) to implement the Java

library.

2.2. Notation and onventions

The notions of de�ning and using ourrenes will be used in the sequel.

They have di�erent meanings depending on the ontext they are used in.

In the ontext of syntati and ow-insensitive analysis, the de�ning our-

rene of a variable means its de�nition in the soure program. The using

ourrene means any other ourrene that di�ers from the de�ning one.

In the ontext of semanti and ow-sensitive analysis, it is onvenient to all

the de�ning ourrene of a variable the plae where it reeives its value. It

is also onvenient to all the using ourrene of a variable the plae where

its value is read under a ertain exeution of the program.

In this paper, we assume the analysis to be intraproedural. Under this

restrition, the notions of argument and result are de�ned as follows. When

speaking about ow-insensitive analysis, we onsider the argument as a vari-

able of the subroutine that has a using ourrene in its body. The result

is onsidered as an argument that may be modi�ed by the subroutine. The

semantis in the ontext of ow-sensitive analysis is similar to the generally

aepted one (see, for instane, [5℄): a variable is alled the argument if the

subroutine, under a ertain exeution, reads its value. Similarly, a variable

is alled the result if the subroutine, under a ertain exeution, sets its value

(not neessarily to eah omponent).

It is neessary to emphasize, just to avoid any onfusion, that the pro-

essor is intended to funtion under Mirosoft Windows 98/2000 and hene

it is written by using Win32 API. For this reason, proessor exeution is

desribed in this paper in terms of the operating system and Win32 API

routines.

2.3. Outline of the arhitetural elements

In Setion 2.1, a suitable approah to the implementation of extensibility

has been presented. The approah suggests the reation of a UI environment

An extensible analyzer of subroutines in imperative languages 69

and language libraries so that eah library orresponds to the supported

language. Let us disuss the purpose of these omponents. One of the main

objetives of the UI environment is to display FI and allow the user to

navigate easily through it. We onsider that the ability to analyse the soure

ode should not be inluded in the list of aims of the UI environment beause

it is only intended to show visually the outome of analysis arried out

by other omponents. Furthermore, the UI environment should be able to

start analyzers residing in their language libraries, sine the UI environment

annot analyse subroutines by itself.

The language libraries should provide the implementations of required

algorithms, where the main algorithm is the extration of FI from a given

subroutine. It is also natural that di�erent libraries should expose the same

API (Appliation Programming Interfae) and the same format of data ex-

hange. This allows the UI environment not to be onerned with library

ontents. The UI an merely all the interfae methods whih have similar

sets of parameters. Let us all suh an interfae Sap API. It is desribed

in detail below.

2.4. Appliation programming interfae

As it is noted in Setion 2.3, it is neessary to unify the interation of the

UI environment omponent and the language libraries. To address the issue,

one should speify an interfae made up of methods and data types used for

the exhange of information between the aller and the library. In windows

programming, suh an interfae is usually alled an appliation programming

interfae, or simply API. It enables writing new appliations that all library

routines through this interfae (see, for explanation, Win32 API in [10℄). The

primary goal now is to determine what methods and data types should form

Sap API and what kind of work those methods should arry out.

2.4.1. Interfae funtions

The simplest way to determine the set of methods of Sap API is to look

through the funtionality of the proessor in order to obtain its baselines. It

is obvious that one of suh baselines is subroutine analysis, whih should be

enapsulated in a method of API. Another basi funtionality, as pratie

has shown, may be a searh for all the subroutines in the module of the

program, aommodating them into a list or a tree, depending on the par-

tiular language syntax. This, for example, allows displaying the subroutines

of a module in a window immediately after opening the module in the UI

environment. The other API methods do not deserve our attention and are

left out of the sope of the paper.

70 I. V. Dubranovsky

There are some speial requirements to the interfae methods. They

should not ontain ompliated algorithms in the sense that their exeu-

tion will require a large amount of time resoures beause Sap must not

fore the user to wait for the algorithm �nishing its exeution. Otherwise,

the user would have to waste time waiting until the subroutine is analysed.

