Bull. Nov. Comp. Center, Comp. Science, 3 (1995), 39-58
© 1995 NCC Publisher

High-performance heterogeneous
processing in concentrating computing
system*

'Ya.I. Fet and A.P. Vazhenin

In this paper the possibilities of organizing heterogeneous computing in so-called
Combined Architecture systems consisting of a basic host subsystem (a massively
parallel computer), and a set of high-performance specialized parallel coprocessors
(hardware modules) executing the main workload are discussed. To optimize the
choice of hardware modules, a classification of massive computations, based on the-
notion of processing types, which correspond to the character of data processing is
suggested. A technique of parallel programming for the suggested concentrated het-
erogeneous systems, ensuring close matching of the tasks to the hardware modules
i8 introduced. ‘

1. Introduction

During the last decade, the most impressive gain in computer performance has been
made by raising the level of parallelism and using of microprocessors with improved
physical characteristics. Such important issue as the specialization of hardware was
rarely addressed, though it presents a very important source of further improvement,
of computer systems performance. . o

Generally speaking, a struggle between the universality and the specialization
always existed in the development of computer architecture. The principal cause
of this contradiction was in economic reasons of different kinds: buying a single
general purpose computer, the user ‘will be able to solve any problem he needs,
hence, general-purpose computers could meet a broader market; the specialized
computer cannot be evenly loaded with jobs, as compared with a universal one,
etc.

As a matter of fact, the most powerful contemporary supercomputers attain
striking values of peak performance. However, of practical interest is the real per-
Jormance attainable on important applications. Usually one has to make every
effort in order to “embed” his algorithms and problems into the given system ar-
chitecture. L ' : . : B

Still, the real problems are usually non-uniform. For different problems and
various fragments of the same problem it is expedient to use features of different
architectures. Utilization of a rigid architecture leads to a large gap between the
peak and the real performance.

“Supported by the Russian Foundation for Basic Research under Grant 95-01-01350a.

40

Recently, a wide interest was attracted by Heterogeneous Computing [1], which
implies a distributed network system of several commercially available computers
of diverse architectures. In such environment, the user is able to vary flexibly the
style of programming, in accordance with the characteristics of his problems.

At the same time, the network approach in organizing heterogeneous computing
seems to have a number of shortcomings (see, for instance [2]):

1. Complete computers of serial production are used, each of them being not
perfectly suited for the specific application problem.

2. Exploiting the networks, as well as the node supercomputers, involves large
overheads.

3. The internode data transfer through the networks usually causes considerable
delays.

The modern developments of VLSI technology obviates most of the mentioned
objections against specialized processors. A proper choice of hardware architecture
provides the highest speed in solving of corresponding problems.

The best results can be achieved when “computers look like the problem that
they are trying to solve” [3]. Following this way, one could design a separate
specialized processor for each problem, or a class of problems. However, too many
different processors should be included in such a system.

~ How can be significantly expanded the range of applicability of a special hard-
ware device, without loosing the efficiency of this device?

In this paper, an approach to the solution of this problem based on comparison
of the widespread types of batch processing, an the one hand, and the known
hardware structures, on the other is suggested. This allows for selection of a limited
set of basic processing types, covering in common nearly all of hard computations
involved in solving of the overwhelming majority of important problems.

This approach leads, in turn, to the conception of so-called combined architec-
ture [4, 5], in which different kinds of processing are executed by corresponding
dedicated accelerators. Now accelerators are widely used in computing systems
for increasing their performance. However, nearly in all cases, the designers come
merely to floating-point arithmetic processors, which are in essence weakly special-
ized. In contrast with the known distributed heterogeneous systems, the combined
architecture allows for building of Concentrated Heterogeneous Systems (CHSs).

The peculiarities of the present paper are as follows:

1. Use of a highly parallel SIMD computer as a basic (host) subsystem of com-
bined architecture.

2. Broad application of strongly specialized accelerators (hardware modules)
of different intentions and various hardware structures including parallel,
pipeline, systolic, associative, etc.

3. Systematic approach to the selection of accelerators based on the classifica-
tion of massive procedures according to so-called processing types.

4. Use of a definite technique of flexible heterogeneous programming ensuring
the decomposition of a given application problem into processing types, with
subsequent mapping of the designed algorithm onto the available set of hard-
ware modules of a specific system.

41

5. Balanced interaction of various subsystem of the combined architecture.

In Section 2 the main features of the combined architecture are described. Sec-
tion 3 is devoted to the issues of classification of massive parallel procedures. In
Section 4 some examples of typical hardware modules are presented. The suggested
technology of programming in CHSs is described in Section 5. In Section 6 some
conclusions are made.

2. Combined architecture

We call combined architecture a cooperation of a highly parallel host computer
with a set of specialized processors. In this architecture, solving of any problem
is considered as interaction of several processes, so that execution of each process
is delegated to a specialized subsystem, most efficient in implementation of this
process. The subsystems are controlled in such a way that their balanced operation
might be ensured, and special complementing features of subsystems might be best
exploited. For each subsystem a structure is chosen which best corresponds to the
function it should perform.

At choosing the architecture of subsystems, the following considerations should
be taken into account.

In the combined architecture (Figure 1), the main working load of the processing
is delegated to the coprocessors. Hence, the requirements to the performance of
the basic computer can be moderate. However, in order to ensure the effective
teraction between the subsystems and the necessary data flows, this computer
should have a sufficiently high degree of parallelism, a large capacity of the main
memory, and an adequate software.

