Joint NCC & IIS Bull., Comp. Science, 11 (1999), 15-38
© 1999 NCC Publisher

Analysis of equality relationships:
proofs and examples

Pavel G. Emelianov*

In this article, we discuss the analysis of equality relationships for program
terms. We extend a description of the analysis presented in [7, 9, 10] and give
attention to some new aspects which are not widely considered yet. In particu-
lar, among other illustrating examples, a program is given for which this analysis
without a widening operator diverges.

1. Introduction

Semantic analysis is a powerful tool of building effective and reliable pro-
gramming systems. In [7, 9, 10] we presented a new kind of the semantic
analysis designed in the framework of abstract interpretation [4, 5, 6]. This
analysis determining the seis of invariant term equalities ¢; = £ was said to
be the analysis of equality relationships for program terms.

Unfortunately, we omitted there some important details of the analysis
description because of the space limitations of these issues. A complete
description of the equality relationship analysis (hereinafter referred to as
ERA) was given in [8]. However, this work is not widely accessible. In
this article, sharing the judgment of the author of [15] about “... deeper
consideration of tradeoffs etc. of analyses...” and “... wide presentation
of them to the semantic analysis community...”, in order to involve the
semantic analysis in the real process of program development and to build
powerful practical analyzers, we give a detailed description of ERA.

It should be mentioned that most static analyses of imperative programs
are interested in finding the equalities of some special kind (value analyses).
In our case, there are no limitations on the type of terms: they represent
all expressions computed in the program. This enables the analysis to take
into account different aspects of program behavior in a unified way, and
thereby the accuracy of analysis increases. This does not mean that ERA
is a generalization of all other value analyses (except constant propagation
one), because they use different approaches (semantic domains and trans-
formers) to extracting effectively and precisely the limited classes of semantic
properties. In general case, the results of the analyses are not comparable.

*This work was supported by the Russian Foundation for Basic Research (grant No
97-01-00724).

16 Pavel G. Emelianov

The peculiarity of ERA mentioned above allows us to discuss some
common properties of the semantic analysis. Such taxonomic properties of
the analysis algorithms as the forward/backward/bidirectional propagation
of the semantic information, relativeness/attribute independence, context
(in)sensitivity, flow (in)sensitivity, scalability and something else are well
known. However, it is the author’s opinion that a notion of “interpretability
of a semantic analysis” has not yet been considered adequately. Here the
interpretability of analysis means how deeply the properties of primitive op-
erations of the language (arithmetical, logical, etc.) and type information
are allowed for analyzing. Obviously, it is closely allied to the properties
of flow sensitivity and scalability of the analysis algorithm. One extreme
point of view on the interpretability is an approach accepted in the “pure”
program schemata theory where any interpretation of functional symbols or
type information is not allowed. Unfortunately, the results which can be
obtained under this approach are not reasonably strong. Nevertheless, it
must be underscored that ERA dates back to V. Sabelfeld’s works in the
program schemata theory [16, 17]. Another extreme leads to the complete
description of the program behavior that is not workable, too. It is possi-
ble that the interpretability has not been highlighted enough, because the
most analysis algorithms take into account the limited classes of primitive
operations and type information. For example, the interval analysis is not
able to incorporate the congruence properties, etc. Essentially another case
is ERA. We intend to illustrate the notion of “interpretability of analysis”,
its importance and usefulness on this example of analysis.

This article is organized as follows: In Sections 2.1 and 2.2 we de-
scribe the semantic properties, concrete and abstract, respectively, which
are considered in ERA. In Section 2.3 we discuss some basic operations
over the semantic properties used to define the semantic transformers. In
Section 3 we consider a widening operator, and in Section 4 the complex-
ity of ERA is discussed. Finally, Section 5 presents some results on our
implementation of ERA and its testing.

2. Properties under consideration

2.1. Concrete properties

A ‘usual choice for the description of the operational semantics is a specifi-
cation of some transition relationship on the pairs <control point, state of
program memory> (see, for example, [11, chapter 10]) where the states of
program memory are described by mapping the cells of memory into a uni-
verse of values. Here variables (groups of cells) and their values (constants)
are in the asymmetric roles. Another example of “asymmetry”: manipu-
lations over the structured objects of programs (arrays, records, etc.) are

Analysis of equality relationships: proofs and examples 17

not so transparent as over the primary ones. To describe the operational
semantics for ERA, we use another approach. All objects of a program are
considered to be “identical” in the following meaning.

Let CV be a set of 0-ary symbols representing variables and constants.
The last ones may be of the following kinds: scalars, compositions over
scalars (i.e., constant arrays, records, etc.), names of record fields, and in-
definiteness. Let FP be a set of n—ary (functional) symbols which represent
primitive operations of programming languages: arithmetic, logic, type cast-
ing, and all the kinds of memory addressing, as well. Let TRS be a set of
regular tree terms over CV and FP, hereinafter referred to as program terms.
They represent expressions computed during execution of a program. So, as
a state of program memory we take a reflexive, symmetrical, and transitive
relationship (i.e., the equivalence relationship) over TRS. The relationship
defines some set of term equalities which we use to describe the operational
semantics and call a computation state. Note that this set is always infinite
because there exist infinitely consistent equalities of terms in contrast to the
mapping cells—values where this is always possible for divergent programs.

