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Spanning-tree modeling method for geometric
constraint satisfaction problem

Alexey Ershov, Alexey Kiselev, Eugene Rukoleev

Abstract. It is well known that parameterization is a powerful tool for creation
and reuse of models. It allows us to construct models with predefined features,
as well as to form new models by modification of parameters of already existing
models. These opportunities are crucial for engineers and other CAD users, since
they greatly reduce the total product operation time. There are two classical types
of parametric design: the more traditional one is a hierarchical approach based
on a history of model creation, and more powerful one is a variational design that
expresses a model by a set of constraints. In this article we introduce a mathemat-
ical approach which combines the advantages of both methods and has no their
drawbacks.

Introduction

In the hierarchical design, the order of creation of elements is quite impor-
tant. This order is reflected in a tree of creation of a model. An element
based on any part of another element is called to be dependent on another
element. Any parametric model keeps the history of its creation, which
makes it possible to modify an arbitrary element in the history by changing
parameters of its dependency on other elements.

This approach is easy to implement but it prevents many actions like
relative positioning of two objects that are already placed in the history of
model creation. It is impossible because of arising of cycles of dependencies
between elements and collapse of the tree-like hierarchical structure. Thus,
if there are non-trivial dependencies between elements in the model, an es-
sentially different approach to the model description is needed [1]. Another
serious drawback of the traditional hierarchical design method is the ne-
cessity to work only with well-defined geometric models that have no inner
degrees of freedom. This condition greatly restricts the editing possibilities.
In order to overcome all drawbacks of the traditional parametric approach
based on a history of model creation, a new variational design paradigm was
introduced. It consists in expression of relations between constructive ele-
ments and their defining parameters by means of constraints. A constraint
is a formal declarative description of an arbitrary relation between objects
of a model [2]. Usually constraints are classified as logical (lines parallelism,
plane-cylinder tangency, etc.) and parametric (like segment length, sphere
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radius, angle between facets). Using constraints, someone can completely
control the shape of the product to be designed. No manual calculations
of relative positions of model parts are needed since CAD automatically
determines positions of all objects that satisfy all the constraints defined.

The expressive power is the main advantage of the variational approach
as compared to the history-based approach [3]. An engineer does not need to
plan product creation step by step as computer can do it. At any moment,
one can add or remove constraints or change their parameters and obtain
a new model with desired properties. The more perfect geometric model
description mechanism can deal with cycle dependencies and underdefined
models. Nevertheless, the variational approach is subject to criticism by
developers of traditional parametric design systems. They consider as a
shortcoming the necessity of simultaneous resolution of the system of all
constraints after modification of the model. Thus, the variational design
systems can be developed only on the basis of a specialized geometric solver.
The main potential weakness of such systems is a long time of reaction to
model modification performed by a user.

The geometric solvers LGS 2D and LGS 3D developed by LEDAS com-
pany can efficiently solve the variational design problems. These solvers
have been embedded in several worldwide CADs [4]. Although all users
were satisfied with new features granted by a modern paradigm, some of
them have mentioned the performance problems in processing of some mod-
els. Aiming at this imperfection, a new method dedicated to modeling the
variational design problems was developed by LEDAS and implemented in
the LGS 3D product. This new method is called spanning-tree modeling. It
represents a geometric model with logical and parametric constraints as a
graph in which all objects are vertexes and all constraints are edges. Then a
spanning tree of the graph is built. It includes some constraints that make it
possible to parameterize efficiently the relative object positions. After that
it is sufficient to solve only the constraints that are not presented in the
spanning tree (so they form closures of the cycles in the graph) in order to
find the configuration of the designed product. It means that only calcula-
tions on constraints that cannot be handled by the hierarchical approach are
performed. Later we describe the spanning-tree modeling method in detail.