At the same time, in view of the general objectives of the system, extremely
high demands should be made to the perfbrmance of each coprocessor. It means
that special care is needed in selection of the structures of coprocessors. The most
suitable architecture for the basic subsystem seems to be the fine-grained SIMD
similar to DAP, or CM. These computers fit the above mentioned requirements
(memory size, parallelism, etc.), while they are much cheaper of the other parallel
systems because of using simple single-bit processing elements.

The last is, in fact, the weak point of this remarkable architecture preventing it
to take a leading place in computation intensjve applications. In our case, however,
this drawback is not a decisive factor, because hard computations, according to the
main idea of combined architecture, are delegated to the coprocessors. On the other
band, the fine-grained SIMD host computer can ensure the necessary input/output
and preprocessing of large data arrays, due to such inherent properties as flexible
highly parallel memory access, fast manipulation on data structures, and large 1/0
channel bandwidth.

Efficient operation of high-performance specialized architectures is known to
be possible only when proper preparing and staging of data are provided. For in-
stance, in systolic implementation of matrix problems the incoming matrices should
#° (by row or column) to the inputs of certain PEs in the form of a polygon of def-
mmte shape. Sometimes the sequences of coefficients must be interleaved by zeros.
Using conventional memory devices and I/O hardware would cause serious diffi-

42

Application Design of Processing
Problem — | Algorithm | +— | Types
{
Real HM's Execution HM
Features —+ | Scheme .- Design
{ I

P

Specialized Coprocessors

0 O

| INTERCONNECTION NETWORK f
ﬂ,

~

HOST-COMPUTER
Network g i Massively Parallel
g SIMD system
T
User

Figure 1. Combined architecture

culties in reahzmg these elaborated data: mampulatlons Inevntably, the expected
_performance of the systollc array would degrade. -
In [4] an example of a combined architecture is presented in which a STARAN-
like SIMD computer is used as a host, and a set of systolic arrays as a powerful
processing subsystem. A family of basic procedures for transformation of data
structures is also described in [4], accomplished by the host. It is shown that these
procedures provide for a balanced operation of the system as a whole, and allow to
utilize the potential speed of specialized hardware. The preprocessing procedures
- of this kind are fundamental to drﬂ'erent dedicated a.rchltecturea ‘Another benefit -
of using the fine-grained SIMD as a host comes from-saving of all its features and -
advantages to be exploited at solving in the system of problems well fitting the “data
parallel” paradigm. Thus, the combined architecture rmght extend the lrfetlme of
existing fine-grained' SIMD computers. -

Looking at the present development of supercomputers one can dlscover two
important trends: increasing of the performance of processing elements, and ex-
tending of allowable programming styles. The combined architecture pertains to
both these trends: the problem-oriented coprocessors of different structure provide
a multiarchitectural environment, while the strong specmhzatnon and the massive
paraIIehsm of these processors ensure high performance :

3. Classification

The novelty of the present approach is that the specific type, or “technology”, of
processing necessary for efficient execution of the most labor-intensive procedures
involved in the implementation of a problem is used as a criterion for the selection of

43

appropriate hardware architecture. As a rule, similar technologies are encountered
as well in solving problems of other classes.

Analyzing the common numerical methods, algorithms, and programming lan-
guages, one can select a set of recurring general technologies, or styles of data
treatment which we call processing types. It such analysis, specific features of ex-
isting hardware should be taken into account in order to make possible a reasonable
mapping of the processing types onto efficient hardware modules.

3.1. A short history

One of the earliest investigations in massively parallel processing is due to Leonid
Kantorovich who described in 1957 the so-called “large-block programming system”
[6]. He proposed to consider as basic objects operated by the system ordered sets
called quantities (such as vectors, matrices, etc.), a single number being the simplest
quantity, called an element. Some special operations on quantities were introduced:
arithmetical operations as extensions of usual arithmetic on any element of the
quantity, and geometrical operations which do not change the values of quantities
but only transform their structures.

A significant event in the development of parallel processing was the appearance
of APL (A Programming Language) devised by Kennet Iverson [7]. In APL, the
variables are logical, integral, numerical, and arbitrary. They can be scalars as
well as rectangular arrays of any rank and dimensionality. The following types of
operations are defined in APL:

1. Scalar operations, with scalar variables both as arguments and results. The
scalar operations are subdivided into unary and binary.

2. Compound operations, being an extension of scalar operations to arrays.
Four kinds of extensions are provided: component-wise processing, reduction,
inner product, and outer product.

3. Mized operations, in which the ranks of the arguments and the results are
different. These operations serve mostly for transforming the array structure.

Later on, some massive, large-block operations were further developed in such pro-
gramming languages as PL-1, Algol-68, etc. For the time being, the notions of
array operands and parallel operators introduced into the mentioned languages re- -
main just conceptual. Up to the 70-ies, in the real computing systems they were
executed by means of usual sequential subroutines. With the advent of computers
of parallel architecture (Illiac IV, Staran, DAP) the true parallel execution of mas-
mve processing become a reality, though the extent of parallelism in each case was
kmited by the possibilities of the particular hardware.

The development of new parallel systems stimulated more precise classification
of massive operators, for better exploiting of the advantages of different architec-
tares. One attempt to construct such a classification was made in [8], where five
classes of operators were selected:

1. Numerical component-wise processing. The arguments are one or two nu-
merical vectors, the result is also a numerical vector, -and the processing
consists in some computation simultaneously applied to all the components
of argument vectors.

44

2. Numerical reductive processing. The argument is a numerical vector, the re-
sult is a scalar, the processing consists of application of some binary operation
to all the components of the argument.

3. Logical component-wise processing. The arguments are two numerical vec-
tors, the result is a binary vector, the processing consists in finding out a
specified relation between the corresponding components of array arguments.

4. Logical reductive processing. The arguments are an array and a scalar, the
result is a subset of elements of the array argument meeting specified condi-
tions. The processing consists in simultaneous comparison of the scalar with
all elements of the array.