Let us consider the following example

VAR x,i,j: INTEGER; a: ARRAY [1..3] OF INTEGER;

a[l:=1; a[2]:=2; a[3]:=3;
i:i=3; ji=i-l;
IF ODD(x) THEN

i:=i MOD j; j:=1
ELSE

j=ali]; ali:=a[l]; a[l]:=j
END

Example 1

Suppose that this piece of code is executed at least twice for the different
evenness of the variable X. Table 1 gives us the static semantics for five
control points. We present a minimum subset of term equalities concerning
the essential part of the behavior of the piece. We shall use the property n
to illustrate our further reasoning.

It can be formally described in the following way. Let £Q8 be a set of
all equalities of the terms from TRS, i.e., £Q8 = {t; =13 | t1,t2 € TRS}.
A set § € p(£QS) is a computation state and it is interpreted as if for
each equality ¢; = {; € S the expressions represented by t; and ¢; were
computed on an execution trace and their values are equal. We take the
set p(p(£QS)) as a set for a concrete semantic domain describing the static
semantics considered in ERA.

18 Pavel G. Emelianov

THEN-brunch ELSE-brunch

r 3 r 3

a[1)=1,a[2)=j=2,a(3)=i=3, a[1]=1,a[2]=j=2,a[3]=i=3,
a=0DD(x)=TRUE}’ Y \a=[1]2[3}0DD(x)=FALSE

\ J \ /

ENTRY 4

-~

4 B r A

) a[1l]=i=j=1,a[2]=2,a[3]=3, a[l]=i=j=3,2{2]=2,a[3]=1,
BT \a={1][2[3},0DD(x)=TRUE a={3[2[1}ODD(x)=FALSE

\ J \ /

e
v

EXIT OF IF-STATEMENT

o —) [el=i=i=lall=2,[3]=s, a[1]=i=j=3,a[2]=2,a[3]=1,
- {a- ODD(x)=TRUE }{ a={3]2]1},0DD(x)=FALSE

Table 1. The static semantics for Example 1 (here the constant rep-
resents constant arrays)

The properties considered in ER A are presented by means of context—
free grammars of a special type. We do not give their extended description
and expect that it becomes apparent from the examples on Figure 1 and
further ones.

2.2. Abstract properties

It is an interesting peculiarity of ERA that abstract (i.e. approximate)
properties have the same nature as the computation states of the operational
semantics. Formally this approximation is defined as follows.

Given a concrete property m € p(p(£QS)) and an abstract property
m € £QS8, the abstraction function « : p(p(£QS)) — p(£QS) and the con-
cretization one v : p(£QS) — p(p(£QS)) are defined in the following way

£QS, ifr =0,
a(m) = { ﬂ S otherwise and y(@)=U{7]|a(r) I 7}
SEn

Analysis of equality relationships: proofs and ezamples 19

Equality Grammar Computation net
relationships representation representation

a= h(y) S — Al = AIIAZ = Az!Aa = Aa
z = f(a,y) Ay - z|f(Az2, A3)
z = f(h(y),y) Az — alh(4;)
f(a:y) = f(h(y): y) Az >y

Figure 1. Semantic properties and their representations

Obviously, they are monotonic and give the best approximation and con-
cretization of the corresponding properties. For the example of Table 1,
the best approximation of the concrete property 7 is

ofr) = {alt] = i = jaf2] = 2} (+)

2.3. Operations over semantic properties

Now we discuss some basic operations over semantic properties used to define
the semantic transformers of ERA (their description can be found in |7, 8]).

Operations over abstract computation states 7 use certain common
transformation of the sets of term equalities which consists in removing
some subset S’. The following statement holds.

Lemma 1. Removing any subset of term equalities preserves correctness of
an approzrimation.
Proof. It easy to see that

Wrla@m I w}=q) C A#@\S)=U{r|alx)D (7\S5)}=
Wn| N(Sus) 2w},
Sen

which states that removing term equalities makes the approximation more
rough but it does preserve its correctness. O

For (#), for example, v(a(w))Cy({a[l] = i}).

Unification of terms corresponds to a situation when, during execution
of a program, it turns out that the values of computed expressions repre-
sented by the terms become equal. For example, an access term representing
the l-value of an assignment defines the same value as an expression term

20 - Pavel G. Emelianov

L Int[z = b]L

Figure 2. Unification of values of terms

representing the r-value after this statement. Also we can say that a value
of a term representing the conditional expression of an IF-statement coin-
cides with 0-ary terms representing the constants TRUE or FALSE when,
respectively, THEN-brunch or ELSE-brunch is being executed. So, unifi-
cation of terms, along with semantic closure considered below, provides a
powerful facility for taking into account a real control flow in programs and
makes ERA flow-sensitive. Let us briefly recall this transformation.

Unification of terms Int[t; = t,]L.

1. If {; = t2 € L then Int|[t1 = tzjﬂL =1IL.

2. Let Al%tl and Az%tg. We replace the nonterminal A; by the non-
terminal A4; in all rules of P. If rules with an identical right side
B; - w,...,Br — w appeared, then a certain nonterminal from the
left side of a rule (for example B;) must be taken and all nonterminals
B,, ..., B in the grammar must be replaced by it.

3. Repeat step 2 until stabilization. If after that we have a state L'
containing inconsistent term equalities?, then the result is T', else it
is a reduction of L'.

An example of unification is given in Figure 2.

Lemma 2. Unification of values of terms is a correct transformation and
the resulting state is unique.

?There exists a wide spectrum of inconsistency conditions. The simplest of them is an
equality of two different constants.