Transformations of objects

In any industrial variational design solver, the set of geometric constraints
is transformed sooner or later into a system of non-linear equations that is
solved by computational methods. The main variables of the system are
new coordinates of geometric objects or angles of rotations and vectors of
translations that describe the process of movement of geometric objects into
new positions.
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3D geometric objects in CAD are complicated enough, so many basic
objects (points, curves, planes, etc.) are used for their representation. That
is why complex 3D objects are represented during modeling as rigid sets
– the sets of basic objects that cannot change their relative positions. So
the second way of specification of variables is more useful in practice and
LGS 3D, instead of figuring out coordinates of primitive objects, tries to
find the so-called transformations of rigid sets in a form {R, ~T}, where R

is a rotation matrix 3 × 3, and ~T = (Tx, Ty, Tz) are translations along axes
Ox,Oy, Oz. A transformation moves a rigid set from a position Xold to a
position Xnew:

Xnew = R ·Xold + ~T . (1)

An arbitrary rotation matrix can be considered as a composition of ro-
tation matrices around the axes Ox, Oy, Oz with the angles α, β, γ, respec-
tively:

R = R(α, β, γ) = Rx(α) ·Ry(β) ·Rz(γ). (2)

The user constraints are written as equations on new positions of ob-
jects Xnew so they are expressed through rotational α, β, γ and translational
Tx, Ty, Tz variables.

In LGS 3D, the basic geometric object (a point, line, circle, etc., except
curve and surface) and its spatial position are expressed by the Cartesian
coordinates of its anchor point and a unit direction vector (a radius is also
provided if needed). For example, a circle is completely defined by its center
(the anchor point), the unit normal for its plane (the direction vector) and
the radius, while a point is completely defined by its Cartesian coordinates.

Any transformation {R, ~T} moves the anchor point O = (Ox, Oy, Oz)
and the direction vector of an object ~n = (nx, ny, nz) to a new position O′

and ~n′:
O′ = R ·O + ~T ,

~n′ = R · ~n. (3)

For spanning-tree modeling, it is better to represent the transformation
Tchild of one rigid set in a relative parameterized form based on the trans-
formation Tparent of another rigid set:

Tchild = Tparent ◦Q = Tparent ◦ L ◦ P (α, β, γ, Tx, Ty, Tz) ◦ F, (4)

where P (α, β, γ, Tx, Ty, Tz) = {R(α, β, γ) , ~T}, ~T = (Tx, Ty, Tz), and the ro-
tation matrix R(α, β, γ) has the form (2). L and F are some constant
transformations which will be described in the section about canonical posi-
tions of rigid sets. So the relative transformation Q depends on six variables:
α, β, γ, Tx, Ty, Tz.
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Figure 1. Relative degrees of freedom of two parts

Spanning-tree modeling description

The idea of a new spanning-tree modeling method is that instead of a full
set of six variables α, β, γ, Tx, Ty, Tz it is possible to use a subset that fully
parameterizes all possible positions of a rigid set with respect to another one
if both rigid sets are connected by some constraint or a set of constraints.
A similar idea was used in [5, 6] in the context of the kinematics analysis.
For example, it is easy to see that, if two parts A and B of a mechanism
are bounded by a parallelism constraint specified between the planes A1

and B1, the position of the part B can be only described by four variables.
Indeed, for any position of the part A, the part B has to be placed so
that its plane B1 is parallel to the plane A1, so it can only rotate around
a common perpendicular to the planes A1, B1 and be translated in an
arbitrary direction. So the part B has one rotational and three translational
degrees of freedom with respect to the part A, see Fig. 1.

In order to treat in the same way other rigid sets of the model, the
spanning-tree should be built, where the edge “parent-child” defines that
possible transformations of a “child” can be expressed using the “parent”
transformation by the formula (4). In this formula P (α, β, γ, Tx, Ty, Tz) is
the parametric transformation, where some of the variables α, β, γ, Tx, Ty, Tz

are fixed due to constraints between “parent” and “child”. The number of
variables used for this representation is reduced by the number of degrees
of freedom for constraints between “child” and “parent” . The number of
equations is reduced as well, since the constraints that form the edges of the
spanning-tree will always be satisfied due to the form of parametric trans-
formations used, so they do not require generation of equations. This is the
principal advantage of the proposed spanning-tree modeling method. The
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Figure 2. The initial model with 4 bodies and 9 constraints

constraints not included into the spanning-tree will be processed correctly
due to the formula (4), so the spanning-tree method is a complete modeling
method as compared to iterative solving proposed in [7].