Instead, the interfae methods may reate new threads of exeution, start

ompliated algorithms on them, and immediately return. Another impor-

tant remark is that the algorithms mentioned above have no rights to use

global and stati variables for writing in order to use the sheme of separate

memory. That is to say, the sheme of separate memory helps us to avoid

thread synhronization.

As a result, the pattern of an interfae method has the following form.

The interfae method reates a new thread exeuting an appropriate al-

gorithm. When the new thread �nishes exeution, the originator thread is

noti�ed with a message. Suh a noti�ation should be interpreted as the

termination of analysis. The message provides a pointer to data that need

to be displayed. The presented pattern provides the user with a possibility

to analyse several subroutines simultaneously. Note that Sap an respond to

user ommands while analyzing subroutines.

2.4.2. Data types

The desription of Sap API would not be omplete without illustration of

data types used to transmit the extrated information from the language

libraries to the UI environment via the interfae methods. On the other

hand, it seems justi�ed not to deepen in details while desribing the data

types in this paper. Therefore, let us at �rst simply present two basi types,

eah of whih orresponds to the appropriate interfae method. Next, the

onstrution of more ompliated data types beomes possible.

Note that natural onsiderations should be taken into aount in order

to generate the data types mentioned above. Aording to Setion 2.4.1, we

have got two funtionalities. We should elaborate a data type for eah of

them. Searh for all the subroutines in the module of a program, aom-

modating them into a list or a tree, requires that a tree node should be

spei�ed. Suh a tree node may ontain the following information:

� subroutine name;

� oordinates of the subroutine in the module;

� pointer to the data identifying the subroutine in the module (for ex-

ample, it may be either the position of the subroutine in the module

or the prototype of the subroutine);

� size of the data identifying the subroutine.

An extensible analyzer of subroutines in imperative languages 71

The upper two items of the list may be used (and they are atually used)

to display visually the subroutine header in the UI environment. The plae

where the subroutine resides in the soure ode of the program an also be

displayed. The remaining items are reserved for implementation purposes

and serve as a subroutine identi�er helping to loate the subroutine when

the atual analysis is started. The same ideas an be applied to the data

types that aompany the other funtionality. We will not pay attention to

them here. Instead, it is worth giving a de�nition of a loal variable tree

used to display the hierarhy of loal variables of the subroutine in the UI

environment. The loal variable tree presents loal variables for browsing in

a onvenient form (see Figure 1). This tree ontains loal variables of the

subroutine and the names of statements (suh as if, swith, for, while,

et.) that ause new sopes of visibility of the variables. Eah vertex of the

tree orresponds to a statement in the subroutine. The list of loal variables

delared inside the statement is assoiated with the appropriate vertex. Suh

a tree an be de�ned reursively.

1. Consider a statement that does not have nested statements; let it

ontain the delarations of loal variables v

1

; : : : ; v

m

. Suh a statement

is a leaf of the tree. An ordered list of variables v

1

; : : : ; v

m

is assoiated

with this leaf.

2. If S is a statement and v

01

; : : : ; v

0m

0

; S

1

; v

11

; : : : ; v

1m

1

; S

2

; : : : ; S

k

; v

k1

;

: : : ; v

km

k

is a sequene of delarations of variables v

ij

(0 � i � k, 1 �

j � m

i

) and statements S

i

(0 � i � k) nested in S, then the verties

S

1

; : : : ; S

k

are desendants of S and the ordered list v

01

; : : : ; v

0m

0

; S

1

;

v

11

; : : : ; v

1m

1

; S

2

; : : : ; S

k

; v

k1

; : : : ; v

km

k

is assoiated with S.

3. The body of the subroutine is the root of the tree.

3. C++ analyzer library

The next question is implementation of the analysis for the C++ language

(we remind that C++ is onsidered in this setion).

First of all, we are restriting the input language and the input program.