5. Data structure transformations. Both the argument and the result are arrays,
the processing consists in some modifying of the structure of the argument
array, without changing the values of its elements.

Recently, a valuable contribution to the classification of massively parallel oper-
ations has been made by Guy Blelloch [9]. In his book, a set of primitive in-
structions is discussed for the so-called “Scan Vector Model”. Three classes of
instructions, relying to a considerable extent on the APL operations, are defined:
scalar, vector, and vector-scalar instructions. The vector instructions are divided
into element-wise, scan, and permutation instructions. It should be noted that
Blelloch’s primitives are virtually directed toward a definite architecture of the
Connection Machine.

Following our approach, in selecting of the typical massive procedures to define
corresponding processing types one should not limit himself by the features of
a specific computer system, but rather examine a broad variety of existing and
prospective hardware structures.

3.2. Classification of problems

Among the numerous problems requiring the power of supercomputers to be solved
in adequate time, several prevailing classes can be chosen constituting the main
part of the computer charge. These problems belong basically to the following two
groups.

A. Numerical problems: Numerical approximation, Linear algebra, Ordi-

nary differential equations, Equations of mathematical physics, Numerical sim-
ulation, Discrete transforms, Combinatorial problems, Error analysis, Computer
graphics and geometry, Signal and image processing, Simulation of complicated
objects. :
B. Non-numerical problems: Searching and sorting, Symbolic Processing,
Text processing, Databases, Operational systems, Artificial intelligence (Produc-
tion systems, Logical inference systems; Pattern and speech recognition, Genetic
algorithms, Neurocomputing, Robotics, Computer-aided design).

Of course, this list of problems is incomplete, and needs further improving.
Nevertheless, we suppose that the enumerated problems cover the needs of the
most important applications. Hence, the analysis of the processing types involved
in these problems may be rather representative,

45

3.3. Processing Types

Our goal here is to provide a classification of processing styles confronting them with
the known hardware structures, in order to find a reasonable mapping: PROCES-
SINGTYPE - HARDWARE MODULE. Indeed, the variety of styles, or
technologies involved in machine realization of different application problems is not
too large. '

We will describe the Processing Type (PT) as a three-tuple: PT = {4, A, T},
- where A;(A3) corresponds to the data type of the first (second) argument, and T
corresponds to the transformation to be executed upon these arguments. In massive
procedures, the terms A; and A3 usually take the values “Vector (V)”, “Scalar (S)”,
and “Binary (B)”. Other possible types of arguments can be: “Array”, “Set”,
“Relation”, “Tree”, etc. Examples of transformations T are: “Arithmetic (A)”,
“Logic (L)”, “Permute (P)”. At this level of discussion, the dimensionalities of the
arguments can be ignored. It is supposed that they do not exceed the parallelism of
the corresponding hardware modules. Ifit is not the case, than the usual (program) .
decomposition techniques should be applied. N

Table 1 shows the notations of the most common processing types. In this table,
some HMs are also shown suitable for implementation of different PTs. Of course,
this list of basic processing types needs further extensions and corrections.

Table 1

A, Aj T PT ' HM(s)
Vector | Vector | Arithmetic | VVA | Pipeline, PVM, PVA, Systolic
Vector - Arithmetic | VoA | Pipeline, PVM, PVA, Systolic
Vector | Vector | Logic VVL | Set Intersection Processor
Vector | Scalar | Arithmetic | VSA | Pipeline
Vector | Scalar | Search VS8S | Associative Processor
Vector | Interval | Search VIS | Associative Processor
Vector | Vector | Search VVS | Set Intersection Processor
Vector - Order VoO | Sorting Network, Systolic
Vector - maX VoX | Extremum Selector
Vector - miN VoN | Extremum Selector
Vector | Vector | Permute | VVP | Permutation Network
Vector - Permute VoP | Permutation Network
Vector - Compress | VoC | Digital Compressor
Vector - Expand VoE | Permutation Network
Vector - Logic VoL | Associative Processor
Binary | Binary | Logic BBL | Associative Processor
Binary | Binary | Permute BBP | Permutation Network
Binary - Permute BoP | Permutation Network

4. Specialized hardware modules

We have already mentioned that the combined architecture is an open system ca-
pable of including a variety of hardware modules of different architectures. Further
investigations in the computational requirements set by problems, as well as the

46

progress in hardware technology, will supplement the assortment of hardware mod-
ules with novel elaborate devices. o :

The goal of this Section is to give some examples of existing hardware modules.
To begin with, a brief survey of well-known structures is made.. Then, several
specialized processors are described introduced in the previous papers of the present
authors.

4.1. Vector Pipeline Architecture

These devices are widely adopted in modern supercomputers (Cray, Convex, Fu-
jitsu FACOM VP, and others), as well as in arithmetical accelerators (Intel860,
DEC: Alpha, Fujitsu uVP, etc.). The vector pipeline devices are appropriate for
implementation of processing types VVA, VSA, VoA.

4.2. Systolic/wavefront arrays

These devices are locally connected networks of homogeneous cells, with a regular
directed flow of data and results (see, for instance, [10]). Note, that a systematic
method for design and optimization of systolic arrays has been developed in [11].
The systolic/wavefront processors fit well to implementation of processing types
VVA, VoA, VoO, etc.

4.3. Permutation Networks

The permutation network (also called an interconnection network or a commutator)
is now an indispensable component of any parallel computing system because of
the necessity to provide fast data transfer between different nodes of the system.
The permutation network may be considered as a specialized processor embedded
into proper system.