Generally speaking, during the spanning-tree modeling of a geometric
constraint satisfaction problem, two algorithmic steps are performed: build-
ing of an optimal spanning-tree and generation of a reduced system of equa-
tions.

Building of an optimal spanning-tree

At the first step, a multigraph is built using the geometric rigid sets as its
vertexes and the constraints between objects of these rigid sets as its edges,
see Figures 2 and 3. Each edge is marked by the number of degrees of
freedom taken off by the corresponding constraint. E.g., the planes coin-
cidence takes off three degrees of freedom, the plane-point distance – only
one, etc. Each vertex is also marked by the number of degrees of freedom
that describe positioning of the corresponding rigid set in 3D space.

Then analysis of all pairs of rigid sets and sets of constraints imposed
on a particular pair is performed. For example, in Figure 3, for a pair of
rigid sets “top-bottom” three constraints should be treated, while for a pair
“right-bottom” only one constraint should be processed. During analysis,
pattern matching is invoked based on a predefined set of spanning-tree pat-
terns. Each pattern contains one, two or three constraints and defines which
transformation variables α, β, γ, Tx, Ty, Tz of a child rigid set can be fixed.
Each pattern has its weight equal to the sum of the numbers of degrees of
freedom of its constraints. After completion of the analysis, the multigraph
is converted to a graph (see Figure 4): for every pair of rigid sets, the set of
edges representing constraints between these rigid sets is transformed to a
single edge marked by the weight of the matched pattern. The whole base
of all possible patterns is finite, and several dozens of the most powerful
and generic spanning-tree patterns are enough in practice. If the set N of
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Figure 3. The multigraph with marked edges and vertexes

Figure 4. The maximal spanning-tree in a weighted graph

constraints between rigid sets does not match any pattern, then the pattern
M that matches a subset of N is considered to be a result. This means that,
during generation of the system of equations, the constraints of M do not
produce any equations while the constraints from M\N produce equations.

In order to minimize the number of variables and equations in the gener-
ated system of equations, the spanning-tree with the maximal total weight
should be found in the graph. It can be efficiently done using an algo-
rithm with the computational time O(n), n is the number of constraints in
the model, because only six different weights of edges are permitted [8]. For
constraints contained in the patterns included in the maximal spanning-tree,
there is no need to generate equations, since they will be satisfied automati-
cally using parametric transformations. As a result, the system of equations
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will be built only for those constraints of the model that form closures of
cycles in the graph. Therefore, the number of equations and variables will
be much less.

Canonical positions of rigid sets

Generally speaking, in (4) the constant transformations L,F may be chosen
in an arbitrary way (for example, there may be zero movement). However,
it appears that for the spanning-tree modeling combined with parameteri-
zation (4) there is a more convenient choice of these transformations.

For clarity, let us introduce the notion of a canonical position of a rigid
set Rs and for simplicity once again restrict the considered cases by the cases
with only one spanning-tree constrained object in the rigid set Rs. We mean
by a canonical position of the rigid set Rs such a location that the direction
vector of the constrained object is equal to some constant canonical vector
~n0 and the anchor point of the constrained object is equal to the constant
point O0. In most cases implemented in LGS 3D the canonical position is

~n0 = (±1, 0, 0), O0 = (x0, 0, 0). (5)

The transformation F moves the child object from its initial position to
the canonical one, and L moves the child from the canonical position to the
final position, where a spanning-tree constraint between objects is satisfied.

The transformation L can be seen from a different point of view. Let us
bring into consideration the canonical position for a parent object which also
has the form (5). Then the transformation L−1 moves the parent from the
initial position to its canonical location, or equivalently, the transformation
L moves the parent from the canonical position to initial one.

