
Joint NCC & IIS Bull., Comp. S
ien
e, 15 (2001), 65{81

© 2001 NCC Publisher

An extensible analyzer of subroutines in

imperative languages

?

I. V. Dubranovsky

A lot of work has been dedi
ated to the analysis of sequential imperative programs.

However, existing tools of analysis seem to la
k for
larity and extensibility. That is to say,

although some of them perform powerful
ontext-sensitive data
ow analysis, their e�orts

are
hie
y dire
ted to the analysis of a parti
ular programming language. In this paper,

we propose a new analyzer for C++ and Java that
an be easily extended to perform

intrapro
edural analysis of any imperative program. We dis
uss the ideas motivating the

hoi
e of one or another approa
h to analyzer implementation.

1. Introdu
tion

It is well known that program understanding requires di�erent informa-

tion that
an be obtained from the sour
e
ode by using spe
ial fa
ilities

performing sour
e
ode analysis. The deeper is the analysis performed, the

more detailed is data of the program obtained. A
tually, the eÆ
ien
y of the

obtained information heavily depends on the way it is presented to the user.

There may be an analyzer that performs a powerful stati
 analysis but does

not have a worthwhile user interfa
e to explore the knowledge obtained. It

is obvious that weak presentation of information in su
h a tool redu
es the

advantage of deep analysis.

The dis
ussed issue is parti
ularly important with regard to sequential

imperative programs. No one would argue that the fun
tion or subroutine

is the basi
 element in the imperative language. This fa
t explains the need

for studying subroutines be
ause they �nally form the whole essen
e of the

program. Understanding of fun
tionality and intera
tion of subroutines suf-

�
iently provides understanding of the program stru
ture and operation.

Knowing the set of arguments and results of a subroutine resolves the prob-

lem of interpro
edural intera
tion within a program. Besides, it enables the

use of the stream
riteria [9℄ to estimate the
omplexity of program de
om-

position. Knowing the order of the use of lo
al variables helps us to tra
e the

e�e
t of the fun
tion
all and the side e�e
ts. Let us denote this information

as the
ow information (FI) of a subroutine.

?

Partially supported by the Russian Foundation for Basi
 Resear
h under Grant

00-01-00820.

66 I. V. Dubranovsky

A lot of work has been dedi
ated to program analysis. The algorithms

of analysis di�er in
omplexity, kind, and pre
ision of the information ex-

tra
ted. For instan
e, the analyzer FLAVERS [8℄ implements the data
ow

analysis to fa
ilitate program veri�
ation. The stati
 analyzer of semanti

properties of programs [4℄ obtains the properties in the form of term equali-

ties by using the abstra
t interpretation of the program. The analyzer Wasp

[7℄ performs a powerful
ontext-sensitive data
ow analysis by approximation

of de�nite variable de�nitions. It has been developed to analyse programs

written in the mixture of the Oberon-2 and Modula-2 languages, as well as

Java programs. Therefore, it seems instru
tive to underline the following.

The algorithm designed for Wasp is undoubtedly of great value. However,

reusing it for another language requires spending an appre
iable amount of

time and, a
tually, rebuilding the analyzer, sin
e no spe
ial means have been

provided for this purpose. Besides, the way the information is displayed to

the user (in fa
t, it is dumped into a set of text �les) is not demonstrative

enough. We
an mention in addition the visualizer HyperCode [2℄ developed

basi
ally for the purpose of reverse engineering. It implements the paradigm

of \transparent �lm" and enables displaying a wide range of program rela-

tionships and attributes for any imperative language.

This observation leads us to the idea that some kind of pro
essor deriving

FI from a program without signi�
ant time and resour
e
onsumption would

be attra
tive. An obvious requirement to the pro
essor is that it should

display the obtained information in a
onvenient form. In addition, it should

be an easy-to-use
ompa
t tool. We will
all this pro
essor Sap in the sequel.

It is the obje
tive of this paper to dis
uss
omprehensively the proposed

instrument and its fun
tionality, thereby providing the des
ription of how to

fa
ilitate the pro
ess of studying and understanding an imperative program.

This in
ludes outlining of the method of utilization of existing fa
ilities. Su
h

a method will remove the weak points of the existing fa
ilities related to their

user interfa
e or to the absen
e of the latter.

A few notes on the paper organization. In Se
tion 2, the basi
 ideas

and the ar
hite
ture of the proposed pro
essor are reviewed. This se
tion

also introdu
es requirements to the pro
essor and the appli
ation program-

ming interfa
e. The analyzers for the C++ and Java programming languages

are des
ribed in Se
tions 3 and 4, respe
tively. The dis
ussion
on
ludes in

Se
tion 5, where we examine possible ways of extension of the proposed

pro
essor and provide
onta
t information.