The most popular permutation networks are: the suffle/exchange network, the
Q-network, the Data Manipulator, the Flip network (see, for instance [12]). Simple
meshes are often used as permutation networks: the NEWS-grid (a rectangular four-
neighbour mesh), and the X-grid (an eight-neighbour mesh). In the CM-5 system
a novel efficient network was implemented called a fat-tree [13]). The permutarion
networks realise the processing types VVP, VoP, VoE.

4.4. Sorting devices

A variety of methods and tools of hardware sorting have been discussed in the
literature (see, for instance, [14]). A remarkable achievement in this field was
Batcher’s sorting network [15), which is capable to 1mplement the ordering of a N-
element array with the time estimation of the order lcvg2 N. Note also, that systolic
arrays can be efficiently used for sorting.

The sorting devices implement processing types VVP, VoO.

47

4.5. Associative Array Processors

Different Associative Array Processors (AAPs) were developed to implement non-
numerical problems (database machines, information systems, etc.). An extensive
literature is devoted to the architecture and applications of AAPs (see, for instance,
[16, 17]).

As it was shown by various authors, the AAP can realize different algonthms
and problems. However, they are most efficient for the processing types VVL, VSS,
VIS, VoL, BBL.

The operation of AAP is based on the principle of content-addressable memory
(CAM). In general, the CAM can be presented as a rectangular m x n matrix from
identical cells, each of which contains a single-bit memory and a logical circuit
realizing the equivalence function. In the rows of this matrix (i.e., in the flip-flops
of its cells), the m n-bit words of the argument array are stored. In each column of
the matrix a bus is provided traversing all the cells of this column, and carrying the
corresponding bit of the second, scalar argument (called comparand, or associative
tag). In each row, a horizontal bus is provided gathering the logical values of the
equivalence functions from all the cells of this row. Evidently, in such a matrix the
response signal on the horizontal bus will be produced only in those rows containing
words which coincide with the comparand.

The CAM represents a strongly specialized processor oriented to a very impor-
tant processing type VSS. Here, the algorithm of associative search is simulated
in the course of signal flow along a specific distributed logical net of the CAM
matrix. This kind of processing might be called quasi-analogue simulation. Differ-
ent logical nets possessing such properties we call Distributed Functional structures
(DF-structures) [18]. We will describe below two more DF-structures which can be
used in designing efficient hardware modules of combined architecture.

4.6. Extremum selector (a-structure)

Consider a two-dimensional homogeneous structure of size m x n with m n-bit
elements (binary numbers) of the processed array written in its memory so that
each element occupies one row of the matrix (most significant digits to the left).

For the maximum selection a known algorithm of column-wise (from left to
right) inspection of values a of t.he bxts of array e]ements is used, described as
follows.

Step 1. The contents of the first (lefl;) column is looked over, that is, the most
significant digits of all m elements. If all these digits are zeros, then at the following
step the second digits of all m elements are looked over. If, however, the first column
contains both zeros and ones, then at the second step only those elements which
had ones in the first position are looked over.

Step j. The contents of the j-th column (j-th digits of all elements) are looked
over, in those rows which were singled out at the (j — 1)-th step. If all these digits
are zeros, then at the following step the (j+1)-th digits of the same rows are looked
over. If there are both zeros and ones in the memory elements looked over at the
J-th step, then at the (j + 1)-th step only rows corresponding to ones are looked
over.

48

The subset of the rows singled out at the last (n-th) step (and this may consist
of only one row) contains the maximal elements.

As it was shown in [18], this algorithm is realized when each cell of the dis-
tributed logical network implements the functions z/ = z2(aV§), ' = zVaz, where
the variables z and z belong to the vertical and horizontal look-over channels, and
y in each column should be set to z/,. .

Evidently, the implementation of minimum selection differs only in that the
negations. of all binary variables a should be used at the array inspection.

4.7. Digital Compressor

We call digital compressor a functional unit realizing the compression of binary
vectors, that is, the conversion of an arbitrary binary vector into a prefix (suffix)
vector of the same weight. Various types of digital compressors are known. Consider
one of them, based on a simple DF-structure called A-matrix [19].

This is a two-dimensional homogeneous array (Figure 2a) each cell of which
contains two logical gates, AND and OR (Figure 2b) and realizes logical functions
' = zt (the horizontal channel) and t' = z V ¢ (the vertical channel).

ltu ltu Itln

)l o, |l g o] 9 |eZin
| j } t
T DR S S R s . }
I
4
7 7 ! ! &"—r'
: : | I
i } | [|
. , | v |
z"—-'lb 1 — 2 I-o-----u- 3 \-—n-z'.""'l | |
: L - - - _ J
11.‘;,,1 ' 1t:,,, lt:,m t'
a) b)

Figure 2. Compression of binary vectors: a) general structure of A-matrix;
b) logical circuit of A-cell

Let an arbitrary binary vector be applied to the inputs z of the left boundary
of A-matrix. «

Consider the first (the left) column of the matrix. The variable ¢ retains its
initial value 0 in the vertical channel of this column only till z = 0. In some iy-st
cell, where z = 1 is encountered for the first time, the value of ¢ changes to 1 which
cannot change then till the lower bound. However, the i;-st cell receives yet the
signal ¢ = 0. Hence, it is the single cell in the whole column where the combination
zt = 1 is present. This combination may serve as an indication for extracting the

({3 »

one .

49

The horizontal channel of thus indicated i-st cell is closed by the signal ¢ = 0.
Hence, the first “one” of the given vector does not propagate further along the
current row. In all cells lower than the indicated one, t = 1, so that z’ = z. Thus,
to the inputs of the second column a duplicate of the given vector is applied, except
for its first “one”.