There is a variety of di�erent extensions of ANSI C++. Companies devel-

oping the C++ programming environment sometimes add new keywords

to the C++ harater set. Thus, to avoid onfusion, we assume the input

string to belong to the ommon subset of di�erent versions of the language.

The ommon subset is alled ANSI C++

1

. This is not a rigid restrition

1

The spei�ation of this standard an be found in [3℄. At present, this spei�ation is

lose to the urrent one although is not ultimate.

72 I. V. Dubranovsky

Figure 1. A window displaying the result of analysis in the form of a tree of loal

variables and statements

beause the inlusion of new keywords is basially related to separate om-

pilation and to platform for whih programs are written. In partiular, it is

related to linkage spei�ation, proedure alling onventions, et. (e.g., the

delspe, fastall keywords are new with respet to the ANSI C++

standard). That is why the majority of new keywords take plae outside

the funtion de�nition or in funtion headers, whih does not inuene the

funtionality of the proessor.

Another remarkable detail is that, before analyzing a program with Sap,

the C++ preproessor should proess the program to perform maro ex-

pansion and onditional ompilation. The reason is that we analyse solely

funtion de�nitions, not onsidering the whole program. The maro def-

initions an reside outside funtion bodies. Therefore, the reognition of

onstrutions hidden under those maro de�nitions beomes impossible. If

preproessing has not been performed, Sap provides inaurate information.

Let us now disuss the analysis algorithm, i. e., its input, transforma-

tion, and output. The input is a string of ASCII haraters that represents

a phrase in C++. The output �ts the desription of the appliation pro-

gramming interfae presented in Setion 2.4. Before we start the disussion

of the transformation, we need to mention inauray of FI obtained by the

analyzer.

An extensible analyzer of subroutines in imperative languages 73

As it has been noted, the global semanti analysis is not performed. As a

result, ertain onstruts are interpreted inorretly (see Setion 3.2), sine

type and funtion delarations are usually plaed outside funtion bodies.

Therefore, the algorithm is not aware of the majority of the delarations.

To simplify the analysis, it was deided to ignore ompletely the type def-

initions, sine suh a restrition pratially does not inuene the result of

the analysis. The di�erenes between type names, funtion names, and other

names are revealed using the right ontext of the name. Nevertheless, suh

a ontext does not always provide a suessful di�erentiation. This leads to

inauray of ow information, that is, the analyzer treats ertain types as

global arguments, ertain expressions as delarations, et. (see Setion 3.2).

We should say that the analyzer is implemented so that the inauray of

obtained FI is minimized as muh as possible, although it annot be fully

avoided in stati analyzers.

The transformation of an input string builds a simpli�ed derivation

tree. The lookahead reursive desent

2

algorithm generates this tree im-

pliitly. We should underline that a simpli�ed tree is built, beause the

spei�ity of the problem allows us to perform inomplete parsing of some

onstruts. For instane, it is not obligatory to perform full parsing of us-

ing::unquali�ed identi�er ; . It is enough to skip tokens up to the semiolon.

Let us now onsider the transformation at a higher level of details. It is

arried out by:

� lexial san,

� parsing,

� primitive semanti analysis.

These algorithms interat through the standard single-pass sheme of trans-

lation: the parser is the primary algorithm using the sanner to get a new

token from the input string. Syntati and semanti analyses are performed

simultaneously. Sine the sanner algorithm is simple and lear, we will not

desribe it in this paper

3

and turn diretly to the disussion of problems one

may fae while implementing a C++ parser.

2

In general, the C++ grammar is not LL(1), and speaking of the reursive desent

makes no sense. However, we may onsider an algorithm similar to the reursive desent.

The di�erene is that the deterministi deision what prodution should be hosen from

the set of produtions with the same left parts is made not only by the observed symbol

(as it is in the reursive desent). The right ontext that an be unlimited in general is

taken into aount in addition. Suh an algorithm an be alled the lookahead reursive

desent, beause it also performs top-down parsing. Besides, the derivation tree of a hain

is built impliitly by a set of reursive proedures, just like it is usually done by the usual

reursive desent.