An extensible analyzer of subroutines in imperative languages 67

2. Sap pro
essor

In this se
tion, we dis
uss the Sap pro
essor that is a
ombination of a

user interfa
e with stati
 analyzers. We
on
entrate our attention on the

des
ription of ideas motivating the
hoi
e of one or another ar
hite
ture

prin
iple. These prin
iples will hereafter help us to outline the organization

of the pro
essor
omponents from the standpoint of internal stru
ture and

user interfa
e. Notation and
onventions will also be provided to ex
lude

any misunderstanding.

2.1. Overview: basi
 ideas and their e�e
ts

Let us re
all that we
onsider imperative languages the set of whi
h is large

enough to raise problems in implementing a pro
essor supporting the entire

set. A natural solution is to support a few languages rather than the entire

set, and to enable some kind of pro
essor extensibility for understanding

multiple languages. When using su
h an approa
h, we have to distinguish

the terms
ommon to all imperative languages. As it is indi
ated in Se
tion

1, the subroutine in the imperative language is a fundamental obje
t that

has attributes and an internal stru
ture. It is
lear then that the pro
es-

sor should present subroutines to the user as obje
ts and dire
tly display

their attributes and stru
ture. This provides
larity and simple observation

of information links. The
omplexity and stri
tness of stati
 analysis of dif-

ferent languages depend in parti
ular on the information obtained and on

the kind of parser used. On the one hand, a simple parser
an be used to

build an internal representation adapted to a parti
ular stati
 analysis. On

the other hand, an existing analyzer
an be used to avoid implementing a

ustom parser and analyzer. The latter note
an be taken into a

ount when

designing the pro
essor.

We
an now tra
e the e�e
ts of the above ideas, thereby elaborating

partial requirements to the pro
essor. First of all, the initial set of languages

to be supported has to be
hosen. Let us
hoose C++ and Java | the

most popular languages at present. Next, the way of providing extensibility

should be fully understood. A popular approa
h to solving this problem is to

implement a user interfa
e (UI) environment and a
ouple of initial libraries

for C++ and Java. The UI environment should provide a me
hanism of

registration and dynami
 linkage of language libraries without having to

re
ompile the environment. The libraries should expose the same interfa
e

for subroutine analysis. For some languages, the pro
essor may obtain FI

just by studying the pro
edure body only and using
ow-insensitive analysis.

For the rest of the languages, it may perform a deeper (but still inexpensive)

68 I. V. Dubranovsky

analysis together with the analysis of the fun
tions
alled from the analyzed

subroutine.

We will perform the
ow-insensitive analysis of C++ and the
ow-

sensitive analysis of Java to demonstrate di�erent approa
hes to program

analysis and implementation of language libraries. In this
ase, both kinds

of analysis will be intrapro
edural. For the same reason, none of the existing

tools of automated parser
onstru
tion will be used to implement the C++

library. We will try to reuse the existing Java-frontend and the stati
 ana-

lyzer (Java Stati
 Analyzer Wasp [7℄, in parti
ular) to implement the Java

library.

2.2. Notation and
onventions

The notions of de�ning and using o

urren
es will be used in the sequel.

They have di�erent meanings depending on the
ontext they are used in.

In the
ontext of synta
ti
 and
ow-insensitive analysis, the de�ning o

ur-

ren
e of a variable means its de�nition in the sour
e program. The using

o

urren
e means any other o

urren
e that di�ers from the de�ning one.

In the
ontext of semanti
 and
ow-sensitive analysis, it is
onvenient to
all

the de�ning o

urren
e of a variable the pla
e where it re
eives its value. It

is also
onvenient to
all the using o

urren
e of a variable the pla
e where

its value is read under a
ertain exe
ution of the program.

In this paper, we assume the analysis to be intrapro
edural. Under this

restri
tion, the notions of argument and result are de�ned as follows. When

speaking about
ow-insensitive analysis, we
onsider the argument as a vari-

able of the subroutine that has a using o

urren
e in its body. The result

is
onsidered as an argument that may be modi�ed by the subroutine. The

semanti
s in the
ontext of
ow-sensitive analysis is similar to the generally

a

epted one (see, for instan
e, [5℄): a variable is
alled the argument if the

subroutine, under a
ertain exe
ution, reads its value. Similarly, a variable

is
alled the result if the subroutine, under a
ertain exe
ution, sets its value

(not ne
essarily to ea
h
omponent).

It is ne
essary to emphasize, just to avoid any
onfusion, that the pro-

essor is intended to fun
tion under Mi
rosoft Windows 98/2000 and hen
e

it is written by using Win32 API. For this reason, pro
essor exe
ution is

des
ribed in this paper in terms of the operating system and Win32 API

routines.