Similar transformations are performed in the second, the third column, and
others: in some iz-nd cell of the 2-nd column the second “one” of the given vector
is indicated, in some i3-rd cell of the 3-rd column the third-“one” is indicated, etc.
(f1<ia<.)

Ev1dently, signals “1” appear at the outputs ' of the lower bound in the 1-st,
2-nd, ... columns of the A-matrix, and the number of such columns corresponds to
the number of “ones” in the given binary vector. Hence, the A-structure performs
the compression of a binary vector, and can realize the processing type VoC.

4.8. Pipelined Vertical Adder

The vertical adder [19)] is a pipelined device implementing the reductive summation
of m n-bit elements of an array of integers.

The algorithm of vertical addition consists in sequential calculation of the num-
ber of “ones” in the bit-slices of the initial array, beginning with the least significant
digit. The obtained partial sums are summed, with the systematic one position left
shift, taking into account the weights of the ones in the processed bit-slices. This
procedure has a pipeline character, which determines the structure of the processor.

The Pipelined Vertical Adder (PVA) consists of four units: a Digital Compressor
(DC), a Leading One’s Selector (LOS), a Code Transformer (CT), and an Adder-
Accumulator (AA). The first three units perform the proper counting of the number
of “ones” in bit-slices (the weighting), and the last the addition of partial sums.

To realize weighting, the following technique is used. At first, the compres-
sor DC transforms the next bit-slice (an unitary code) into the equivalent prefix
vector. Then the selector LOS produces a signal marking the position of the last
“one” of the prefix vector. Finally, the transformer CT outputs a binary number
corresponding to the weight of the given bit-slice.

Note that here a pipelined compressor should be used.

The Adder-Accumulator should ensure the finishing of the shift and the adding
of the next partial sum at one cycle time. Then, the total time necessary to perform
reductive summation in the considered device, will depend only on the word length
n of the elements of the initial array. Taking into account the filling time n — 1
of the pipeline compressor (the “depth” of the pipeline), it follows that t.he whole
procedure time is approximately 2n steps.

This device can be used in realizing the processing types VVA, VoA.

4.9. Pipelined Vertical Multiplier

The Pipelined Vertical Multiplier (PVM) described in [20] intended for concurrent
component-wise multiplication of two integer vectors is also a two-dimensional ma-
trix of size m x n. Each cell of PVM contains three flip-flops, m, s, and ¢, a full
binary adder, and some control logic.

50

In PVM, sequential multiplication (beginning from the least significant bits) is
performed simultaneously in all rows, while the principle of carry save addition is
applied in computing of the sums of products.

The procedure consists of three phases. ~

Phase 1. Loading of multiplicands. The bit-slices of the array of multiplicands
are sequentially loaded from the main memory into the columns of the flip-flops m
of PVM. _

Phase 2. Proper multiplication. The bit-slices of the arrays of multipliers (lo-
cated in the main memory) are sequentially fed to corresponding control inputs
(“multiplier buses”) of PVM rows. In each cycle of the considered procedure in all
rows, where the current bits of the multiplier are “ones” ; an addition is performed
of the corresponding multiplicands (from the rows of flip-flops m) with the partial
product stored in a carry-save manner in the rows of flip-flops s and ¢. At this
addition, the partial sums s are moved by one position to the left, while the saved
carries ¢ do not change their positions. Thus, in each cycle a column of true val-
ues of current bits of the array of products is produced (beginning from the least
significant bits), and stored in the main memory. At the end of phase 2, n least
significant bits of all products are produced.

Phase 3. Output of the n — 1 most significant bit-slices of the array of products.

It can be easily shown that the component-wise multiplication of two vectors
in PVM takes approximately O(n) cycles.

This device can be used in realizing the processing types VVA, VoA.

4.10. Set Intersection Processor

Another example of a specialized processor for non-numeric processing is the Set
Intersection Processor (SIP). It is a two-dimensional homogeneous structure of size
my x ma (Figure 3), each cell of which contains an equivalence circuit, a response
flip-flop, and some additional logic, which is needed for implementing in this cell the
sequential bit-wise comparison of the corresponding elements of argument arrays
My and M;. After completing the comparison cycle of n steps, where n is the
element length, in the two-dimensional response field of SIP the resulting Binary
Label Matrix (BLM) is formed. '

The presence of “1” in the (i, j)-th node of BLM means that the i-th element
of the array M; coincides with the j-th element of the array M. .

The SIP is a quasi-associative processor with a higher level of parallelism com-
pared to conventional associative processors. Whereas in the conventional quasi-
associative processors all elements of an argument array coinciding with one com-
parand are singled out during one cycle of memory interrogation, in SIP a complete
intersection of two arrays is realized at the same time. -

The set intersection processor can be used in different hardware modules. Sup-
porting the PT related to non-numerical problems, it can serve as a powerful parallel
comparator. Another possible application of this device is in table-lookup compu-
tations. In this case, the proper functional table is stored in MU1 while a number
of values of current arguments are loaded into MU2. It can be easily shown that in
coarse of a single cycle of memory interrogation, a set of values of a given function
corresponding to all the arguments of MU2 will be produced in parallel.

51

MU2
_— | M2 _
M;
R I
1
AR D U —J 1l _ _L|m
il el At - -F
M| : LD
o N
I Sl Dy S L B el o
Mur 0™ BLM

Figure 3. Set Interséctioﬂ P:o_cessdr
The SIP can be used in realizing the processing types VVL, VVS.

4.11. Functional C_dnverter

These computations are based on a rather unusual property of the A-matrix.

Consider a A-matrix of size m x n arranged as in Figure 4. If some binary
vector F is fed to the inputs 2 of the buttom row of A-cells, then, in accordance
with the basic algorithm of operation of the A\-matrix (see 4.7), each next “one” of
this vector marks by a unique logic condition (21 = 1) a single cell of the next row
of the A-matrix corresponding to its coordinate.