Analysis of equality relationships: proofs and examples 21

Proof. Let m = { L; | L; € p(£QS) } be a concrete semantic property
which holds before unification of terms iy and ¢p. If the values of ¢; and to
are equal in the concrete semantics VL; : t; =ty € L;, then they are equal
in the abstract semantics ¢; = ¢, € a(m), too. If their values are not equal,
then unification gives us the inconsistent computation state which obviously

includes Intft; = t,]L for all ; and t2. So, this transformation is correct,
Unification can be done in finite steps because the size of grammar de-
creases at each step. Uniqueness of the resulting state is explained by the
following observation. If we have two pairs of terms which are candidates for
unification, then unification of one of them does not close a possibility of it
for another, because we remove a duplication of the functional symbols only.
In fact, after unification of a pair of terms we obtain a new state, including
the source one, and thus other existing unification possibilities retain. So,
the order of “merging” of term pairs is not important for the resulting state.
[}

We do not yet consider any interpretation of constants and functional
symbols. We could continue developing ER A in the same way. So, we obtain
a noninterpretational version of the analysis as in the program schemata
theory. However, it is natural to use the semantics of primitive operations
of the programming language in order to achieve better accuracy.

ERA provides us with wide possibilities of taking into account the prop-
erties of the language constructs, and, what is especially important, we can
easy handle the complexity of these manipulations. In fact, inclusion of
these properties corresponds to carrying out a finite part of completion of
the computation states by consistent equalities. This completion is named
a semantic closure. The “size” of this part can be handled both by the
developer (hardly embedded into the analyzer) and by the user (tuned by
options of interpretability).

Let us describe this transformation. Next we suppose that a) a rule is
added to the grammar if it is absent there; b) f(...) denotes some term
derived by the correspondent rule; c) if at some step of the algorithm the
state T’ occurs, then the algorithm stops.

Semantic closure (a basic version)

1. Let the rule A — f(A1,..., A,) such that A1=eq,..., Ap=>¢; be in
the grammar. If for the constant ¢ = fle1,. .., cn) there is no nonter-
minal A’ such that A’'=c, then add the rule 4 — ¢ into the grammar.
Otherwise, Int[c = f(.. JL(G).

2. Let the rule A — f(B, B) be in the grammar and f be a functional
symbol representing a primitive operation from the left column of Ta-
ble 2. If there is no nonterminal A’ such that A'=c where c is from the

22

Pavel G. Emelianov

Lf [¢ T F T ¢ |
- 0 # FALSE
Ji 1 < | FALSE
div” 1 < TRUE
mod”* 0 > FALSE
xor | FALSE > TRUE
= TRUE

*
It is possible that arithmetical errors appear

(see a remark before the algorithm).

Table 2. Interpretation of primitive operations

Lf T ¢ t |
+ 0 aj
~* 0 a;
* 0 0
* 1 a,-
/" 1 a;
diV' 1 aJ-

mod” 1 0
and | FALSE | FALSE
or TRUE | TRUE
and | TRUE- aj
or FALSE a;

For these operations it is necessary

that By=> c.

Table 3. Interpretation of primitive operations (continuation)

right column, then add the rule A — ¢ into the grammar. Otherwise,

Intlc = £(...)]L(G).

3. Let the rule A — f(B, B5) be in the grammar and f be a functional
symbol representing a primitive operation from the first column of
Table 3. If there exists a nonterminal B; (i=1,2) such that B;=>c
where c is from the second column, then Int[t = f (...)]JL(G) should
be computed, where ¢ is a term pointed out in the third column of
Table 3. Here a; denotes one of the terms such that Bj=c (j =

L,2 A j#i).

4. Apply steps 1-3 until stabilization.

As mentioned above, some arithmetical errors (such as division by zero,

e

YR S B e e

Analysis of equality relationships: proofs and examples 23

Clo(L)

Figure 3. Semantic closure

" out of type range, etc.) can appear during the constant closure. In this case

the analyzer tells us about the error and sets the current computation state
to T'. Note that for the languages, where the incomplete boolean evaluation
is admissible, the semantic closure over boolean expressions should be care-
fully designed. The following example demonstrates a probable problem:
(p#NIL) AND (p".f=a).

An example of the semantic closure is presented in Figure 8. Turning
back to the unification example in Figure 2, we can consider the following
interpretation of constants and functional symbols: g is the exclusive dis-
junction, f is the negation, a is the constant TRUE and 4 is the constant
FALSE. It is easy to see that, in the case of the interpretational ERA,
application of the semantic closure gives us Int[z = b]L = T'.

In our analyzer we have implemented the interpretational version of
ERA which uses the operation of the semantic closure Clo(L). Under this
approach, the definitions of the basic transformations mentioned above are
changed to the following (Int[t]L is the “evaluation of a term” operation;
see [7, 8]):

Intt)'L = Clo(Int[t]L),
Intt; = t:]'L = Cle(Int[t; = tz]L).

Usually we omit this “interpretability” prime.

3. A widening operator and divergence of
analysis

Our abstract semantic domain does not satisfy the chain condition and there-
fore it requires a widening operator whose construction is given in [7].

24 Pavel G. Emelianov

Infinite chains stem from occurrence of cyclic derivations in grammars
if we do not restrict their form. The subsemilattice of the finite languages®
generated by acyclic grammars of the semilattice #(EQS) (D', £QS, 1) sat-
isfies the ascendant chain condition, but such languages are not expressive
enough. Our solution is as follows. The grammars are not originally re-
stricted but if in the course of abstract interpretation the grammar’s size
becomes greater than some parameter, then the “harmful” cycles must be
destructed. To this end we remove the grammar rules which participate in
cyclic derivations. Correctness of this approximation of intersection follows
from Lemma 1. The lengths of such chains are bounded by |Gyql, where
Gy are the first acyclic grammars in the chains under consideration.