2.3. Outline of the ar
hite
tural elements

In Se
tion 2.1, a suitable approa
h to the implementation of extensibility

has been presented. The approa
h suggests the
reation of a UI environment

An extensible analyzer of subroutines in imperative languages 69

and language libraries so that ea
h library
orresponds to the supported

language. Let us dis
uss the purpose of these
omponents. One of the main

obje
tives of the UI environment is to display FI and allow the user to

navigate easily through it. We
onsider that the ability to analyse the sour
e

ode should not be in
luded in the list of aims of the UI environment be
ause

it is only intended to show visually the out
ome of analysis
arried out

by other
omponents. Furthermore, the UI environment should be able to

start analyzers residing in their language libraries, sin
e the UI environment

annot analyse subroutines by itself.

The language libraries should provide the implementations of required

algorithms, where the main algorithm is the extra
tion of FI from a given

subroutine. It is also natural that di�erent libraries should expose the same

API (Appli
ation Programming Interfa
e) and the same format of data ex-

hange. This allows the UI environment not to be
on
erned with library

ontents. The UI
an merely
all the interfa
e methods whi
h have similar

sets of parameters. Let us
all su
h an interfa
e Sap API. It is des
ribed

in detail below.

2.4. Appli
ation programming interfa
e

As it is noted in Se
tion 2.3, it is ne
essary to unify the intera
tion of the

UI environment
omponent and the language libraries. To address the issue,

one should spe
ify an interfa
e made up of methods and data types used for

the ex
hange of information between the
aller and the library. In windows

programming, su
h an interfa
e is usually
alled an appli
ation programming

interfa
e, or simply API. It enables writing new appli
ations that
all library

routines through this interfa
e (see, for explanation, Win32 API in [10℄). The

primary goal now is to determine what methods and data types should form

Sap API and what kind of work those methods should
arry out.

2.4.1. Interfa
e fun
tions

The simplest way to determine the set of methods of Sap API is to look

through the fun
tionality of the pro
essor in order to obtain its baselines. It

is obvious that one of su
h baselines is subroutine analysis, whi
h should be

en
apsulated in a method of API. Another basi
 fun
tionality, as pra
ti
e

has shown, may be a sear
h for all the subroutines in the module of the

program, a

ommodating them into a list or a tree, depending on the par-

ti
ular language syntax. This, for example, allows displaying the subroutines

of a module in a window immediately after opening the module in the UI

environment. The other API methods do not deserve our attention and are

left out of the s
ope of the paper.

70 I. V. Dubranovsky

There are some spe
ial requirements to the interfa
e methods. They

should not
ontain
ompli
ated algorithms in the sense that their exe
u-

tion will require a large amount of time resour
es be
ause Sap must not

for
e the user to wait for the algorithm �nishing its exe
ution. Otherwise,

the user would have to waste time waiting until the subroutine is analysed.

Instead, the interfa
e methods may
reate new threads of exe
ution, start

ompli
ated algorithms on them, and immediately return. Another impor-

tant remark is that the algorithms mentioned above have no rights to use

global and stati
 variables for writing in order to use the s
heme of separate

memory. That is to say, the s
heme of separate memory helps us to avoid

thread syn
hronization.

As a result, the pattern of an interfa
e method has the following form.

The interfa
e method
reates a new thread exe
uting an appropriate al-

gorithm. When the new thread �nishes exe
ution, the originator thread is

noti�ed with a message. Su
h a noti�
ation should be interpreted as the

termination of analysis. The message provides a pointer to data that need

to be displayed. The presented pattern provides the user with a possibility

to analyse several subroutines simultaneously. Note that Sap
an respond to

user
ommands while analyzing subroutines.

2.4.2. Data types

The des
ription of Sap API would not be
omplete without illustration of

data types used to transmit the extra
ted information from the language

libraries to the UI environment via the interfa
e methods. On the other

hand, it seems justi�ed not to deepen in details while des
ribing the data

types in this paper. Therefore, let us at �rst simply present two basi
 types,

ea
h of whi
h
orresponds to the appropriate interfa
e method. Next, the

onstru
tion of more
ompli
ated data types be
omes possible.

Note that natural
onsiderations should be taken into a

ount in order

to generate the data types mentioned above. A

ording to Se
tion 2.4.1, we

have got two fun
tionalities. We should elaborate a data type for ea
h of

them. Sear
h for all the subroutines in the module of a program, a

om-

modating them into a list or a tree, requires that a tree node should be

spe
i�ed. Su
h a tree node may
ontain the following information:

� subroutine name;

�
oordinates of the subroutine in the module;

� pointer to the data identifying the subroutine in the module (for ex-

ample, it may be either the position of the subroutine in the module

or the prototype of the subroutine);

� size of the data identifying the subroutine.

