
Joint NCC & IIS Bull., Comp. Science, 18 (2002), 81–101
c© 2002 NCC Publisher

Cross-program data flow visualization

N.N. Filatkina

Maintenance and transformation of large program systems require means for com-

prehension of their data dependences. We consider facilities for data flow visualization

implemented in the RescueWare©R system1 — a workbench for modernization of legacy

systems. One of the key points in the process is the user-guided identification and extrac-

tion of business rules, which could be performed successfully only if a user can efficiently

trace the data flow. A typical legacy system consists of a large number of comparatively

small modules that extensively exchange data either directly or through files, screens, and

databases, and hence the analysis cannot be restricted to a single module. On the other

hand, it is practically impossible and useless to show the complete data flow graph of the

system. We present some techniques of taming the data flow complexity.

1. Introduction

The paper presents the experience gained during the development and use
of the system for modernization and reengineering of legacy software called
RescueWare [19]. In this section we briefly describe the architecture and
objectives of the system, as well as the basic source code navigation means
it provides.

1.1. RescueWare

Among the main problems that were to be solved by the developers of Res-
cueWare, the following should be noted:

• huge size of real-life systems: hundreds of megabytes and millions of
lines of code are typical characteristics;

• incompleteness of the source code: some components may be unavail-
able for detailed analysis, e.g., when they exist only as binaries;

• a variety of different and often inexactly formalized dialects of the
source languages;

• heterogeneity of legacy systems: it is insufficient to restrict considera-
tion to program code without analysis of inter-program dependences
emerging from read/write access to files, databases and screen forms.
Therefore, not only the programs but also the definitions of screen

1RescueWare©R is the registered trademark of Relativity Technologies, Inc.



82 N.N. Filatkina

forms and database schemes are subjects of analysis and transforma-
tion;

• multi-lingual systems: although initially RescueWare was designed for
the COBOL programming language, gradually the spectrum of the
source languages was extended to PL/I, Natural, Ideal, etc.

RescueWare provides the user with a graphical environment running on a
workstation and consisting of a set of tools called roadmaps which imple-
ment separate steps of the underlying methodology. With respect to this
methodology, the reengineering process is divided into three main phases:

1. Legacy Understanding: at this phase the inventory of the source code
is followed by the automatic analysis, which reveals both the internal
syntactic and semantic structure of programs and other components,
and the relationships between them. The collected information is used
for verification of the system completeness and irredundancy, as well
as for various statistical reports based on program metrics. The vi-
sual analysis is supported by various graphical representations of the
program system and by both intra- and inter-program navigation.

2. Knowledge Mining: one of the main actions performed at this phase
is the so-called Business Rule Extraction (BRE). It is aimed at iden-
tification and separation of the business logic of an application. The
extracted part of the code together with its complement is called a
slice. Depending on the nature of the business logic and the subsequent
purposes, RescueWare supports several categories of slices. Although
the extraction of business rules is fully automatic, the identification
of slices and specification of their parameters may require a thorough
knowledge of the system and hence needs a proper support. Because
of that the Knowledge Mining phase is essentially integrated with the
Legacy Understanding phase.

3. Generation: this last phase ports the source code and/or generated
slices to different platforms and/or different programming languages.
The list of the RescueWare target languages includes Java, C/C++,
Visual Basic, etc.

1.2. HyperCode

Although, as we have stated above, the analysis of a legacy system should
take into account all types of its components, the main emphasis is on the
analysis of the program code. On the other hand, since the programs could
be written in different languages, we need a program model with the ab-
straction level sufficient for a uniform description of the internal program



Cross-program data flow visualization 83

structure and relationships. Moreover, representation of a program for the
purpose of visualization and navigation could be less detailed as compared
to the complete annotated parse tree: for this sort of activity the user may
not need to inquire into all the details of the expression structure or the
semantics of the basic operations. Therefore, the representation should be
derived in some way from the complete parse tree and not be overcrowded
with irrelevant details. However, in certain circumstances the user may be
interested in informational and control structure of the program detected by
context dependent analysis rather than in pure hierarchy of constructs. The
typical examples of such relationships are “declare-instance” relationship
linking the declaration of some data item with all its instances in the pro-
gram code, or “def-use” relationship connecting all program points, where
some variable is assigned to the points where the value of the variable is
used.