Detecting these rules is not simpler than the “minimum-feedback-arc/
vertex-set” problem (MFAS or MFVS) if we consider the grammars as
directed graphs. These sets are the smallest sets of arcs or vertices, re-
spectively, whose removal makes a graph acyclic. In [7] it was proposed to
consider feedback arc sets. But now we suppose that the “feedback vertices”
choice is more natural for our purposes. In the general case this problem
is N"P-hard, but there are approximate algorithms that solve this problem
in a polynomial [18] or even linear [14] time. Consideration of the weighted
feedback problems makes possible to distinguish grammar rules with re-
spect to their worth for accuracy of the analysis algorithm. However, the
perspectives of this are not clear now.

The widening operator for the analysis of equality relationships is defined
in the following way. A transformation of a grammar graph which consists
in detecting some FVS and removing all feedback vertices is said to be an
FVS-transformation (an example is shown in Figure 4). Let L\pys be a
language obtained from L by FVS-transformation applied to the grammar
which generates L. We define

- L(Gl)\Fvs n L(Gz) if ngl > |G1| > d,
L(G1)VL(G2) = { L(G1) M L(Ga)\evs if |Gy] > |Ga| > d,
L(Gy) " L(G,) otherwise,

where d is a user-defined parameter. It is reasonable to choose this param-
eter, depending on the number of variables of the analyzed program, as a
linear function with a small factor of proportionality. Note that in this case
the lengths of appearing chains linearly depend on the number of variables.

Is the widening operator, being rather complex, really needed for the
analysis of equality relationships? Do programs exist which, being analyzed,
generate infinite chains of semantic properties? It should be mentioned that

3Note that the sets of term equalities of a special kind corresponding to these languages
were used by V. Sabelfeld to develop effective algorithms of recognizing equivalences for
some classes of program schemata.

Analysis of equality relationships: proofs and ezamples 25

L(G)\tvs

Acyclic subgraph of
cyclomatic graph of
grammar

Cyclomatic graph of grammar G

Figure 4. FVS—transformation

26 Pavel G. Emelianov

constructing such program examples has been a problem for a long time.
In [7] we stated our belief that their rise seems hardly probable. These
attempts failed, because they were concentrated on constructing an example
with completely noninterpretable functional symbols (i.e., in the frame of
the “pure” theory of program schemata).

As already noted, we can widely variate the interpretability of the anal-
ysis algorithm. In order to construct the required example, it will suffice to
consider a standard interpretation of the Boolean type and the comparison
equ, namely:

if the computation state L knows an equality equ(ty,t;) = TRUE
then y(L)Cy(Int[t, = t2)L).

x:=f(y); x:=sign(y);

IF f(x)=f(y) THEN IF sign(x)=sign(y) THEN
WHILE y=f(g(y)) DO WHILE y=sign(abs(y)) DO
y:=g(y) y:=abs(y)
END END

END END
program scheme “real-world” program

The properties computed at the body’s entry belong to an infinite de-
creasing chain of the abstract semantic domain. In Figure 5 a state L,
describes the properties valid before the cycle execution; states L; and L
describe the properties at the entry of the cycle body for the first and second
iteration, respectively. It is easy to see that L; 'L, coincides with Ly except
the equality relationships containing terms generated by g*. So, every time
we obtain the next state, the functional element g* is absent and the subnet
placed in the dashed box repeats time and again.

To obtain a “real-world” program from this program scheme, we can
interpret the functional symbols in the manner like this: f = sign and g =
abs. We would like to highlight the following interesting point. Execution of
this piece of code (i.e., its behavior determined with the standard semantics)
diverges only for two values of y: 0 and 1. At the same time the analysis
algorithm (i.e. execution of the piece of code under a nonstandard semantics)
is always divergent on condition that the widening operator is not used and
the assumptions on the interpretation mentioned above hold.

Is this program actually a real-world one? The reader can decide this
by himself but we note the following. On the one hand, the interpretability
of the analysis algorithm can be variated in wide ranges and, on the other
hand, we are not able to formally prove impossibility of such a behavior of

g e s e e

Analysis of equality relationships: proofs and examples 27

L,

Ly

Figure 5. The case of divergence of analysis

the analyzer under the considered interpretation. So, we can choose either
a lean analysis using acyclic grammars only or another one using arbitrary
grammars and a widening operator.

4. Once again on complexity of analysis

In (7] we pointed out the following upper bound on time for the algorithm
of ERA: O(n?G2,,,), where n is the size of the program, and Gpmq; is the
maximum of the sizes of grammars appearing in the course of the analysis.
Now we give an extended motivation of this bound.

It can be deduced with the help of Theorem 6 in [1]. The theorem states
that for the recursive strategy of the chaotic iteration (see all definitions
given in [1]) the maximum complexity is

R-36@ (<helelwi), (++)

ceC

where k is the maximum length of the increasing chains built by the widening
operator, C is the set of control program points, d(c) is the depth of the
control point ¢ in hierarchy of nested strongly connected components of
the control flow graph containing ¢, and W is the set of vertices where the
widening operator is applied during the analysis.