An extensible analyzer of subroutines in imperative languages 71

The upper two items of the list may be used (and they are a
tually used)

to display visually the subroutine header in the UI environment. The pla
e

where the subroutine resides in the sour
e
ode of the program
an also be

displayed. The remaining items are reserved for implementation purposes

and serve as a subroutine identi�er helping to lo
ate the subroutine when

the a
tual analysis is started. The same ideas
an be applied to the data

types that a

ompany the other fun
tionality. We will not pay attention to

them here. Instead, it is worth giving a de�nition of a lo
al variable tree

used to display the hierar
hy of lo
al variables of the subroutine in the UI

environment. The lo
al variable tree presents lo
al variables for browsing in

a
onvenient form (see Figure 1). This tree
ontains lo
al variables of the

subroutine and the names of statements (su
h as if, swit
h, for, while,

et
.) that
ause new s
opes of visibility of the variables. Ea
h vertex of the

tree
orresponds to a statement in the subroutine. The list of lo
al variables

de
lared inside the statement is asso
iated with the appropriate vertex. Su
h

a tree
an be de�ned re
ursively.

1. Consider a statement that does not have nested statements; let it

ontain the de
larations of lo
al variables v

1

; : : : ; v

m

. Su
h a statement

is a leaf of the tree. An ordered list of variables v

1

; : : : ; v

m

is asso
iated

with this leaf.

2. If S is a statement and v

01

; : : : ; v

0m

0

; S

1

; v

11

; : : : ; v

1m

1

; S

2

; : : : ; S

k

; v

k1

;

: : : ; v

km

k

is a sequen
e of de
larations of variables v

ij

(0 � i � k, 1 �

j � m

i

) and statements S

i

(0 � i � k) nested in S, then the verti
es

S

1

; : : : ; S

k

are des
endants of S and the ordered list v

01

; : : : ; v

0m

0

; S

1

;

v

11

; : : : ; v

1m

1

; S

2

; : : : ; S

k

; v

k1

; : : : ; v

km

k

is asso
iated with S.

3. The body of the subroutine is the root of the tree.

3. C++ analyzer library

The next question is implementation of the analysis for the C++ language

(we remind that C++ is
onsidered in this se
tion).

First of all, we are restri
ting the input language and the input program.

There is a variety of di�erent extensions of ANSI C++. Companies devel-

oping the C++ programming environment sometimes add new keywords

to the C++
hara
ter set. Thus, to avoid
onfusion, we assume the input

string to belong to the
ommon subset of di�erent versions of the language.

The
ommon subset is
alled ANSI C++

1

. This is not a rigid restri
tion

1

The spe
i�
ation of this standard
an be found in [3℄. At present, this spe
i�
ation is

lose to the
urrent one although is not ultimate.

72 I. V. Dubranovsky

Figure 1. A window displaying the result of analysis in the form of a tree of lo
al

variables and statements

be
ause the in
lusion of new keywords is basi
ally related to separate
om-

pilation and to platform for whi
h programs are written. In parti
ular, it is

related to linkage spe
i�
ation, pro
edure
alling
onventions, et
. (e.g., the

de
lspe
, fast
all keywords are new with respe
t to the ANSI C++

standard). That is why the majority of new keywords take pla
e outside

the fun
tion de�nition or in fun
tion headers, whi
h does not in
uen
e the

fun
tionality of the pro
essor.

Another remarkable detail is that, before analyzing a program with Sap,

the C++ prepro
essor should pro
ess the program to perform ma
ro ex-

pansion and
onditional
ompilation. The reason is that we analyse solely

fun
tion de�nitions, not
onsidering the whole program. The ma
ro def-

initions
an reside outside fun
tion bodies. Therefore, the re
ognition of

onstru
tions hidden under those ma
ro de�nitions be
omes impossible. If

prepro
essing has not been performed, Sap provides ina

urate information.

Let us now dis
uss the analysis algorithm, i. e., its input, transforma-

tion, and output. The input is a string of ASCII
hara
ters that represents

a phrase in C++. The output �ts the des
ription of the appli
ation pro-

gramming interfa
e presented in Se
tion 2.4. Before we start the dis
ussion

of the transformation, we need to mention ina

ura
y of FI obtained by the

analyzer.

An extensible analyzer of subroutines in imperative languages 73

As it has been noted, the global semanti
 analysis is not performed. As a

result,
ertain
onstru
ts are interpreted in
orre
tly (see Se
tion 3.2), sin
e

type and fun
tion de
larations are usually pla
ed outside fun
tion bodies.

Therefore, the algorithm is not aware of the majority of the de
larations.

To simplify the analysis, it was de
ided to ignore
ompletely the type def-

initions, sin
e su
h a restri
tion pra
ti
ally does not in
uen
e the result of

the analysis. The di�eren
es between type names, fun
tion names, and other

names are revealed using the right
ontext of the name. Nevertheless, su
h

a
ontext does not always provide a su

essful di�erentiation. This leads to

ina

ura
y of
ow information, that is, the analyzer treats
ertain types as

global arguments,
ertain expressions as de
larations, et
. (see Se
tion 3.2).