3

The desription of the sanner algorithm an be found in [6℄.

74 I. V. Dubranovsky

3.1. Left reursion issue

Our goal is to implement a parser that uses the lookahead reursive desent

algorithm.

4

However, the C++ grammar in [3℄ is left-reursive; hene, it

is impossible to implement the reursive desent. We have to transform the

grammar so that it �ts our needs. To ahieve this, we use the transformation

from [6℄ alled the hange of diretion of reursion. Consider an example.

The produtions for the delarator in C++ have the following form:

delarator ::=

dname

modifier-list delarator

ptr-operator delarator

delarator (argument-del-list) v-qualifier-list opt

delarator [onstant-expression opt ℄

(delarator)

Let us reall how the hange of diretion of reursion looks like just to make

the disussion more demonstrative. Let a grammar � = (T;N; S; P) ontain

the following produtions:

j : A! A�

1

j : : : j A�

m

j �

1

j : : : j �

n

; (1)

where A 2 N , �

1

; : : : ; �

m

2 (T [N)

+

, �

1

; : : : ; �

n

2 (T [N)

�

, and none of

the hains �

i

begins with the nonterminal symbol A. Consider the produ-

tions:

j

1

: A! �

1

[B℄ j : : : j �

n

[B℄ ; (2)

j

2

: B ! �

1

[B℄ j : : : j �

m

[B℄ ; (3)

where B =2 N . Then the grammar �

1

= (T;N [fBg; S; (P n fjg) [fj

1

; j

2

g)

is equivalent to � . Let us apply this transformation to our produtions. First,

we introdue a new nonterminal symbol delarator-tail. Then we have:

delarator ::=

dname delarator-tail opt

modifier-list delarator delarator-tail opt

ptr-operator delarator delarator-tail opt

4

There are several reasons for implementing the lookahead reursive desent. First,

there is no need to parse expressions in the same way it is done in ompilation. Imple-

menting an LR(2)-parser would therefore be expensive and irrational. Seond, the reur-

sive desent enables | without breaking its ideology and transformation of the language

grammar | to ombine proedures onstruted aording to grammar produtions with

those for simpli�ed parsing of language onstrutions.

An extensible analyzer of subroutines in imperative languages 75

(delarator) delarator-tail opt

delarator-tail ::=

(argument-del-list) v-qualifier-list opt

delarator-tail opt

[onstant-expression opt ℄ delarator-tail opt

As one an see, the latter produtions do not ontain left reursion.

3.2. Grammar ambiguity

We should note a grammar ambiguity [3℄ with regard to the expression-

statement and the delaration. Ambiguity resolving is purely syntati, i. e.,

the meaning of a name (ignoring the di�erene between type name and other

names) is not used for resolving. A pratial rule for resolving ambiguities

an be formulated as follows:

1. if something looks like a delaration, then it is a delaration, else

2. if something looks like an expression, then it is an expression, else

3. this is a syntax error.

Parsing with baktraking, together with this rule, may be used to resolve

the ambiguities.

So, this rule resolves the ambiguities if di�erenes between the type name

and other names are taken into aount. However, generally it is impossible

to do this in the ontext of the funtion de�nition beause types an be de-

�ned outside funtion bodies. Thus, there are onstruts for whih ambiguity

annot be resolved. Example:

id(a); // if id is a type name, then it is a delaration,

// else it is a funtion all

id1*id2; // if id1 and id2 are not type names, then it is

// an expression, else it is a delaration

For suh onstruts, ambiguity is resolved in favour of a delaration. An

exeption to this rule is the onstrut sope-quali�er id(a), where sope-

quali�er is a quali�er of the visibility sope and an be an empty string.