Yt

lo]of1]oJo i oo o s ToTo i o o i o 1 o s 1 1]1]

F- -+ X

Figure 4. Functional mapping in A-structure

Suppose a n-bit binary vector F represents the “increment flow” of some con-
tinuous function f(z), that is, corresponds to the code of the step function ap-
proximating the given function. Clearly, in this case the marked cells (asterisks in
Figure 4) are tracing, as it were, a representation of the function’s graph on the
coordinate grid formed by the cells of the A-matrix.

52

The feature described above allows to realize, on the basis of a A-structure,
various non-conventional, quasi-analogue devices for computation of functions, 4/D
and D/A conversions, integration, solving of some equations, etc. The efficiency
of these computations is determined by the fact that they are performed by the
propagation of signals through the combinational circuit of the A-matrix, and the
results are obtained immediately after the termination of the transition processes.

5. Programming of CI—-IS_..

-5.1. Technique of problezmrsql:vi'ng

Prior to be'_executed in suggested CHS, a prbblem needs definite pi_'éparations _ta.kring
into account the features of this system. The main phases of this work are shown
in Figure 1. They are: '

1. Design of a “coarse-grained” algorit_hrri by mea;ns'of decomposition of the
given problem into separated procedures (steps), thinking of the PT classifi-
cation (Table 1). - R ‘

2. Justification of this algorithm by comparing the required PTs with the as-
sortment of the available HMs of specific CHS. :

3. Assigning of PTs to corrésponding HMs. If there is no direct hardware sup-
port for some PT (absence of corresponding PT), this PT is realized either
‘by combining operation of several existing HMs, or by the resources of the
host. ' ' S

4. Optimization of the execution scheme as a whole, and assembling of the final
program taking into account the necessary consistency of data structures and
dimensionalities in various procedures, as well as the synchronization of HMs
operation. - _ ‘ ‘

Evidently, the CHS software should also provide for designing host programs

responsible for the control and data exchange in the system. '

In this Section the main principles are discussed of a language for the descrip-
tion of algorithms in CHS environment. Such a language should reflect the features
of the basic fine-grained SIMD subsystem, as well as of its extension by the set of . -
coprocessors. Some constructs of such language called VEPRAN were described in
[21]. Here, we propose an extension of VEPRAN taking into account all require-
ments of the combined architecture and the classification of PTs.

5.2. A program model of CHS

The fine-grained SIMD architecture is notable for a huge number of simple single-
bit processing elements (PEs) working synchronously under the control of a com-
mon program unit. Each PE has its own one-bit word local memory, executes
bit-sequential data processing, and communicates with other PEs via intercon-
nection network. The aggregate memory of the system can be considered as a
bit matrix each row of which is connected with a corresponding PE. Then, the

53

proper processing presents a sequence of bit operations on the bma,ry vectors (slices)
fetched/loaded from/in memory.

Three types of slices are usually distinguished in SIMD systems: vertlcal
(columns), word (segments of a row), and complex (different from the first two).
Most frequently are used the vertical slices, or simply slices. That is why we call
such architectures Vertical Processing Systems [22]. A submatrix formed from ad-
Jjacent vertical slices is called a field. In accordance with the type of processed
data, the fields may contain numerical vectors, matrices, relational tables, etc.

Each PE contains necessary logic circuits. and several flip-flops to store the
intermediate results of the bit operations. All PE flip-flops of the same name form
specific. bit slices considered as programming operational registers (PORs). The
input and output buses of the HMs, included in the CHS, can be viewed in the
same way. Thus, the extension of the basic SIMD system by coprocessors, from the
progra.mmer ’s point of view, can be conmdered as en]argmg of the number of PORs
savmg the style of SIMD computations. :

5.3. VEPRAN-language

In VEPRAN language, suggested for the descnptmn of algont.hms not only the data
 types like integer, lndex(unmgned) float, double, char, logical, structure, but
also their location in the system is used. So, the declaration scalar implies that
data are placed in the control memory, while declarations slice (locate a slice) and
field (locate a field) serve for the description of data placed in the parallel memory.
The modes of data arranging within the fields of the parallel memory are de-

. clared by the following language construct

- place (object) in field < fzcla‘ [elements} by coord (cj,cz,...,cn).
The following example:

scalar index n;
integer A[n, n);
- field integer C;
place A[n,n] in field C[n * n] by coo:d 1;

implies that the matrix A should be placed by columns in n? elements of an one-
dimensional field C. The next instructions are an example of placement in the
parallel memory of n rows of a relational table:

scalar index n,{; : :
structure Persan[n]{char Namel8], loglcal Sex,
' index Age, char City(8]};
index AgeData[t],
field structure PersonTable{field char Name[8], slice Sez,
field index Age, field char City[8]};
place Person[n] in field PersonTable[n] by coord l

In this case, the operator

place AgeData[l] in field PersonTable.Age[n] by coord 1;

54

can be considered as placing of | values of the attribute Age in the subfield Age of
the field PersonTable. S

The operations on scalar data are indicated by a sign ”:=". Parallel operations
are indicated by ” +-”, identified with corresponding PT, and belong to the following
modifications:

(dest) (PT) - for all elements of field;
(dest) « [slice] « (PT) - for elements unmasked by slice;
(dest[index]) « (PT) - for selective loading.

Tht_a control constructs in VEPRAN:

do (operations) enddo;

if ({condition)) then (do — part) else (do — part);

for ({operation), (condition), (operation)) (do — part);
avhile ((condition)) (do — part);

procedure ((formal parameters));

call ((real parameters));

are similar to those used in traditional languages. It should be noted only that the
statement (condition) may include parallel operations and be identified with PT.