We should say that the analyzer is implemented so that the ina

ura
y of

obtained FI is minimized as mu
h as possible, although it
annot be fully

avoided in stati
 analyzers.

The transformation of an input string builds a simpli�ed derivation

tree. The lookahead re
ursive des
ent

2

algorithm generates this tree im-

pli
itly. We should underline that a simpli�ed tree is built, be
ause the

spe
i�
ity of the problem allows us to perform in
omplete parsing of some

onstru
ts. For instan
e, it is not obligatory to perform full parsing of us-

ing::unquali�ed identi�er ; . It is enough to skip tokens up to the semi
olon.

Let us now
onsider the transformation at a higher level of details. It is

arried out by:

� lexi
al s
an,

� parsing,

� primitive semanti
 analysis.

These algorithms intera
t through the standard single-pass s
heme of trans-

lation: the parser is the primary algorithm using the s
anner to get a new

token from the input string. Synta
ti
 and semanti
 analyses are performed

simultaneously. Sin
e the s
anner algorithm is simple and
lear, we will not

des
ribe it in this paper

3

and turn dire
tly to the dis
ussion of problems one

may fa
e while implementing a C++ parser.

2

In general, the C++ grammar is not LL(1), and speaking of the re
ursive des
ent

makes no sense. However, we may
onsider an algorithm similar to the re
ursive des
ent.

The di�eren
e is that the deterministi
 de
ision what produ
tion should be
hosen from

the set of produ
tions with the same left parts is made not only by the observed symbol

(as it is in the re
ursive des
ent). The right
ontext that
an be unlimited in general is

taken into a

ount in addition. Su
h an algorithm
an be
alled the lookahead re
ursive

des
ent, be
ause it also performs top-down parsing. Besides, the derivation tree of a
hain

is built impli
itly by a set of re
ursive pro
edures, just like it is usually done by the usual

re
ursive des
ent.

3

The des
ription of the s
anner algorithm
an be found in [6℄.

74 I. V. Dubranovsky

3.1. Left re
ursion issue

Our goal is to implement a parser that uses the lookahead re
ursive des
ent

algorithm.

4

However, the C++ grammar in [3℄ is left-re
ursive; hen
e, it

is impossible to implement the re
ursive des
ent. We have to transform the

grammar so that it �ts our needs. To a
hieve this, we use the transformation

from [6℄
alled the
hange of dire
tion of re
ursion. Consider an example.

The produ
tions for the de
larator in C++ have the following form:

de
larator ::=

dname

modifier-list de
larator

ptr-operator de
larator

de
larator (argument-de
l-list)
v-qualifier-list opt

de
larator [
onstant-expression opt ℄

(de
larator)

Let us re
all how the
hange of dire
tion of re
ursion looks like just to make

the dis
ussion more demonstrative. Let a grammar � = (T;N; S; P)
ontain

the following produ
tions:

j : A! A�

1

j : : : j A�

m

j �

1

j : : : j �

n

; (1)

where A 2 N , �

1

; : : : ; �

m

2 (T [N)

+

, �

1

; : : : ; �

n

2 (T [N)

�

, and none of

the
hains �

i

begins with the nonterminal symbol A. Consider the produ
-

tions:

j

1

: A! �

1

[B℄ j : : : j �

n

[B℄ ; (2)

j

2

: B ! �

1

[B℄ j : : : j �

m

[B℄ ; (3)

where B =2 N . Then the grammar �

1

= (T;N [fBg; S; (P n fjg) [fj

1

; j

2

g)

is equivalent to � . Let us apply this transformation to our produ
tions. First,

we introdu
e a new nonterminal symbol de
larator-tail. Then we have:

de
larator ::=

dname de
larator-tail opt

modifier-list de
larator de
larator-tail opt

ptr-operator de
larator de
larator-tail opt

4

There are several reasons for implementing the lookahead re
ursive des
ent. First,

there is no need to parse expressions in the same way it is done in
ompilation. Imple-

menting an LR(2)-parser would therefore be expensive and irrational. Se
ond, the re
ur-

sive des
ent enables | without breaking its ideology and transformation of the language

grammar | to
ombine pro
edures
onstru
ted a

ording to grammar produ
tions with

those for simpli�ed parsing of language
onstru
tions.

An extensible analyzer of subroutines in imperative languages 75

(de
larator) de
larator-tail opt

de
larator-tail ::=

(argument-de
l-list)
v-qualifier-list opt

de
larator-tail opt

[
onstant-expression opt ℄ de
larator-tail opt

As one
an see, the latter produ
tions do not
ontain left re
ursion.