Note that parsing is still deterministi sine the analyzer makes use of

the right ontext to hoose one of the following: the string should be parsed

either as a delaration or as an expression. Thus, determinism of the ana-

lyzer is guaranteed. Moreover, if in the proess of looking ahead the analyzer

76 I. V. Dubranovsky

deides that the next onstrut is a delaration, this means that it is atu-

ally parsed and an be skipped in the further analysis. In other words, an

expression should sometimes be parsed twie while a delaration is parsed

only one.

3.3. Notes on the primitive semanti analysis

Aording to the original statement of the problem (see Setion 1), we have

to determine what kind of semanti information the analyzer should ollet.

As we know, the task of the analyzer is to ollet arguments and results,

inluding the hierarhy of loal variables of the subroutine. For this purpose,

it is needed to perform the semanti analysis of delarators, bloks, and using

ourrenes of the variables.

The semanti analysis of delarators serves to determine whether a vari-

able is a referene. To implement this analysis, we have to supply the delara-

tor produtions with some attributes. A simple onsideration allows us to

do this as follows:

produtions attribute rules

d1 ::=

dname d-tail opt dname.bRef = d1.bRef

m-list d2 d-tail opt d2.bRef = d1.bRef

ptr-op d2 d-tail opt d2.bRef = ptr-op.bRef

(d2) d-tail opt d2.bRef = false

ptr-op ::=

* v-qualifier-list opt ptr-op.bRef = false

& v-qualifier-list opt ptr-op.bRef = true

sope-qualifier * v-q-list opt ptr-op.bRef = false

dname ::=

name name.bRef = dname.bRef

q-name q-name.bRef = dname.bRef

name ::=

id id.bRef = name.bRef

~ id

operator-funtion-name

onversion-funtion-name

An extensible analyzer of subroutines in imperative languages 77

The semanti analysis of bloks (visibility sopes) is needed to determine

the visibility of loal variables. A well-known approah to implementation

of the analysis of visibility sopes is to use a stak of lists of objets visible

in a given plae in the subroutine. When the analyzer enters a new blok, a

new empty list is pushed into the stak. When the analyzer exits from the

blok, the stak pops the list. Using the stak, the analyzer distinguishes

loal and global variables in any plae of the subroutine.

Finally, in the proess of the analysis of using ourrenes, the analyzer

determines whether a subroutine uses or modi�es a given variable. To im-

plement this analysis, the analyzer extrats the ontext of the variable. It

onsists of four tokens on the right of the variable (pratie has shown that

four tokens are suÆient for the problem solution). This ontext is used to

determine the type of the onstrution ontaining the variable as its leftmost

token. Then the type of the onstrution allows the analyzer to ompute the

values of the attributes.

4. Java analyzer library

The next question is implementation of the analysis for the Java language

(we remind that Java is onsidered in this setion).

We will not implement a ustom analyzer this time and try to make use

of an existing one. However, we need some hanges in its onstrution. To

ahieve this goal, let us use the Wasp analyzer sine it performs a powerful

stati analysis and the Wasp soure ode is available.

So, there is the Wasp analyzer as a onsole appliation written in the

mixture of Oberon2/Modula2. It is neessary to implement a Java library

that exposes the Sap API interfae and onforms the UI environment from

the standpoint of data exhange format. There are at least two approahes to

solving this problem. The �rst stands for alling the analysis proedures from

Wasp objet modules. In this approah, all the Wasp ode is linked together

with the library. Suh a solution is motivated and plausible if Wasp is written

in C/C++, beause both the UI omponent and the Sap API are written

in C++. In the seond approah Wasp is used as a separate proess using a

�le for data exhange. In this ase, there is a library that starts Wasp as a

separate proess and reeives the result of analysis in a �le. This approah

seems to be more realisti and should be hosen to solve the problem.

The summarization of the aforesaid ideas yields the following. It is still

neessary to implement an algorithm for searh of method headers in a

module. At the same time, it is possible to use Wasp for the analysis of

subroutines. This an be ful�lled by using the so-alled external analyzer

sheme.