'5.4. Example CHS algorithms

Consider a well-known problem of matrix multiplication C = AB.

To solve this problem, n? inner products should be computed (where n is the
order of the matrices). In our case, the inner product is a basic PT denoted VVA
in Table 1. The detailed elaboration of the algorithm depends on the relationship
between the order n and the level of system parallelism (that is the number of
processing channels) m [23]. If m > n?, simultaneous computing is possible of n
inner products, and the CHS algorithm takes the form shown in Figure 5.

- If m > n, the parallel computation can involve only one inner product, which is
reflected by the version of CHS program shown in Figure 6. From these examples,
it is easy to pick out the necessary PTs which can be implemented as specialized
hardware modules.

As it was shown in [24], when using only the basic SIMD computer with an
interconnection network of the Flip, or Hypercube type, the execution of the first
algorithm requires O 4(n log, n) arithmetic operations and Op(n(s? + slog, n)) bit
operations (where s is the wordlength of the data). The second algorithm needs
O4(n?logy n) and Op(n?(s? + slog, n)) operations, correspondingly. This is be-
cause the procedures with the PTs VVA(...,...,] and VoA[...,sum(...,n)] are
realized in the basic architecture in Op(s?) and Op(slog, n) correspondingly.

The use of strongly specialized HMs can sufficiently improve these estimations.
Thus, in [21] was shown that application of coprocessors PVM and PVA (see Sec-
tion 4) ensures execution of the PTs VVA and VoA in Op(s) and Op (s + log, n)
bit operations. Moreover, one can organize a programmed “chaining” of these two
HMs, thus supporting the pipelining of computations. In this case, the described
algorithms can be implemented in Op(n(s + log, n)) and Og(n?(s + log, n)) bit
operations, correspondingly.

55

procedure MulMatrl(A4, B, C,n);
/* Algorithm 1: matrix multiplication for m > n? */
scalar index n;
integer A[n,n), B[n,n], C[n,n);
scalar index k; /* the work index */
integer fleld A, B,C,D; [* define fields */
slice S; /* define work slice */
place A[n,n] in fleld A[n * n] by coord 2; /* locate A by rows */
place B[n,n] in field B[n » n] by coord 1; /* place B by columns */
S « BBL[S,0,AND]}; [*clear slice of masks */
for (k:=0; k<n-—1; k:=k+1) J* set masks*/
do S[k «n + k] « BBL[S, 1,0R]; enddo
for (k:=1; k<n; k:=k+1)
do
D« VVA[A,B,+]; [*D« AsB*/
D « VoA[D, sum(n,n)]; /* compute n sums */
C « [8] « VoP[D,none]; /* save n elements of C */
B « VoP[B,cshift(n«n,n)]; /* exchange columns of B */
S + BoP[S, cshift(n * n,n)]; /* exchange bits of mask S */
" enddo
end procedure

Figure 5. Matrix multiplication in CHS for m > n?

6. Conclusion

In this paper a new approach is suggested to the organization of heterogeneous com-
puting. This approach is based on the conception of combined architecture, which
is a composition of a fine-grained SIMD computer with a set of high-performance
strongly specialized processors.

The presence of a number of accelerators of various architectures at one site
allows to organize heterogeneous computing within a single system. In contrast to
the existing distributed heterogeneous systems, the proposed concentrated hetero-
geneous system does not need for high-bandwidth communications networks, and
does not suffer from the delays arising in these networks at the data transfer. The
accelerators (hardware modules) of the combined architecture are much cheaper
than complete supercomputers and, at the same time, they can be better oriented
to the necessary programming styles.

To optimize the choice of hardware modules, a classification of massive compu-
tations is suggested, based on the notion of processing types, which correspond to
the character of data processing and are applicable for hardware implementation
of different classes of problems. Several examples of efficient hardware modules of
diverse architecture are listed.

A technique of parallel programming for the combined architecture is intro-
duced based on the language VEPRAN extended by appropriate means to specify
the processing types and to control the movement of parallel data in the given
concentrated heterogeneous system. Using this language, one can analyze the al-
gorithm of solution of any given problem and present it as a sequence of processing
types. In course of the execution of such a program, each processing type is as-

56

- procedure MulMatr2(A, B; C, n); -
/* Algorithm 2: ‘matrix multlpllcauou form >n*/
scalar indexn; -
integer A[n, n]. B[n,n), C[n, n);’
scalar index i, j; /* the work mdlces */
structure field Afn « (Integer field)); /* define field A/
structure fleld B[n (integer fleld)]; /* define field B*/
structure fleld C[n * (integer fleld)); /* define field. C“'/
integer fleld D; /* define work field D*/
-8lice S; /* define work slice */ - ' S
place A[n,n] in fleld A[n, n] by coord 2; /* locate A by rows "'/
place B[n,n] in fleld B[n, n] by coard 1; /* locate B by columns. “'/_ '
~ 8 « BBL[S,0, AND]); [*clear slice of masks */
do S[0] + BBL[S,1,0R]; /* set iasks*/ '
Cfor(i:=1;i<n; 4 —s+l)
- for(j:=1; J<n, 3 —J+l)
do
D+ WA[A[;‘] B[j],:l] [* D« row.(A) * column,(B) "‘/
D« VoA[D, sum(1,n)]; /* compute sum */ .
'C (8] « VoP[D, none}; /* save c;; in row.(C) */
S « BoP[S, cshi ﬂ(n 1)] /* cycllc shift of S in one bit*/
enddo :
end procedure

| Figu":ze .?s. Matﬁ-g'mﬁimi.plic_ation in CHS for m > n

signed to a deﬁmte ha;dwa.re module (or a combma.tmn of some modules) taken
from the set of real modules mcluded in the system. .