We consider a program as an aggregate of related constructs character-
ized by appropriate attributes. This is, in fact, very similar to the entity-
relationship (ER) approach firstly proposed by Chen [4]. The model was
adapted to visualization purposes in the following way:

1. A special relationship was introduced to realize nesting of constructs.
Unlike all other relationships, this one is untyped and is treated in
a special way. This relationship emulates the syntactical hierarchy of
constructs.

2. Each construct is bound to the source text, i.e., its source file name
and the coordinates of its beginning and end are specified.

3. The model is extended by introduction of a hierarchy of construct types
similar to the concept of inheritance. It allows for defining abstract
construct types (e.g., “statement”) and deriving concrete construct
types (e.g., “conditional” or “assignment”).

The resulting superposition of the syntax tree and relationships over the
textual representation is similar to hypertext, provided that appropriate
navigation facilities are available. We have extended the usual hypertext
concept with the following properties:

• Only the program constructs may serve as reference carriers.

• The references are typed, the only exception is the reference to the
parent in the syntax tree.

• A construct may have several associated references and, in particular,
several references of the same type.

• A reference carrier (as a text fragment) may have nested reference
carriers.



84 N.N. Filatkina

Obviously, this model is abstract enough to match practically any program-
ming language; in fact, any structured text-based document with cross-
references may be represented in this way. Moreover, the model allows for
natural description of heterogeneous multi-lingual systems. The generality
is achieved by passing the model as an additional parameter specifying the
meaning of visualized information. The model reflects the diversity of the
analyses relevant to the current purposes; thus a new model and the cor-
responding data can assign new properties and navigation paths to the old
program.

The subsystem that provides the model-based visualization of the source
code in RescueWare is called HyperCode [1]. This system is organized as
an extensible set of components, each representing a specific “view” of the
program: from a usual textual representation and an abstract syntax tree
to control and data flow graphs. All these “views” are synchronized in the
sense that whenever the user selects a program construct in one “view”,
all the rest are automatically positioned to the same construct. It is not
necessarily the same construct; for example, when a variable is selected in
the procedural division of a program, the “view” reflecting the program data
may be positioned to the variable definition.

2. Visualization of memory layout

Figure 1. Memory overlay

The choice of data representation for the data flow analysis was influ-
enced primarily by the fact that the source languages allow for addressing
the same memory location via different structured data items. This is a
well-known alias problem. In the languages like COBOL the problem is
solved rather simply, since the aliases are explicitly indicated by REDE-
FINES clause and the sizes and offsets of data items can easily be calculated.

If two structures A and B share common memory (further on we will call
this sort of dependence a redefinition), then modification of one structure



Cross-program data flow visualization 85

implicitly modifies the state of another. Moreover, since both the size and
the hierarchy of A and B may differ, the overlay of the structures may be
the cause of the situation when modification of a field of A affects several
substructures of B. Thus the dependences between the data items of A and
B are defined according to the intersection of memory locations of these data
items. For example, Figure 1 shows two structures A1 and B1 sharing the
same memory, and modification of the field A6 of A1 leads to modification
of the fields B4 and B5 of B1.

Taking into account the arbitrariness of structure nesting and possibility
of partial data redefinition, we decided that it is not convenient to describe
data flow in terms of syntactic constructs. Instead we came to a finer gran-
ularity: we consider all elementary memory locations emerging from inter-
section of all mutually redefining data items.

Figure 2. DataView

This approach allows for a more detailed graph of data dependences, but
on the other hand it requires expressive visual methods for explication of
the origin of a particular memory location, as well as of the corresponding
data declarations and binding to the source code. The DataView component
realizes a HyperCode “view” that displays the data layout diagram of the
current program. The size of the data elements is not strictly proportional
to their actual size, but reflects how various data elements overlap in the
memory. As it is usual for HyperCode, selection of an item in the diagram
automatically positions all other “views”, and the source text in particu-
lar, to declaration of the corresponding data item. The reverse also holds:



86 N.N. Filatkina

selecting a declaration in the source text highlights its memory location in
the DataView. A snapshot of DataView is shown in Figure 2.

3. Basic data flow dependences

The main sources for data flow are statements that are classified into two
separate categories: move and compute statements. They differ in the nature
of the dependence between the result and arguments of a statement. When
complex structures appear on both sides of a statement,

• the compute relationship means that the value of the whole resulting
data item, as well as the value of any of its parts, depends on the whole
argument-structure.

