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Simulation of an electron beam and plasma
interaction∗

A.A. Efimova

Abstract. The problem of an electron beam and plasma interaction, arising from
the GOL-3 (BINP SB RAS) experiments, is considered. For the given problem,
it is appropriate to use the collisionless plasma approach, described by a set of the
Vlasov–Maxwell equations. The Vlasov equation is calculated via the particle-in-
cell method. To find the electric and the magnetic fields, the Langdon–Lasinski
scheme, in which fields are determined from difference approximations from the
Faraday and the Ampere laws, was used. The tests made have shown that the
proposed model adequately describes the plasma temperature effects.

1. Introduction

The given problem deals with investigation of the plasma thermal conduc-
tivity, where plasma is heated by a relativistic electron beam. The beam
and plasma parameters were chosen close to those of the GOL-3 II experi-
ment [1,2]. The GOL-3 facility represents a plasma high-density thermonu-
clear trap of the open type in which the plasma is heated by means of a
powerful relativistic electron beam. According to its parameters, plasma of
the GOL-3 facility is sub-thermonuclear.

It is shown that the cooling of plasma in this facility after the heating
process terminates is satisfactorily described by the classical electron heat
conductivity [1]. In order to explain both the absolute value obtained in the
electron temperature experiment and, the heating dynamics and the tem-
perature distribution along the facility, suppression of the heat conductivity
is required during the heating process. The suppression differs 100–1000
times in comparison with the one by classical calculations, i.e., there is a
so-called abnormal heat conductivity. The presence of a high-collision fre-
quency permits one to interpret a number of experimental data such as a
fast drop (almost to zero) of the power of the mild plasma roentgen ra-
diation [2]. There is a necessity to investigate the nature of an abnormal
collision frequency for a successful planning of experiments and interpreta-
tion of acquired data.

The most probable reason of a change in plasma kinetic properties in the
process of the beam injection is an electron spreading over density fluctua-
tions, appearing during the nonlinear stage of the beam instability evolution.
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There are many papers concerned with investigation of the nonlinear stage
of the collective relativistic electron beam and plasma interaction, but rig-
orous analytical results in this area have been obtained only for more or
less simple physical models [3, 4]. This results in the use of the numerical
modeling for solving the given problem. For this purpose, a number of codes
have been developed. With these codes one solves a set of Vlasov–Maxwell
equations by the particle-in-cell (PIC) method [5–7] and investigates the
relaxation process of an electron beam in plasma in collisionless plasma ap-
proximation. A feature of the particle-in-cell method is a special manner
of discretization, in which the number of model particles is introduced as a
grid of mobile nodes [6]. Modifications of this method differ from each other
by the kernel of particles, whose types are proposed in [6, 7]. In this paper,
the PIC kernel is used. It is more frequently used for solving real physical
problems as the numerical algorithm is simple in realization and allows one
to find a sufficiently accurate solution.

The novelty of this paper consists in the temperature modeling via the
PIC-method. The difficulty of the problem is that separate model particles
combine a number of real particles, and, consequently, there is a problem of
dispersion interpretation of a particle distribution function by velocities as
temperature.

In the first section, a general problem statement is introduced. The nu-
merical methods by which the given problem was solved are considered in
the second section. Also, there are difference approximations of the corre-
sponding equations. The methods to find the particle temperature in plasma
and formulas for definition of energy are described in the third section. In
the last section, the test numerical experiments are presented.

2. Problem statement

The model uses the collisionless approximation of plasma [5–7]. Plasma is
described by a system of the Vlasov–Maxwell equations
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where fk is a particle distribution function of the species k (electrons or
ions), ~H is a magnetic field, ~E is an electric field, c is the speed of light,
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ρ is the electric charge density, ~j is the electric current density, and qk is the
charge of a particle of the species k.

Equation (1) is a collisionless kinetic Vlasov equation, equations (2), (3)
are a system of the Maxwell equations, equations (4) define the current and
the charge densities by particle distribution functions. It is assumed that
all magnitudes depend on the spatial cartesian coordinates (x, y, z), i.e., a
three-dimensional non-stationary problem is solved. The calculation box
has a parallelepiped form (0 ≤ x ≤ lx, 0 ≤ y ≤ ly, 0 ≤ z ≤ lz) and the
injection direction of a beam is along x-axis. The boundary conditions are
periodic, i.e.,

F |x=0 = F |x=lx , F |y=0 = F |y=ly , F |z=0 = F |z=lz , (5)

where F is any one of the following quantities ~E, ~H, fk, ~j, and ρ. Homogene-
ity conditions of the initial electron (ne), the ion (ni) and the beam electron
densities are imposed. The distribution by ion velocities is Maxwellian, the
distribution by electron velocities is a shifted Maxwellian for compensation
of the beam current

~j|t=0 = 0, (6)

where ~j is defined from equation (4). At the initial time, plasma is isother-
mal. A system of equations (1)–(4) is a consistent integro-differential system
of equations.