The meaning of the canonical position is to represent the spanning-tree
constraints as simple fixations of some variables (or degrees of freedom).
Other variables define the transformation P , and all equations for the con-
straints not included into the spanning-tree are described via these variables
only. At the same time, the spanning-tree constraints will be satisfied auto-
matically for all values of non-fixed variables.

Let us, for example, require that the distance between two planes pl1
and pl2 be equal to d, see Figure 5. Let pl1 be a parent and pl2 be a child.
Remember that rigid sets containing these planes can also include other
objects in addition to pl1 and pl2.

We choose the canonical position of pl1 in the form ~n0 = (1, 0, 0), O0 =
(x0, 0, 0), and the canonical position of pl2 in the form ~n0 = (±1, 0, 0), O0 =
(x0 ± d, 0, 0), x0 is an arbitrary value and signs are defined by constraint
orientations. In case of lack of user specifications for orientations, LGS 3D
will define them on the basis of the initial object positions. Let F and L−1

be transformations providing movements to the canonical positions.
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Figure 5. Computation of constant transformations

After execution of these movements, both objects are in canonical po-
sitions. Let us consider which form has possible transformations P for the
plane pl2 such that the distance constraint to the canonical position of pl1
is satisfied. Obviously, every such transformation is a combination of a ro-
tation of pl2 around the axis Ox and translations along the axes Oy and
Oz. Thus, P = P (α, 0, 0, 0, Ty, Tz), and the number of degrees of freedom is
decreased to three.

It is easy to see that the transformation of the child (4) with chosen
L,P, F actually transfers it into a position, where the distance constraint
is satisfied for any values of free parameters. On the contrary, each trans-
formation which moves pl2 to the desired location is defined by some of
(α, Ty, Tz).

Naturality of a solution

Note that we have a free choice for F and L, since there are infinitely
many ways of transferring an object from one position to another. So, in
order to choose F and L, LGS 3D is guided by considerations of naturality.
Naturality of a solution is the property of final positions of objects in the
model “to be close” to their sketch positions. It means that if it is possible
to satisfy all constraints without additional movement of some objects, then
this is to be done by the solver.
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It is easy to see that zero values of free variables correspond to the trans-
formation which is the most natural among those satisfying the spanning-
tree constraints. In particular, if in the initial state the spanning-tree con-
straints were satisfied, then after the assignment of zero values to free vari-
ables the objects will not move. In the industrial models, many constraints
are usually not violated in the initial position, so naturality is an important
issue. The methods aimed at computation of more natural solutions have
better performance as well, since the generated systems of equations are
solved using better starting points.

After processing the requirements of naturality, the final form of F and
L appears. Let (Onat, ~nnat) be the position for the most natural solution
of the problem restricted to only the spanning-tree constraints. Then the
transformation F is the shortest way to move a child to the canonical posi-
tion and L is also the shortest way from the canonical position to the state
(Onat, ~nnat).

In the above example of distance between two planes, the naturality
condition requires an optimal selection of x0 which can be equal to the
initial x-coordinate of pl2. In fact, it is the requirement of the most natural
movement to the canonical position which in this case is defined by the
choice of the canonical position itself.

Consideration of non-spanning-tree constraints could lead to further op-
timization of naturality of the transformations F and L.

The case of several constraints

The case of two or more constraints imposed on two rigid sets and connecting
the basic objects of these rigid sets is very popular in practice. In this case,
the canonical position for a rigid set is chosen by completely similar reasons:
someone should find the position such that constraints could be satisfied just
by fixation of P variables. This problem is not so trivial [9] but it can be
solved for all practical configurations of constraints.

Let us consider a case where two constraints are imposed on objects of
two rigid sets. Let two lines Ln1 and Ln2 belong to a “child” rigid set Rs1,
a pair of lines Ln3 and Ln4 lie inside a “parent” rigid set Rs2, and the
coincidence constraints between Ln1 and Ln3, as well as between Ln2 and
Ln4, are imposed. In addition, collinearity of the direction vectors of Ln1
and Ln3, as well as of Ln3 and Ln4, is needed. Suppose that the problem
is consistent. Suppose also that Ln1||Ln2 and Ln3||Ln4, otherwise there is
only one solution.