3.2. Grammar ambiguity

We should note a grammar ambiguity [3℄ with regard to the expression-

statement and the de
laration. Ambiguity resolving is purely synta
ti
, i. e.,

the meaning of a name (ignoring the di�eren
e between type name and other

names) is not used for resolving. A pra
ti
al rule for resolving ambiguities

an be formulated as follows:

1. if something looks like a de
laration, then it is a de
laration, else

2. if something looks like an expression, then it is an expression, else

3. this is a syntax error.

Parsing with ba
ktra
king, together with this rule, may be used to resolve

the ambiguities.

So, this rule resolves the ambiguities if di�eren
es between the type name

and other names are taken into a

ount. However, generally it is impossible

to do this in the
ontext of the fun
tion de�nition be
ause types
an be de-

�ned outside fun
tion bodies. Thus, there are
onstru
ts for whi
h ambiguity

annot be resolved. Example:

id(a); // if id is a type name, then it is a de
laration,

// else it is a fun
tion
all

id1*id2; // if id1 and id2 are not type names, then it is

// an expression, else it is a de
laration

For su
h
onstru
ts, ambiguity is resolved in favour of a de
laration. An

ex
eption to this rule is the
onstru
t s
ope-quali�er id(a), where s
ope-

quali�er is a quali�er of the visibility s
ope and
an be an empty string.

Note that parsing is still deterministi
 sin
e the analyzer makes use of

the right
ontext to
hoose one of the following: the string should be parsed

either as a de
laration or as an expression. Thus, determinism of the ana-

lyzer is guaranteed. Moreover, if in the pro
ess of looking ahead the analyzer

76 I. V. Dubranovsky

de
ides that the next
onstru
t is a de
laration, this means that it is a
tu-

ally parsed and
an be skipped in the further analysis. In other words, an

expression should sometimes be parsed twi
e while a de
laration is parsed

only on
e.

3.3. Notes on the primitive semanti
 analysis

A

ording to the original statement of the problem (see Se
tion 1), we have

to determine what kind of semanti
 information the analyzer should
olle
t.

As we know, the task of the analyzer is to
olle
t arguments and results,

in
luding the hierar
hy of lo
al variables of the subroutine. For this purpose,

it is needed to perform the semanti
 analysis of de
larators, blo
ks, and using

o

urren
es of the variables.

The semanti
 analysis of de
larators serves to determine whether a vari-

able is a referen
e. To implement this analysis, we have to supply the de
lara-

tor produ
tions with some attributes. A simple
onsideration allows us to

do this as follows:

produ
tions attribute rules

d1 ::=

dname d-tail opt dname.bRef = d1.bRef

m-list d2 d-tail opt d2.bRef = d1.bRef

ptr-op d2 d-tail opt d2.bRef = ptr-op.bRef

(d2) d-tail opt d2.bRef = false

ptr-op ::=

*
v-qualifier-list opt ptr-op.bRef = false

&
v-qualifier-list opt ptr-op.bRef = true

s
ope-qualifier *
v-q-list opt ptr-op.bRef = false

dname ::=

name name.bRef = dname.bRef

q-name q-name.bRef = dname.bRef

name ::=

id id.bRef = name.bRef

~ id

operator-fun
tion-name

onversion-fun
tion-name

An extensible analyzer of subroutines in imperative languages 77

The semanti
 analysis of blo
ks (visibility s
opes) is needed to determine

the visibility of lo
al variables. A well-known approa
h to implementation

of the analysis of visibility s
opes is to use a sta
k of lists of obje
ts visible

in a given pla
e in the subroutine. When the analyzer enters a new blo
k, a

new empty list is pushed into the sta
k. When the analyzer exits from the

blo
k, the sta
k pops the list. Using the sta
k, the analyzer distinguishes

lo
al and global variables in any pla
e of the subroutine.

Finally, in the pro
ess of the analysis of using o

urren
es, the analyzer

determines whether a subroutine uses or modi�es a given variable. To im-

plement this analysis, the analyzer extra
ts the
ontext of the variable. It

onsists of four tokens on the right of the variable (pra
ti
e has shown that

four tokens are suÆ
ient for the problem solution). This
ontext is used to

determine the type of the
onstru
tion
ontaining the variable as its leftmost

token. Then the type of the
onstru
tion allows the analyzer to
ompute the

values of the attributes.

4. Java analyzer library

The next question is implementation of the analysis for the Java language

(we remind that Java is
onsidered in this se
tion).

We will not implement a
ustom analyzer this time and try to make use

of an existing one. However, we need some
hanges in its
onstru
tion. To

a
hieve this goal, let us use the Wasp analyzer sin
e it performs a powerful

stati
 analysis and the Wasp sour
e
ode is available.