The PIC-method [5–7] is the most appropriate one for solving such sys-
tem of equations. By using this method, plasma is simulated by a set
of discrete particles, whose motion trajectories are characteristics of equa-
tion (1). Thus, the Maxwell equations and the relativistic motion equations
for macroparticles need to be solved. In the dimensionless form, this system
is described as follows:
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where γk, mk, and nk are the relativistic factor, mass, and density of
species k, β0 = v0

c
. By finding the current in equation (10), summation

is carried out by all particles and all components, qknk is the charge density
of a macroparticle of the kind k.



4 A.A. Efimova

The current density is found in such a manner that the continuity equa-
tion is applied at all grid points. The following relations

div ~E = 4πρ, div ~H = 0 (11)

are automatically satisfied.

3. Numerical algorithms

3.1. Approximation of the Vlasov equation. For solving the Vlasov
equation, the PIC-method [5–8] is used. In this method, plasma is modeled
by a set of separate particles, each one characterizing the motion of many
physical particles. Characteristics of the Vlasov equation describe trajecto-
ries of the particle motion with equations (7). To solve these equations, the
following lip-frog scheme is used

p
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[
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(12)

The PIC-method reduces the six-dimensional problem of solving the
Vlasov equation to that of integration of separate particle motion equa-
tions. With finite difference methods, the time complexity of the problem
solution is reduced from O(n6) to O(n3) in the PIC-method.

3.2. Approximation of the Maxwell equations. The Maxwell equa-
tions are solved using the Euler variables [7,8]. The charge and the current
densities, equations (4), which are necessary for their solution, are defined
by particle velocities and coordinates

ρ(r, t) =
K∑
k=1

qkR(r, rk(t)), j(r, t) =
K∑
k=1

qkvk(t)R(r, rk(t)) (13)

or in the grid form:

~j
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∑
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qpv
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p
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p ). (14)

Here qk is a charge of the particle with number k and the function R(r, rk(t))
is the kernel of the PIC-method. This characterizes the particle form and
size and the charge distribution [6, 7]. The PIC-kernel has been used. The
current density is found in such a manner that the continuity equation
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∂ρ

∂t
+ divh~j = 0 (15)

is applied at all mesh points [7, 8]. Then the following relations are auto-
matically satisfied

divhBm+1/2 = 0, divhEm = 4πρ. (16)

For finding the electric and the magnetic fields, the scheme offered by
Langdon and Lasinski [8, 9] was used. Here fields are defined from the
difference analogues to the Faraday and the Ampere laws (9):

Hm+1/2 −Hm−1/2

τ
= − 1

β0
rothEm,

Em+1 − Em

τ
= − 1

β0
rothHm+1/2 − jm+1/2.

(17)

In this scheme, magnitudes of the electric and the magnetic fields are
calculated at the mesh points, displaced regarding each other by time
and space (Figure 1), BXi−1/2,l,k, BYi,l−1/2,k, BZi,l,k−1/2, EXi,l−1/2,k−1/2,
EYi−1/2,l,k−1/2, EZi−1/2,l−1/2,k, where B is calculated on the shifted time
step and E is calculated on the entire time step.

Figure 1. The scheme of displacement of the electric and
the magnetic fields intensity component

The following stability condition for the scheme has been experimentally
found:

(β0v + 1)τ
β0h

< 1, β0 =
v0
c
. (18)

4. Calculation technique

4.1. The calculation of energy. For the code testing, the energy con-
servation law was examined. The condition of the total energy conservation
is found from the following equation (c.f. [10])
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∂

∂t

(E2 +B2

8π
+minic

2γi +menec
2γe +mbnbc

2γb

)
+

div
(
~S + +minic

2γi~vi +menec
2γe ~ve +mbnbc

2γb ~vb
)

= 0, (19)
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equality to zero of the first term in equation (19):
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In the dimensionless form, the total energy can be expressed as follows:
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The integral for each particle species can be presented as sum of all particles.
Then the equation for the total energy can be rewritten in the form
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where Am is a dimensionless characteristic of the particle mass.