78 I. V. Dubranovsky

Figure 2. External analyzer sheme

4.1. External analyzer sheme

We assume that the interfae method (let us all it SapParseObjet) starting

subroutine analysis should be implemented in aordane with the Sap API

arhiteture. Figure 2 will help us to onentrate on the subjet.

It shows a sequene of ations that SapParseObjet should perform in

order to analyse a subroutine. Note that we require the algorithm of anal-

ysis to run in a separate proess. Aording to Setion 2.4.1, SapParseOb-

jet reates a thread (Analyzer Thread in Figure 2) by using the Cre-

ateThread system funtion and returns ontrol immediately to the user in-

terfae thread (UI Thread). The newly reated thread performs the analysis

of the subroutine. Whereas we want to use the external analyzer, Analyzer

Thread runs Wasp in a new proess by using a system all of CreatePro-

ess. After this, WaitForSingleObjet auses Analyzer Thread to sleep un-

til Wasp �nishes its work. After Wasp terminates, Analyzer Thread wakes

up and alls the asynhronous PostMessage system funtion to post the

SAP WM PARSE DONE message to the UI Thread message loop. Then

Analyzer Thread terminates.

Let us onsider the analysis of subroutines ontaining syntax errors. In

this situation, Wasp does not reah the stage of analysis. It outputs to the

onsole an error message that should be displayed to the user and interrupts

its exeution. Sap API provides a list of errors to allow the UI environment to

An extensible analyzer of subroutines in imperative languages 79

display error messages. The address of the list is passed to the library when

the interfae funtions are being alled. Thus, it is neessary to interept the

Wasp onsole output as well as to form a list of errors before PostMessage

is alled. Besides, the Wasp format of error messages should be onverted

to that of Sap API.

4.2. Wasp | the XDS Java Stati Analyzer

In this setion, we will investigate neessary modi�ations of Wasp. They

are obligatory sine the diret use of Wasp is impossible in the ontext of

the Sap arhiteture.

4.2.1. Modi�ations made to Wasp

Wasp obtains the desired FI (and even muh more) and onverts it into an

internal representation. Traversing the internal representation and mapping

FI to a speial format (we will disuss this format later in detail) is nearly

all that remains to be arried out.

We would like to underline that the Wasp internal representation on-

tains a list of arguments and results for eah lass method. However, we also

need a hierarhy of loal variables that does not exist in the representation.

Nevertheless, the representation provides us with a list of loal variables.

The list does not indiate whether a loal variable is an argument or a re-

sult. In this ase, the hierarhy of loal variables is obtained by using the

list of loal variables and traversing the method's body. A di�erent matter

is to distribute loal variables among arguments and results. In this ase,

the list of loal variables and the list of arguments and results may be used.

We apply a simple algorithm: for a given loal variable, the list of arguments

and results is searhed through to determine whether the variable belongs

to the list. The omplexity of suh an algorithm obviously is O

�

n

2

�

, where

n = max (l; k), l is the number of loal variables in the method and k is the

number of arguments and results of the method. This omplexity is fully

aeptable, taking into aount that the average number of loal variables,

arguments, and results is not too large.

4.2.2. Exhange format

The format of data exhange between the Java library and Wasp has been

hosen to be a subset of the standard vCard version 2.1 format that an be

found in [11℄. Let us disuss why suh a hoie has been made.

In fat, the format should reet the hierarhy of loal variables. The hi-

erarhy is usually represented as a tree. Formally, we should build a one-to-

one orrespondene between the set of trees and a ertain language. There-

80 I. V. Dubranovsky

fore, any ontext-free language that is able to express nesting �ts our needs.

One should use this opportunity to make the language simpler both for

parsing and generating.

Sine reently the XML language has beome very popular. It �ts on-

eptually our needs. However, using XML makes sense only if an existing

parser is reused. At the same time, using an existing XML parser is not

optimum in this situation. A better way is to use a subset of a standardized

language to implement a onstrained (simple) parser. A possibility to extend

the subset to the entire language will thereby be provided. That is to say, a

standard parser has to be used only when it is really needed. This is an ad-

vantage that enables an inexpensive extension of the analyzer library when

moving to a next version. The vCard format just satis�es the mentioned

onditions and may be used as a prototype for our purpose.