So, there is the Wasp analyzer as a
onsole appli
ation written in the

mixture of Oberon2/Modula2. It is ne
essary to implement a Java library

that exposes the Sap API interfa
e and
onforms the UI environment from

the standpoint of data ex
hange format. There are at least two approa
hes to

solving this problem. The �rst stands for
alling the analysis pro
edures from

Wasp obje
t modules. In this approa
h, all the Wasp
ode is linked together

with the library. Su
h a solution is motivated and plausible if Wasp is written

in C/C++, be
ause both the UI
omponent and the Sap API are written

in C++. In the se
ond approa
h Wasp is used as a separate pro
ess using a

�le for data ex
hange. In this
ase, there is a library that starts Wasp as a

separate pro
ess and re
eives the result of analysis in a �le. This approa
h

seems to be more realisti
 and should be
hosen to solve the problem.

The summarization of the aforesaid ideas yields the following. It is still

ne
essary to implement an algorithm for sear
h of method headers in a

module. At the same time, it is possible to use Wasp for the analysis of

subroutines. This
an be ful�lled by using the so-
alled external analyzer

s
heme.

78 I. V. Dubranovsky

Figure 2. External analyzer s
heme

4.1. External analyzer s
heme

We assume that the interfa
e method (let us
all it SapParseObje
t) starting

subroutine analysis should be implemented in a

ordan
e with the Sap API

ar
hite
ture. Figure 2 will help us to
on
entrate on the subje
t.

It shows a sequen
e of a
tions that SapParseObje
t should perform in

order to analyse a subroutine. Note that we require the algorithm of anal-

ysis to run in a separate pro
ess. A

ording to Se
tion 2.4.1, SapParseOb-

je
t
reates a thread (Analyzer Thread in Figure 2) by using the Cre-

ateThread system fun
tion and returns
ontrol immediately to the user in-

terfa
e thread (UI Thread). The newly
reated thread performs the analysis

of the subroutine. Whereas we want to use the external analyzer, Analyzer

Thread runs Wasp in a new pro
ess by using a system
all of CreatePro-

ess. After this, WaitForSingleObje
t
auses Analyzer Thread to sleep un-

til Wasp �nishes its work. After Wasp terminates, Analyzer Thread wakes

up and
alls the asyn
hronous PostMessage system fun
tion to post the

SAP WM PARSE DONE message to the UI Thread message loop. Then

Analyzer Thread terminates.

Let us
onsider the analysis of subroutines
ontaining syntax errors. In

this situation, Wasp does not rea
h the stage of analysis. It outputs to the

onsole an error message that should be displayed to the user and interrupts

its exe
ution. Sap API provides a list of errors to allow the UI environment to

An extensible analyzer of subroutines in imperative languages 79

display error messages. The address of the list is passed to the library when

the interfa
e fun
tions are being
alled. Thus, it is ne
essary to inter
ept the

Wasp
onsole output as well as to form a list of errors before PostMessage

is
alled. Besides, the Wasp format of error messages should be
onverted

to that of Sap API.

4.2. Wasp | the XDS Java Stati
 Analyzer

In this se
tion, we will investigate ne
essary modi�
ations of Wasp. They

are obligatory sin
e the dire
t use of Wasp is impossible in the
ontext of

the Sap ar
hite
ture.

4.2.1. Modi�
ations made to Wasp

Wasp obtains the desired FI (and even mu
h more) and
onverts it into an

internal representation. Traversing the internal representation and mapping

FI to a spe
ial format (we will dis
uss this format later in detail) is nearly

all that remains to be
arried out.

We would like to underline that the Wasp internal representation
on-

tains a list of arguments and results for ea
h
lass method. However, we also

need a hierar
hy of lo
al variables that does not exist in the representation.

Nevertheless, the representation provides us with a list of lo
al variables.

The list does not indi
ate whether a lo
al variable is an argument or a re-

sult. In this
ase, the hierar
hy of lo
al variables is obtained by using the

list of lo
al variables and traversing the method's body. A di�erent matter

is to distribute lo
al variables among arguments and results. In this
ase,

the list of lo
al variables and the list of arguments and results may be used.

We apply a simple algorithm: for a given lo
al variable, the list of arguments

and results is sear
hed through to determine whether the variable belongs

to the list. The
omplexity of su
h an algorithm obviously is O

�

n

2

�

, where

n = max (l; k), l is the number of lo
al variables in the method and k is the

number of arguments and results of the method. This
omplexity is fully

a

eptable, taking into a

ount that the average number of lo
al variables,

arguments, and results is not too large.

4.2.2. Ex
hange format

The format of data ex
hange between the Java library and Wasp has been

hosen to be a subset of the standard vCard version 2.1 format that
an be

found in [11℄. Let us dis
uss why su
h a
hoi
e has been made.

In fa
t, the format should re
e
t the hierar
hy of lo
al variables. The hi-

erar
hy is usually represented as a tree. Formally, we should build a one-to-

one
orresponden
e between the set of trees and a
ertain language. There-

80 I. V. Dubranovsky

fore, any
ontext-free language that is able to express nesting �ts our needs.