28 Pavel G. Emelianov

We recall that Modula-programs are well-structured and we also can
suppose that the maximum depth of nested loops does not depend on the
program size and is bounded by some constant. Taking into account these
properties and the construction of our widening operator (namely, our choice
of the parameter d) and using (), we conclude that the number of algo-
rithm steps does not exceed O(n?). Since time complexity of all operations
used in the analysis is estimated by G2,,.*%, we obtain our upper bound.

However, experimental results show that an approximation of a fixed
point for the heads of cycle bodies is usually attained after at most two
iterations and the time complexity of the analysis does not normally exceed
O(nGmaz). Also, the user can turn off the infinite chain control. In this
case, he (consciously) admits some chance that the analysis diverges but we
believe that this chance is not too big.

It is easy to see that the space complexity of the equality relationship
analysis is O(nGmaz). Unfortunately, this bound does not provide useful
information about the actual space requirements for the analysis algorithm.
We estimate them as 1.5-2.0 Mb RAM per 1000 program lines and empha-
size that it comes into particular importance for virtual memory systems.
Random management of swapping makes impracticable analyzing large pro-
grams in small RAM. '

5. Experimental results

A family of semantic properties which can be detected in the automatic
mode of the analyzer were presented in [7, 10]. Apart from the automatic
mode, we provide an interactive mode to visualize the results of our analysis
in some hypertext system®. There are two facilities here: visualization of
properties detected in the automatic mode and the user-driven visualization
of properties. The last one can be elucidated as follows.

The experiments show that not all program properties of interest can be
automatically extracted out of the computed invariants. It is not judicious
to consider many particular cases and to hardly embed them into the system
(for the purpose of automatic making of a corresponding solution). Instead,
the user has a possibility to specify its request by a friendly interface. He can
choose a program point and an expression and obtain those and only those
equality relationships, valid at this point, where this expression occurs. The
following strategies of selection of the subsets of properties are provided:
a) all terms occurring as subterms of the term under consideration; b) all

“For the FVS-transformation we can achieve the same bound.

®HyperCode [3): a system based on databases for visualization of properties of syntac-
tic structures (being developed in the Laboratory of Mixed Computation of Institute of
Informatics Systems).

Analysis of equality relationships: proofs and ezamples 29

terms using the term under consideration as a subterm; ¢} the union of sets
determined by the previous cases a) and b). These problems are obviously
reduced to computing a transitive closure of the corresponding digraph with
respect to some vertex and orientation of arcs. Note that an automatic
solver can be based on the term-rewriting technique [13].

An example of program is presented below. The properties detected by
the analyzer are indicated in comments.

MODULE Example;
VAR x,y,2: INTEGER;
PROCEDURE P(a,b: INTEGER): INTEGER;

BEGIN (*parameters are always equal*)
RETURN a+b (*expression can be simplified: 2%a*)
END P;
BEGIN
Read(x);
WHILE x<0 DO
Read(x);
INC(x);
z 1= x+z; (*variable z might be uninitialized*)
y = x+1;
IF x=0 THEN
Z:=Y; (*r-value can be simplified: z:=1%)
ELSE
z 1= x+1; (*r-value can be simplified: z:=y*)
x:=y;
END;
Write(P(y,z)) (*call can be transformed: Write(2*y)*)
END ; _
x.:=z MOD (y - z); (*arithmetical error¥)
Write(x) (*inaccessible point*)

END Example.

On the basis of the analysis, this program can be transformed into the
following form:

MODULE Example;
VAR xINTEGER;
BEGIN
Read(x);
WHILE x<0 DO
Read(x); INC(x,2); Write(2*x)
END;
ERROR _EXCEPTION
END Example.

30 Pavel G. Emelianov

length (lines) size (bytes)
program
M2Miz | ASP [improv. || M2Miz | ASP | improv.
KMP 167 133 | 20.35% 2096 | 2205 | 26.4%
Lambert 361 326 | 9.7% 6036 | 2564 | 57.5%
Automation 37 35 5.4% 969 926 4.5%
Intp; 87 77 11.5% 1647 | 1432 | 13.05%
Ackerman 64 62 3.1% 1384 | 1322 | 4.5%
average | 10.01% average | 21.19%

Table 4. Comparison between ASP and M2Miz

In Table 4 we present some results of optimization based on our analysis
(ASP) of residual programs generated by M2Miz specializer (2, 12]. The
following programs were investigated:

e KMP — the “naive” matching algorithm specialized with respect to
some pattern; the residual program is comparable to Knuth, Morris,
and Pratt’s algorithm in efficiency (see also Appendix).

e Lambert — a program drawing the Lambert’s figure and specialized
with respect to the number of points.

e Automation — an interpreter of a deterministic finite-state automa-
tion specialized with respect to some language.

e Intp; — an interpreter of MixLan [12] specialized with respect to a
program computing Fibonacci’s numbers.

e Ackerman — a program computing some values of Ackerman’s func-
tion and specialized with respect to the first argument.

Let us briefly comment the obtained results. Reducing the length of a
program can be considered as reducing the number of operators and decla-
rations. In these examples the optimizing effect was typically attained by
the removal of redundant assignments and unused variables and the reduc-
tion of the operator strength. The only exception is the KMP program
characterized by a high degree of polyvariance and the active use of array
references. Here some if-statements with constant conditions and redundant
range checks were eliminated. Note that the last optimizing transformation
is very important for Modula-like languages. Such a notable optimizing
effect for the Lambert program is explained by a deep reduction of the
power of floating-point operations. Since the Automation and Ackerman
programs are quite small, their optimization gives conservative results. How-
ever, they would be better for the Ackerman program if the implementation

Analysis of equality relationships: proofs and ezamples 31

of ERA were context-sensitive. A substantial speed-up of these optimized
programs was not obtained and this is not surprising since the great bulk of
specializers take it as a criterion of optimality.