4.2. The calculation of the particle temperature. The molecule dis-
tribution law by the Maxwellian velocities describes a stationary molecule
distribution of a homogeneous monoatomic ideal gas by velocities in the con-
ditions of thermodynamic balance and the absence of the external force field.
The Maxwellian molecule distribution by velocities is established as a result
of mutual collisions between molecules in their chaotic thermal motion [11].

As shown in [11], the following forms of the Maxwellian distribution law
are used. The molecule distribution by absolute magnitudes of velocities is

dnu = n
( m

2πκT

)3/2
e−

mu2

2kT 4πu2du, (21)

where u is the absolute value of the molecule velocity, u =
√
u2
x + u2

y + u2
z,

m is the molecule mass, κ is the Boltzmann constant, T is the absolute tem-
perature, dnu is the number of molecules (from their total number n), whose
speeds are concluded within the limits from u to u + du. The Maxwellian
distribution in the form of
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dn = n
( m

2πκT

)3/2
e−

mu2

2kT dux duy duz,

where ux, uy, uz are coordinate components of the molecule velocity, can be
rewritten as

dn = nf(ux)f(uy)f(uz) dux duy duz, (22)

f(v) =
( m

2πκT

)1/2
e−

mv2

2kT . (23)

Function (23) is a distribution function by velocity components. As all
directions of the molecule motion in space are equiprobable, the molecule
distribution by velocities is isotropic and has the same form for ux, uy, and
uz. From the formula of the distribution function (23), it can be seen that
the dispersion is equal to κT

m . Thus, the temperature is calculated as velocity
dispersion.

5. Numerical experiments

The main task of the modeling was reproducing the heat conductivity effects
of plasma. As a test, a simplified problem statement was used. Plasma
consists of two species of immobile particles. In this case, the ion and the
electron temperatures should be determined to the same value. A change in
energy was used for the solution control, and the rates of particle velocity
change were the test result.

5.1. The speed dependence of ion and electron temperature estab-
lishment from the relation of ion and electron masses. As discussed
above, the ion and the electron temperature should be gradually established
to the same value in the beam free plasma. The behavior of energy at the

Figure 2. A change in
the electric field energy
(line 1), the total en-
ergy (line 2), the ion en-
ergy (line 3), and the
background electron en-
ergy (line 4)
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initial stage of the temperature establishment process is shown in Figure 2.
The test parameters are α = me/mi = 0.1, me = 9.11 × 10−28 g is the
electron mass and mi = 9.11× 10−27 g is the ion mass.

From this figure, it can be seen that the total energy conserves (an error
less than 1 %), the ion energy increases and the background electron energy
decreases. The magnetic field energy was neglected as it is almost zero.

In Figure 3, there are plots of dependence of the ion and the electron
temperatures on time with different ion mass values. From this figure one
can see that the ion and the electron temperatures are gradually established
to the same value. In Figure 3a, the plot of the temperature establishment
with above indicated parameters is presented. In Figure 3b the following
parameters are chosen: α = 0.01, me = 9.11 × 10−28 g, and mi = 9.11 ×
10−26 g. Figure 3c shows a plot of the temperature establishment using
α = 1.84× 10−5, me = 9.11× 10−28 g, and mi = 1.67× 10−24 g.

Figure 3. Establishment of the electron (line 1) and the ion (line 2) temperatures

As a result of the tests, it can be noted that the greater the relation of the
electron mass to the ion mass, the slower their temperature is established.
This happens because for heating the heavier ions more energy is required.
The heating of ions occurs because of the fact that electrons give them
a part of their energy via the electric field. Since electrons are cooled at
the rate of heating ions then the rates of the ion and electron temperature
establishment are the same.

5.2. Investigation of the rate of the ion and the electron temper-
ature establishment depending on the total number of particles.
The dependence of the rate of the ion and the electron temperature estab-
lishment in plasma on the total number of particles has been investigated.
The key parameters for the calculation with the total number of particles of
30,000 (Figures 4 and 5) are the following: the ion density is 1012 cm−3, the
electron temperature is 200 eV, a characteristic length (the Debye length)
is 0.033 cm, the characteristic time is 0.18 × 10−10 s, the thermal speed is
0.19×1010 cm/s, the density of model particles is 0.55×109 cm−3, the ratio
of the particles number in real plasma to that of the simulated one is 1222,
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the number of model particles in the
Debye cube is 30,000, α = 0.1 (and
then in calculations). The initial en-
ergy magnitudes are as follows: the
ion energy is 0, the background elec-
tron energy is 2.28 × 10−10 erg, the
electric field energy 5.63×10−19 erg,
the total energy 2.28× 10−10 erg.