Assume that both bodies are in their canonical positions so that con-
straints are satisfied. Thus there remains only one degree of freedom cor-
responding to a shift of the pair of lines Ln1 and Ln2 along the common
direction vector of all four lines.



84 Alexey Ershov, Alexey Kiselev, Eugene Rukoleev

Now the canonical position can be easily selected. For example, assume
that in the canonical position Ln1 coincides with the axis Oy, Ln2 is parallel
to the axis Oy, intersects the axis Oz and lies at the distance to Oy equal
to the distance between these lines. The y-coordinate of the anchor point of
Ln1 is chosen so that movement to the canonical position is the shortest one.
The only remaining degree of freedom is the translational variable Ty. The
matrices L and F are built according to the special rules described above.

Difficulties of finding canonical positions

Unfortunately, a suitable canonical position exists not for all cases. One of
counterexamples is the incidence constraint for a point P and a line L if L is
considered as a child. There are all three rotational degrees of freedom for
L and only one translational along the direction vector of the line. Our pa-
rameterization combined with the transformation form (3) cannot describe
this case by only fixation of some variables. This problem could be solved
in two ways: by changing parameterization or by replacing the anchor point
transformations form by the form

O′ = R · (O + ~T ). (6)

The order of translation and rotation is changed in this form of trans-
formations: now translation is performed before rotation. After that the
canonical position ~n0 = (1, 0, 0), O0 = (0, 0, 0) is suitable with the remain-
ing degrees of freedom (α, β, γ, Tx). This idea promises further performance
growth and decrease in the size of the system of equations.

The line-plane distance constraint is another “troublesome” case. Let us
first consider that a “child” is a line. Let a line Ln and a plane Pl be in their
canonical positions and the constraint be satisfied. The remaining degrees
of freedom relate to a movement of the line (or rather, the rigid set with the
line) around itself, a rotation in a plane parallel to Pl and a displacement
parallel to Pl for four degrees of freedom in total. If the line in the canonical
position is directed as the axis Ox and the plane normal is along Oy, then
the remaining degrees of freedom correspond to rotations around Ox and
Oy. However, the transformation with the rotation matrix (2) firstly turn
the line around Oy and then around Ox, breaking perpendicularity to Oy.
In order to obtain a correct solution, it is necessary to direct the line along
Oy and the plane normal along Ox, so the line will firstly turn around itself,
then around the plane normal, and perpendicularity will hold. Thus the
choice of the canonical position may depend even on the order of rotations.

It should be noted that a suitable canonical position for parameteriza-
tion does not exist when a “child” is a plane for the same reason as in
the point-line coincidence example discussed above. Nevertheless, using the
alternative type of transformations (6) solves this problem.
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Patterns implemented in LGS 3D

The spanning-tree patterns for one constraint are called single patterns;
patterns for two constraints between rigid sets are called double patterns
and so on.

Currently in LGS 3D only 6 single and 17 double patterns are imple-
mented. Single patterns are implemented for the following constraints:

1. points coincidence (0 + 3);

2. lines coincidence (2 + 2);

3. plane-plane distance (2 + 1);

4. parallelism (2 + 0);

5. point-line coincidence in case when a “child” is a point (0 + 2);

6. spheres coincidence (0 + 3).

The numbers in parentheses are the quantities of reduced rotational and
translational degrees of freedom, respectively. The sum of these numbers
is equal to the number of equations that are excluded from the system of
equations.

The most frequently encountered double patterns are:

1. Two line-line coincidence constraints. In the general case, lines are
not parallel so the relative position of rigid sets is fully determined.
In the case of parallel lines, much more often encountered in practice,
only one translational degree of freedom remains.

2. Two plane-plane distances. In the general case, planes are not parallel
and only one translational degree of freedom remains (along the line of
intersection of planes). In the popular case of parallel planes, three de-
grees of freedom remain but, as compared to the pattern with a single
distance constraint, this pattern may provide additional information
about mutual orientation of planes.