These experiments show that an average reduction of size of residual
programs is 20-25%. Because the case of the KMP program seems to be
the most realistic, we suppose that such an improvement can be achieved in
practice for real-world programs and it will be increased for large residual
programs with a high degree of polyvariance and active use of arrays and
float-point arithmetics. It is the author’s opinion that the analysis of au-
tomatically generated programs which can be used for their optimization is
the most perspective direction of its application, especially in the context-
sensitive implementation of ERA.

References

[1] F. Bourdoncle, Efficient chaotic iteration strategies with widenings, Proc. of
the International Conference on Formal Methods in Programming and Their
Applications (Berlin a.0.), Lecture Notes in Computer Science, 735, 1993,
129-141.

[2] M. Bulyonkov and D. Kochetov, Practical aspects of specialization of Algol-
like programs, Proc. of the International Seminar on Partial Evaluation (Berlin
a.0.), Lecture Notes in Computer Science, 1110, 1996, 17-32.

[3] M. Bulyonkov and D. Kochetov, Visualization of program properties, Research
Report, Institute of Informatics Systems, Novosibirsk, No. 51, 1998.

[4] P. Cousot and R. Cousot, Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints,
Rec. of the 4" ACM Symposium on Principles of Programming Languages
(New-York), ACM Press, 1977, 238-252.

[5] P. Cousot and R. Cousot, Abstract interpretation and application to logic
program, Journal of Logic Programming, 13, No. 2-3, 1992, 63.

[6] P. Cousot and R. Cousot, Abstract interpretation frameworks, Journal of Logic
and Computation, 2, No. 4, 1992, 511-547.

(7] P.G. Emelianov, Analysis of the equality relations for the program terms,
Proc. of the Third Static Analysis Symposium (Berlin a.o.}, Lecture Notes in
Computer Science, 1145, 1996, 174-188.

[8] P.G. Emelianov, Methods and tools for the static analysis of semantic prop-
erties of programs, Ph.D. Thesis, Novosibirsk State University, Novosibirsk,
Russia, 1997.

[9] P.G. Emelianov and D.E. Baburin, Semantic analyzer of Modula-programs,
Proc. of the Fourth International Static Analysis Symposium (Berlin a.0.),
Lecture Notes in Computer Science, 1302, 1997, 361-363.

32

(10]

1)
[12]
[13)
[14]

(15]

(16]
(17]

(18]

Pavel G. Emelianov

P.G. Emelianov and V.K. Sabelfeld, Analyzer of semantic properties of
Modula-programs, Software intellectualization and quality, Institute of Infor-
matics Systems, Novosibirsk, 1994, 100-107.

N.D. Jones and S.S. Muchnick (eds.), Program flow analysis: Theory and
applications, Prentice-Hall, Englewood Cliffs, USA, 1981.

D.V. Kochetov, Effective specialization of Algol-like programs, Ph.D. Thesis,
Institute of Informatics Systems, Novosibirsk, Russia, 1995.

G. Nelson and D.C. Oppen, Fast decision procedures based on congruence
closure, Journal of the ACM, 27, No. 2, 1980, 356-364.

B.K. Rosen, Robust linear algorithms for cutsets, Journal Algorithms, 3, 1982,
205-217.

B.G. Ryder, Practical compile-time analysis, Proc. of the Fourth International
Static Analysis Symposium (Berlin a.0.), Lecture Notes in Computer Science,
1302, 1997, 406-412.

VK. Sabelfeld, Polynomial upper bound for the complexity of the logic-termal
equivalence decision, Doklady Mathematics, 249, No. 4, 1979, 793-796.

V.K. Sabelfeld, The logic-termal equivalence is polynomial-time decidable,
Information Processing Letters, 10, No. 2, 1980, 102-112.

E. Speckenmeyer, On feedback problems in- digraphs, Proceedings of the 15tk
International Workshop on Graph-Theoretic Concepts in Computer Science
(Berlin a.0.), Lecture Notes in Computer Science, 411, 1990, 218-231.

Analysis of equality relationships: proofs and examples 33

Appendix. Analysis of KMP

The appendix presents the results of the application of ERA to the KMP
program generated by the specializer M2Miz. This program is a special-
ization of a program which is an implementation of naive pattern matching
- Match(p,str) with respect to the pattern p="ababb”.

Let us consider the results of our analysis of the program
Match(”ababb”, str) written as comments at program points where they
hold. Only the most interesting of them are given. We can conclude that

¢ The target string necessarily ends with "#"” and the vanable Is is equal
to the string length (line 10).

* Every time when some element of str (lines 20, 31, 42, 53, 58, 67,
72,77,85, 107,112,128,139,150,161) is used in the second LOOP, the
value of its index expression does not exceed the value of the variable
Is. We can say the same about the value of a variable before the
increment statements INC(s) (lines 23, 34, 45, 62, 80, 88, 93, 97, 102,
115, 119, 131, 142, 153, 164). Therefore, it suffices to check that a value
of Is is not beyond the ranges determined by the type _"TYPE354a04
during input of the target string (line 8). After that all range checks
can be eliminated in the second cycle.

o The assignment .cfg_counter:=0 is redundant (line 24).

e str[s+2]="a’ and str[s]='a’ are always false (lines 77 and 85, re-
spectively). So, computing them is redundant and the code of THEN-
branches is dead.

o The conditions at lines 63, 68, 73, 81, 103, 108 are false, too. However
it is not automatically detected by the analyzer in our implementation
and this is the case when the user’s participation is required. Other
implementations of ERA can handle such things automatically.