The plots presented in Figure 4
show the validation of conservation
laws. In this figure, the line 3 des-
ignates a change in electric field en-
ergy, the line 2 represents a change

Figure 4. The change of energy

in the total energy, the line 1 indicates to a change in the ion energy, and the
line 4 shows a change in the background electron energy. The total energy
almost does not change.

In the course of the temperature establishment process to the one value
(see Figure 5), the background electron and the ion energies go to a certain
level (see Figure 4).

Also, the ion and the background electron temperatures were found for
the total particle numbers equal to 40,000, 50,000, and 60,000 (Figure 6).
In this figure, plots of a change in the background electron temperature are
presented (the ion temperature changes with the same speed). It follows
from this figure, that the rates of the temperature establishment decrease
with increasing of the total number of particles.

The temperature dependence on time is exponential. The greater the
total number of particles, the slower the temperature establishment, and

Figure 5. Electron (line 1) and ion
(line 2) temperature establishment with
the total particle number of 30,000

Figure 6. Electron temperature estab-
lishment with the total particle numbers
of 40,000 (line 1), 50,000 (line 2), and
60,000 (line 3)
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Figure 7. Plots of the exponent dependence describing the rate of temperature
establishment: a) of the total number of particles; b) of the ratio of particle numbers
in the real and simulated plasma; c) exponential approximation using Maple

the exponent coefficients becomes smaller. The exponent coefficients were
found for all the tests. A plot of the exponent coefficient of the total particle
number is shown in Figure 7a. The most demonstrative dependence is the
one with the exponent coefficient of the ratio of the model particle number to
the real plasma particle number. This dependence is reflected in Figure 7b.
One can see that the exponent coefficient dependence, which reflects the
rate of electron temperature establishment of the ratio of particle numbers
in the modeling and real plasma, is also exponential (Figure 7c).

The following table represents the ratios of the total number of particles
in the real plasma (Nr) and in the simulated plasma (Ns) in dependence
with the total number of modeled particles (N).

N Nr/Ns Ns/Nr N Nr/Ns Ns/Nr

20000 1834 0.00055 50000 733 0.00136
30000 1222 0.00082 60000 611 0.00164
40000 916 0.00109 70000 523 0.00191

From the presented plots, one can note that in the case when the number
of simulated particles is close to that of real particles in the Debye cube, the
exponent coefficient has a small value and the temperature establishment
occurs very slowly.

6. Conclusion

In this paper, the model allowing one to investigate a change in the electron
collision frequency during the relaxation of a relativistic electron beam in
plasma is presented. The model describes only the electron heat conductiv-
ity behavior of plasma as a result of a few reasons. Because of the choice
of periodic boundary conditions a continuous spectrum of the Langmuir
plasma fluctuations is replaced for a discrete one. Therefore, the space area,
in which waves can scatter as a result of some nonlinear process (for exam-
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ple, the induced scattering on ions [3]), strongly decreases. As a result, the
instability is saturated at a greater energy level (this case is entirely sim-
ilar to the greater energy-conversion efficiency of the beam in magnetized
plasma, in which the area of allowable scattering decreased by introducing a
magnetic field [3]). This can lead to a stronger suppression of the heat con-
ductivity coefficient in comparison with a real magnetized plasma. Large
thermal fluctuations and a small number of macroparticles in the Debye
sphere, which are typical of the PIC-method [5–7], restrict the region in the
impulse space, in which the collision frequency is properly described. At
the same time, the model is not associated, for example, with applicability
conditions of the quasilinear theory. This allows one to use it for construct-
ing various dependencies, for example, a curved qualitative dependence of a
suppression degree of the beam and the plasma parameters. At the current
stage of the work, the algorithm and the code were developed. They allow
modeling the heat conductivity effects in plasma, including the electron and
the ion temperature establishment in plasma, a two-stream instability and
the Landau damping. Also, the effect of the calculating parameters on the
solution was investigated.
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