One should use this opportunity to make the language simpler both for

parsing and generating.

Sin
e re
ently the XML language has be
ome very popular. It �ts
on-

eptually our needs. However, using XML makes sense only if an existing

parser is reused. At the same time, using an existing XML parser is not

optimum in this situation. A better way is to use a subset of a standardized

language to implement a
onstrained (simple) parser. A possibility to extend

the subset to the entire language will thereby be provided. That is to say, a

standard parser has to be used only when it is really needed. This is an ad-

vantage that enables an inexpensive extension of the analyzer library when

moving to a next version. The vCard format just satis�es the mentioned

onditions and may be used as a prototype for our purpose.

A subset of the sele
ted language should now be obtained and some

keywords repla
ed. A formal des
ription of the format of data ex
hange is

left out of the s
ope of this paper and
an be found in Appli
ation B of [1℄.

5. Con
lusion

In this paper, we propose an extensible fa
ility intended to extra
t properties

of the C++ and Java subroutines. This fa
ility simpli�es and a

elerates the

pro
ess of program understanding. It provides a
onvenient user interfa
e

and does not require mu
h resour
es to operate. The des
ription of user

interfa
e has been left out of the s
ope of this paper. However, one
an

easily learn them by reading the Sap on-line help system (see a referen
e

below). The deterministi
 analyzer of the ANSI C++ fun
tion de�nition

has been dis
ussed. The analyzer implementation resides in a dynami
-link

library enabling its late binding with the user interfa
e. We have also studied

modi�
ations that should be introdu
ed into Wasp in order to reuse it for

the Sap pro
essor. The format of data ex
hange has been des
ribed as a

related issue.

The primary advantage of the proposed fa
ility is believed to be the pos-

sibility of its extending, whi
h has been veri�ed for two languages. There-

fore,
reating analyzer libraries for new imperative languages might be a

well-appre
iated enhan
ement of Sap.

Finally, in order to make the dis
ussion
onsistent, we provide the fol-

lowing information. Sap 1.0 and 2.1
an be downloaded from the web site

http://www.iis.nsk.su/
ppsap. The do
umentation on version 1.0 and

the API for version 2.1
an be obtained from the same pla
e.

An extensible analyzer of subroutines in imperative languages 81

A
knowledgements. The author would like to thank A.V. Zamulin for his

onstru
tive
omments.

Referen
es

[1℄ Dubranovsky I.V. The Analysis of Information Links of Subroutines in C++

and Java. | Term Paper, Novosibirsk State University, 2001 (in Russian).

[2℄ Baburin D.E., BulyonkovM.A., Emelianov P.G., Filatkina N.N. Visualization

fa
ilities in reverse engineering // Programmirovanie. | 2001. | � 2. |

P. 21{23 (in Russian).

[3℄ Ellis M., Stroustrup B. The Annotated C++ Referen
e Manual. | AT&T Bell

Laboratories, Murray Hill, New Jersey, 1992.

[4℄ Emelianov P. Analysis of the equality relation for the program terms // Pro
.

of the 3th Intern. Stati
 Analysis Symposium. | Le
t. Notes in Comput.

S
i. | 1996. | Vol. 1145. | P. 174{188.

[5℄ Kasyanov V.N. Optimizing Program Transformations. | Mos
ow: Nauka,

1988 (in Russian).

[6℄ Kasyanov V.N., Pottosin I.V., Methods of Compiler Constru
tion. | Novosi-

birsk: Nauka, 1986 (in Russian).

[7℄ Kuksenko S.V., Shelekhov V. I., The stati
 sour
e
ode
he
ker of run-time

errors // Programmirovanie. | 1998. | � 6. | P. 27{43 (in Russian).

[8℄ Naumovi
h G.N., Clarke L.A., Osterweil L. J. Veri�
ation of
ommuni
ation

proto
ols using data
ow analysis // Pro
. ACM SIGSOFT '96 Fourth Sympo-

sium on the Foundations of Software Eng. | San Fran
is
o, 1996. | P. 93{105.

[9℄ Pottosin I. V. A \good program": an attempt at an exa
t de�nition of the

term // Programming and Computer Software. | 1997. | Vol. 23, � 2. |

P. 59{69.

[10℄ Mi
rosoft Developer Network Library. | O
tober 1999.

[11℄ vCard | The Ele
troni
 Business Card Ex
hange Format. Version

2.1. | The Internet Mail Consortium (IMC), September 18, 1996

(http://www.im
.org/pdi/v
ard-21.do
) plus the IrDA Tele
om Exten-

sions to the IMC vCard Format, Version 1.0, O
tober 15, 1997 (p/o IrMC

Spe
i�
ations Pa
kage).

82