Using this semantic information, we can build a new program function-
ally equivalent to Match(”ababb”, str). Their characteristics are pre-
sented in Table 4. To compile these examples, we used XDS Modula/Obe-
ron compiler (v.2.30). Note that it detected unique redundancy in the source
program associated with the constant condition in line 81.

34 Pavel G. Emelianov

MODULE XMF;

FROM FIO IMPORT File,Open,ReadChar,WriteInt,stdout;

VAR _cfg_counter : CARDINAL;
TYPE _TYPE354a04 = [0..20);

TYPE _.TYPE355004 = ARRAY _TYPE354a04 OF CHAR;

VAR str : -TYPE355004;

VAR str file : File;

VAR ls,s : _-TYPE354a04;
BEGIN
1. str.file := Open(”target.dat”);
2 ls:=0;
s: LOOP
@ str(ls] := ReadChar(strfile);
s IF (str[ls]="#") THEN

a: EXIT

£ ELSE

8: INC(ls)

9 END

10: END;

11: 8 := 0;

12: _cfg_counter := 0;
13: LOOP

14 CASE _cfg_counter OF
15 jo:

161 IF ((s+0)>Is) THEN

1n WriteInt(stdout,(-1),0);
18: EXIT

19t END,

204 IF (str{(s+0)]='a’) THEN
21 -cfg.counter := 1

22, ELSE

23 INC(s);

24: —cfg_counter := (

25: END

(#str(ls] ="#'%)
(*strlls] #'#'+)

(#strls] ="#'x)
(*s = _cfg_counter = 0%)

(*cfg_counter = 0s)
(*s > ls%)

(*0 < Is,3 < ls¥)
(*str[s] ='a’,0 < Is,s < ls*)

(#0 < Is,s < Is, str{0] £'a’*)
(*cfg-counter = 0x)

(#0 < Is, 8 < ls*)

Analysis of equality relationships: proofs and examples

(s#-cfg-counter = 1s)
(*s+1>ls%)

(#s +1 < ls%)
(#str(s + 1) ='b's)

(»strls + 1] #£'b'+)
(wstr[s] £'V',s < ls%)

(*.cfg_counter = 2+)
(#s +2 > lsx)

(x5 + 2 < ls%)
(tatr[a <+ 2] ='u'i)

(xstr[s + 2] #'a's)
(#str[s + 1] #a', 5+ 1 < Is%)

(*-cfg-counter = 3+)
(#s + 3 > Is#)

(#5 +3 < lax)
(xstr[s + 3] ='b'+)
(¥s+4>1s,5+ 3 < lsx)

(xs + 4 < ls%)
(xstrls + 3] = str[s + 4] ='b's)

(#str(s+3] ="V, stris+4] £V, s+4 < ls%)
(sstr[s+2] ="V, str[s+3] £'b',3+3 < ls%)
(#s > ls,5+3 < lsx)

(wstr[s+2] ="V, str[s+3] £V, 5+3 < ls»)

(xstr{s] ='a', str[s+2] ="V, str{s+3] £V,
s+3 < lsx)

(*s+1 > ls,5+3 < lsx)

ae | 1:

arn IF ((s+1)>ls) THEN

a8 WriteInt(stdout,(-1),0);

301 END;

su IF (str[(s+1)]="b") THEN

83 _cfg_counter := 2

ss: ELSE

sa INC(s);

a5 cfg-counter := 0

ss. END

L 3 4] ! 2:

s, IF ((s+2)>1s) THEN

30 WriteInt(stdout,(-1),0);

401 EXIT

4 END;

a3 IF (str[(s+2)]="a’) THEN

i .cfg_counter := 3

s ELSE

45 INC(s);

48 _cfg_counter := 4

s END

28:] 3:

an IF ((s+3)>ls) THEN

50: Writelnt(stdout,(-1),0);

Bl EXIT

52: END;

sa: IF (str[(s+3)]="b’) THEN

B4 IF ((s+4)>ls) THEN

55 WriteInt(stdout,(-1),0);
50 EXIT

5T END.‘,

58: IF (str[(s+4)]="b’) THEN
50: WriteInt (stdout,s,0);
a0: EXIT

o1t ELSE

62 INC(s);

e IF ((s+0)>1s) THEN
o4 Writelnt(stdout,(-1),0);
17 EXIT

a6: END;

an IF (str{(s+0)]="a’) THEN
081 IF ((s+1)>1s) THEN
861 Writelnt(stdout,(-1),0);
™ EXIT

Th END;

T2

T8

(*str[s] ="a’, str[s+2] ="V, str[s+3] £V,
s+3 < ls#)

IF (str[(s+1)]='b’) THEN (»str[s] ='a’, str[s+1] ="b', str[s+2] =},

str(s+3] D', 543 < lsx)

IF ((s+2)>ls) THEN (+s+2 > ls,5+3 < lsx)

35

36 Pavel G. Emelianov

74: WriteInt(stdout,(-1),0);

76 . EXIT

76t END; - (#str[s]="a’, str[s+1] ="V, str[s+2] ="V,
stris+3] #'b',8+3 < lsx)

™ IF (str[(s+2)]="a’) THEN (+inaccesible point+)