The combined architecture is consrdered -as an open system Wthh can be sup—l . :_
plemented by add:tlonal hardwa.re modules, according to the requirements of the-_ L

user. _
The suggested approach is expected to help to design a famlly of. cost-eﬁ'ect.lve '

. supercomputers- providing: ﬂex:ble programming, as well as high performa.nce ina. -

broad range of appllcatlons

References

[1] AA. Khokha.r et al. Heterogeneous Computmg chal.'enges and opportumtjes' S

- Computer, Vol 26, No 6, 18-27, 1993

| [2] R.F. Freund and H.J. Slegel Heterogeneous Pprocessing, Computer, Vol 26, . -

- No. 6, 13-17, 1993.

[3] B M. Boghosian, Computat:onai pbys:cs on tbe Connect:on Machme, Com-
putera in Physics, Vol. 4, No. 1, 14 33, 1990

[4] AP Vazhenin, 5.G. Sedukhm, Ya.l. Fet. High-performance computmgsystems

- of combined architecture, In: “Parallel Computing Technologies (PaCT-91)”,

" Novosibirsk, Russm, 1991 (N.N. Mirenkov, ed) ‘World Scientific, Smgapore
.246-257, 1991.

57

(5] Ya.I. Fet and A.P. Vazhenin, Heterogeneous processing: a combined approach,
In: “Workshop on Parallel Scientific Computing (PARA’94-L)", 1994, Lingby,
Denmark, Lecture Notes in Computer Science, Vol. 879, Berlin, Springer-
Verlag, 194-206, 1994. -

[6] L.V. Kantorovich, On a system of mathematical symbols, convinient for elec-
tronic computer operations, Dokl. Akad. Nauk SSSR, Vol. 113, 738-741, 1957
(In Russian). -

[7] K.E. Iverson, A Programming Language, New York-London, Wiley, 1962.

[8) Ya.l. Fet, Hardware support of massive computations, Optimization, Novosi-
birsk, Inst. of Mathematics, Siberian Div. of the USSR Acad. Sci., No. 22(39),
115-126, 1978 (In Russian). .

" [9] G.E. Blelloch, Vector Models for Data-Parallel Computing, Cambridge, Mass.,
MIT Press, 1990.

[10] H.T. Kung, Why systolic 'architectures?, Computer, Vol. 15, No. 1, 37-46,
1982. : ' ' :

[11] S.G. Sedukhin and I.S. Sedukhin, An interactive graphic CAD tool for the
synthesis and analysis of VLSI systolic structures, Parallel Computing Tech-
nologies (PaCT-93), Obninsk, Russia, 1993 (V.E. Malyshkin, ed.), Moscow,
ReSCo J.-S. Co., 163-175, 1993.

[12] G. Broomel and J .R..He'a‘th', Cla.ssiﬁcation categories and historical develop-
ment of circuit switching topologies, ACM Computing Surveys, Vol. 15, No. 2,
95-133, 1983, L |

[13] W.D. Hil]is'and L.w. Tﬁckér, The CM-5 Connection Machine: a scalable
supercomp'yter, Comm._ AC;M, Vol. 36, No. 11, 31-40, 1993. ‘

[14] D. Knuth, The Art of Computer Programming, Vo, 3, Sorting and Searching,
New York, Addison-Wesley, 1973. = _

.[15] K.E. Batcher, Sorting networks and their aﬁpﬁcatjon.s, In: AFIPS Confer.
Proc., 1968 SJCC, Vol. 32, 307-314, 1968. ' _

[16] C.C. Foster, Content Addressable Parallel Processors, New York, Van Nos-
* " trand Reinhold, 1976. = - - T |

| [17) E. Ozkarahan, Datab&se.Macl.r-iil:es and Database ‘Management, Englewood
Cliffs, Prentice-Hall, 1986. ' ‘

[1.8] Ya.l. Fet, Parallel Processing in Cellular Arrays, Tounton, UK, Research Stud-
ies Press, 1995. '

[19] Ya.l. Fet, Dz'g:"ta.! compessors, In: Proc. of the VI Int. Workshop on Paral-

lel Processing by Cellular Automata and Arrays (PARCELLA’94), Potsdam,
Germany, 1994, Berlin, Akademie Verlag, 13-25, 1994. :

58

[20] Ch. Fernstrom, I. Kruzela, B. Swensson, LUCAS Associative Array Processor:
Design, Programming and Application Studies, Lecture Notes in Computer
Science, Vol. 216, Berlin, Springer-Verlag, 1986.

(21] A.P. Vazhenin, Hardware and algorithmic support of high-accuracy compu-
tations in vertical processing systems, In: Parallel Computing Technologies
(PaCT-93), Obninsk, Russia, 1993 (V.E. Malyshkin, ed.), Moscow, ReSCo
J.-S. Co., 149-162, 1993.

[22] Ya.l. Fet, Vertical processing sjfstems: a survey, IEEE Micro, Vol. 15, No. 1,
2-12, 1995.

[23] W.F. Tichy, Parallel matrix‘multiplﬁéatfoh on the Connection Machine, Inter-
national Journal of High Speed Computing, Vol. 1, No. 2, 247-262, 1989.

[24] A.P. Vazhenin, Efficient high-accuracy computations in massively parallel sys-
tems, In: “Workshop on Parallel Scientific Computing (PARA’94-L)”, 1994,
Lingby, Denmark, Lecture Notes in Computer Science, Vol. 879, Berlin,

*Springer—Verlag, 505-519, 1994.