3. Lines coincidence + planes distance. In the popular case of perpendic-
ular lines and planes inside rigid sets, one rotational degree of freedom
remains (around the common direction vector). If the lines are parallel
to the planes, then only one translational degree of freedom remains
(along the line itself). In the general case, the relative position of rigid
sets is fully determined.

4. Lines coincidence + parallelism of two other objects. In the case when
lines are parallel to other objects inside rigid sets, one translational
and one rotational degree of freedom remains. In the general case,
only one translational degree of freedom remains (along the line).
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Generation of a reduced system of equations

A correct generation of equations for the remaining constraints requires cre-
ation of objects of the dedicated class “equation on parametric transforma-
tions”. This class implements the methods for computation of discrepancy
and its gradient on the basis of current values of all variables – these values
are substituted to parametric transformations. Discrepancies of all equa-
tions and their gradients are then used for solving a system of non-linear
equations by Newton’s method.

The complexity of calculation of discrepancy and its gradient for such
equations is greater than that of the standard modeling method. For every
constraint it is needed to perform as many 3×3 matrix multiplications as the
length of a path in the spanning-tree between objects that are arguments of
these constraints. Nevertheless, all transformations and their partial deriva-
tives for all objects can be found at once with quadratic complexity using
optimization of computation by processing the vertexes in the spanning-tree
from its root to leaves. The overall complexity of computation of the Ja-
cobian matrix and right hand side vector also will be at most quadratic.
While solving the non-linear system of equations by Newton’s method, the
most time-consuming operation is solving the linear systems, which is cubic
in time, so our new spanning-tree method has an acceleration effect.

As the formula for the “child” transformation using “parent” transfor-
mation (4) requires the definition of constant matrices L and F , they are
analytically found before the equation generation.

Conclusion

Experimental results for the spanning-tree modeling method are shown in
Tables 1, 2. The testing framework used to estimate efficiency of the im-
plemented method includes 3120 cases. The biggest 14 cases constitute the
so-called “Big cases” group. Most of them are generated by CAD industrial
problems. The average size of the models is several tens of geometric objects
and around a hundred constraints on them.

In Table 1, the spanning-tree modeling is compared with 6-variable
Cartesian modeling. We see that the spanning-tree modeling reduces the
sizes of systems of equations and considerably speeds up the process of solv-
ing (see also Figure 6).
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Figure 6. In LGS 3D, a model with 22 constraints is described by 9 equations
only

Table 1. The comparison with 6-variable Cartesian modeling

Modeling Average Average Total Success
Test base method quantity of quantity of computation rate

variables equations time, sec.
Main base 6-variable 8.48 7.12 695.05 95.10 %
Big cases Cartesian 29.57 37.25 242.02 71.43%
Total modeling 937.07

Main base Spanning- 5.46 3.04 187.13 97.52%
Big cases tree 16.46 18.25 115.12 78.57%
Total modeling 302.25

Along with these two modeling methods, the LGS solver uses many other
techniques to increase efficiency: different kinds of geometric decomposition,
geometric simplification algorithms and acceleration methods for solving
non-linear equations [10]. Therefore, the overall effect of implementation of
our new method is much more complex. The results of comparative testing
of the LGS solver before and after plugging in the spanning-tree method
showed that the total solution time dropped twice, see Table 2. Moreover,
the percentage of cases successfully solved by LGS (see the column “success
rate”) significantly increased.
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Table 2. The effect of plugging in the spanning-tree modeling method

Solver Total Success
Test base configuration computation rate

time, sec.
Main base Before plugging 77.9 98.55%
Big cases of spanning-tree 478.18 85.71%
Total modeling 556.07

Main base After plugging 52.78 99.16%
Big cases of spanning-tree 235.98 92.85%
Total modeling 288.75

We think that this progress is due to combination of positive features of
hierarchical and variational design methods in the new spanning-tree mod-
eling method. Our plans of future development of the method include ex-
tension of the set of predefined spanning-tree patterns, minimization of the
height of the spanning-tree and many other issues.
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