78B: ~fg_counter := 3

701 ELSE (xstrls]="a’, str[s+1] ="V, str(s+2] ="V,
str(s+3] £'b', s+3 < Is*)

80 INC(s); (xstr(s—1]="a’, str[s] ="V, str[s+1] ="V',
str[s+2] #'b', s+2 < la+)

81: IF ((s+0)>1s) THEN (#s > Is,5+2 < Isx)

82: WriteInt (stdout,(-1),0);

88: EXIT

84: END; (*str[s—1]='a’, str[s] ="V, str[s+-1] ="b',
str[s+2] #'b,5+2 < Is%)

85: IF (str[(s+0)]="a’) THEN(xinaccessible point+)

86: cfg_counter:=14

87 ELSE (xstr(s—1]="a', str(s] ="V, str[s+1] ="V,
str[s+2] £'0',54+2 < Is%)

88: INC(s); (#str[s—2]="a’, str[s—1]="¥, str[s] ="V',
stris+1] £, s4+1 < ls«)

89: cfg_counter:=4

90: END

b1: END (*str[s—2]="a’, str[s—1] ="', str[s] ='D',
str{s+1] 0, 5+1 < lsx)

o2 ELSE (+stris]="a’, str]s+1] £V, str[s+2] ="V,
strs+3] #£'b',8+3 < ls¥)

08: INC(s); (#str[s—1]="a’, str[s] £V,
str[s+1] ="', str[s+2] £V, 842 < lax)

04: cfg_counter := 12

[:17] END

Be: ELSE (xstr[s]="a’, str[s+2]="0', str[s+3] £V,
5+3 < lsx)

o INC(s); (xstrs—1]="a’, str[s+1]="',
str[s+2] £, s+2 < ls#)

08: -cfg_counter := 12

951 END

100: END

101: ELSE (#str[s+3] #£'b',5+3 < ls*)

102, INC(s); (xstr(s+2] #'b', 542 < lax)

10s: IF ({s+0)>1ls) THEN (*s > s, 5+2 < ls%)

104 Writelnt(stdout,(-1),0);

1051 EXIT

10e: END; (*str[s+2] £V, 542 < Is#)

107: IF (str[(s+0)]="a’) THEN (xstr(s]="a’, str[s+2] £V, 5+2 < Is%)

108: IF ((s+1)>1s) THEN (*s+1 > s, 542 < ls)

1001 WriteInt (stdout,(-1),0);

110 EXIT

111 END; (#str(s]="a’, str[s+2] #'b', s+2 < ls#)

2R

112

118:
114
118:
116
117
118:
11t
1204
121
1324
128:
134:
125:
126:
1an
128:
124
130:
131
132
133:
184:
1365
1361
137:
138:
136:
140:
141
14
143:
144:
148
146
147
1481
149:
150:
151
162:
1531
154:
1661
186:
15T
158:
150,
160:

Analysis of equality relationships: proofs and ezamples 37

IF (str[(s+1)]="b’) THEN

—fg_counter := 2
ELSE
INC(s);
_cfg_counter := 10
END
ELSE
INC(s);
—cfg_counter := 10
END
END
| 4:
IF ((s+0)>1s) THEN
WriteInt(stdout,(-1),0);
EXIT
END;
IF (str[(s+0)]="'a’) THEN
—cfg_counter := 1
ELSE
INC(s);
—cfg_counter := 0
END
| 10:
IF ((s+0)>ls) THEN
WriteInt(stdout,{-1),0);
EXIT
END;
IF (stz[(s+0)]="a’) THEN
—cfg_counter := 1
ELSE
INC(s);
cfg_counter := 0
END
| 12:
IF ((s+0)>1s) THEN
Writelnt(stdout,(-1),0);
EXIT
END;
IF (str[(s+0)]="a") THEN
fg_counter := 14
ELSE
INC(s);
_cfg_counter := 4
END
| 14:
IF ((s+1)>1s) THEN
WriteInt(stdout,(-1),0);
EXIT
END;

(*str(s] ='a’, str[s+1] ="V, str[s+2] £V,
84+ 2 < lgx)

(xstr[s] ='a’, str(s + 2] £V, s + 2 < ls%)
(+strls—1] ='a’, str[s+1] #'b', s+ 1< Is)

(*str(s + 2] £V, 5 +2 < lsx)
(*str(s + 1] #b',5 + 1 < ls#)

(*-cfgcounter = 4x)
(*s > lax)

(s < lsx)
(sstr[s] ='a’, s < Is«)
(xstr[s] #£'a’, s < ls%)

(xstr[s — 1] #'a’,s < ls+)

(*cfg_counter = 10+)
(s > lss)

(x5 < lsx)
(*strls] ='a’, s < ls¥)
(sstrls] £a, s < Lsw)

(estr[s — 1] #'a’, s < Is#)

(*-cfg-counter = 12«)
(*s > ls%)

(*s < Is¥)

(*str(s] ='a’,s < Is#)
(#stris] £'a’, s < Is«)
(#str[s — 1] #'a’, 5 < Isx)

(*.cfg_counter = 14x)
(*s + 1 > Is%)

(x5 + 1 < ls%)

38 Pavel G. Emelianov

161: IF (str[(s+1)]="b’) THEN (sstr[s + 1] ='b',s + 1 < ls%)
162: —cfg_counter := 2
163 ELSE (*str[s + 1] £'b', 8 + 1 < ls#)
164 INC(s); (xstr[s] £V, s < ls¥)
166 -cfg_counter := 4
1661 END
1éern END
END

END KMP.