A subset of the seleted language should now be obtained and some

keywords replaed. A formal desription of the format of data exhange is

left out of the sope of this paper and an be found in Appliation B of [1℄.

5. Conlusion

In this paper, we propose an extensible faility intended to extrat properties

of the C++ and Java subroutines. This faility simpli�es and aelerates the

proess of program understanding. It provides a onvenient user interfae

and does not require muh resoures to operate. The desription of user

interfae has been left out of the sope of this paper. However, one an

easily learn them by reading the Sap on-line help system (see a referene

below). The deterministi analyzer of the ANSI C++ funtion de�nition

has been disussed. The analyzer implementation resides in a dynami-link

library enabling its late binding with the user interfae. We have also studied

modi�ations that should be introdued into Wasp in order to reuse it for

the Sap proessor. The format of data exhange has been desribed as a

related issue.

The primary advantage of the proposed faility is believed to be the pos-

sibility of its extending, whih has been veri�ed for two languages. There-

fore, reating analyzer libraries for new imperative languages might be a

well-appreiated enhanement of Sap.

Finally, in order to make the disussion onsistent, we provide the fol-

lowing information. Sap 1.0 and 2.1 an be downloaded from the web site

http://www.iis.nsk.su/ppsap. The doumentation on version 1.0 and

the API for version 2.1 an be obtained from the same plae.

An extensible analyzer of subroutines in imperative languages 81

Aknowledgements. The author would like to thank A.V. Zamulin for his

onstrutive omments.

Referenes

[1℄ Dubranovsky I.V. The Analysis of Information Links of Subroutines in C++

and Java. | Term Paper, Novosibirsk State University, 2001 (in Russian).

[2℄ Baburin D.E., BulyonkovM.A., Emelianov P.G., Filatkina N.N. Visualization

failities in reverse engineering // Programmirovanie. | 2001. | � 2. |

P. 21{23 (in Russian).

[3℄ Ellis M., Stroustrup B. The Annotated C++ Referene Manual. | AT&T Bell

Laboratories, Murray Hill, New Jersey, 1992.

[4℄ Emelianov P. Analysis of the equality relation for the program terms // Pro.

of the 3th Intern. Stati Analysis Symposium. | Let. Notes in Comput.

Si. | 1996. | Vol. 1145. | P. 174{188.

[5℄ Kasyanov V.N. Optimizing Program Transformations. | Mosow: Nauka,

1988 (in Russian).

[6℄ Kasyanov V.N., Pottosin I.V., Methods of Compiler Constrution. | Novosi-

birsk: Nauka, 1986 (in Russian).

[7℄ Kuksenko S.V., Shelekhov V. I., The stati soure ode heker of run-time

errors // Programmirovanie. | 1998. | � 6. | P. 27{43 (in Russian).

[8℄ Naumovih G.N., Clarke L.A., Osterweil L. J. Veri�ation of ommuniation

protools using data ow analysis // Pro. ACM SIGSOFT '96 Fourth Sympo-

sium on the Foundations of Software Eng. | San Franiso, 1996. | P. 93{105.

[9℄ Pottosin I. V. A \good program": an attempt at an exat de�nition of the

term // Programming and Computer Software. | 1997. | Vol. 23, � 2. |

P. 59{69.

[10℄ Mirosoft Developer Network Library. | Otober 1999.

[11℄ vCard | The Eletroni Business Card Exhange Format. Version

2.1. | The Internet Mail Consortium (IMC), September 18, 1996

(http://www.im.org/pdi/vard-21.do) plus the IrDA Teleom Exten-

sions to the IMC vCard Format, Version 1.0, Otober 15, 1997 (p/o IrMC

Spei�ations Pakage).

82