• the move relationship means byte-by-byte copying of an argument to
the memory result. Hence the rules for computation of dependences
between the parts of the result and the argument are similar to the
redefines relationship but, in contrast to it, move is directed.

A special class of relationships reflects assignment of constants, including
initialization of data items. These assignments do not affect the overall struc-
ture of the data flow graph but are very helpful for better understanding,
especially in the cases when constants are treated as the starting points of
navigation.

4. Cross-program information

All relationships listed above are of intra-program nature. A special Hy-
perCode construct type called port represents inter-program relationships,
such as calls to different programs, sending and receiving data to and from
screen forms, read/write operations for the database tables, etc. Each port
is specified by its type and the references to data items through which the
port communicates. We perform the global analysis that matches ports of
different programs and thus collects inter-program dependences. This activ-
ity is very similar to usual linking. All port-to-port relationships have the
same character as the move relationship.

We distinguish the following types of ports with respect to data flow
analysis:

1. Call : a point in the source code of a dynamic or static call to another
program. The data are transferred via either the indicated parameters
or a commonly used global memory area.



Cross-program data flow visualization 87

2. Using : an entry point to the program. It allows for specification of
input external data, which are to be used in the program.

3. Screen: a point in the program where data are send to or received from
a screen form.

4. File: a program point, which performs a read/write operation from/to
a file specified as a logical file name.

5. Database: a program point which accesses a table in the project data-
base.

These ports realize four different kinds of external communication be-
tween programs:

1. Direct Connection: the name of the destination program can be ob-
tained from the source program code. A static call-port is an example
of this connection.

2. Possible Connection: the relationship with the program is indicated
in the calling program on the opposite side of the relationship. For
example, in the case of Using port, the relationship cannot be found
in the program itself, but from the source code of programs that call
the given one.

3. Transit Connection (through an external object): a program commu-
nicates via placing data onto an external object. The typical example
is the usage of the screen forms: one program evaluates parameters
and displays them on a screen form, while another program fetches
the user input from the same form and processes it. This relationship
similarly reflects Database ports.



88 N.N. Filatkina

4. Semi-Dynamic Connection: occurs in a more complicated case, when
the relationship cannot be established on the basis of the source and
destination program analysis; it emerges from the information kept in
a separate object. For example, when a program writes to a file, it uses
a logical file name, and even if two programs use the same logical file
name, this does not necessarily imply that they write to the same file.
The physical file name is associated with a logical file name for a given
program in a separate job control file (JCL) which runs the program.
Therefore, the data flow relationship can be established only when
both programs and both JCL files are available for analysis. Note that
the relationship may be changed without modification of the programs
themselves.

The above classification of kinds of program communication deals only
with static relationships. In practice, the relationships may become deter-
mined at run-time only and depend on calculation and ultimately on the
user input. As a trivial example, a user might input the name of a screen
to be displayed. When such a dynamic relationship is discovered during the
source code parsing, the HyperCode information is supplemented with the
so-called decision points.

There exist two ways to resolve decisions:

1. Automatic: is applied when the source code analysis may result in a
finite set of values of an expression that denotes external objects, and
all induced relationships are added.

2. Manual: allows a user to arbitrary indicate the realizable relationships.
The solution is based on the user’s expert knowledge. In particular,
the user may indicate only those relationships that are relevant to the
current tasks.

In any case, the problem of decision resolution is obviously algorithmi-
cally undecidable — any automatic method can guarantee only approximate



Cross-program data flow visualization 89

results. But in practice, in the majority of cases, even a simple domain anal-
ysis leads to fairly good results.

The information obtained from decision resolution can be used to detect
inter-program communication in addition to the static information. That
applies to any of the four kinds of external communication described above.
Note that accuracy may increase when missing relationships are found and
decrease when a redundant or erroneous resolution is made.

5. Port matching

Even in the simplest case, the explication of inter-program relationships re-
quires global knowledge on the current project state, availability of necessary
programs, screens and control files linking logical and physical file names.
Moreover, it is important to keep in mind that the global information may
vary in time. For example, missing programs or control files may be regis-
tered in the project. Similarly, modification of a single legacy file does not
yield complete recollection of the project-wide information. So, from the
point of view of a visualizing tool, the inter-program information is an in-
tegral static piece of the project-wide graph of data flow dependences. The
situation with external relationships is different, since they might emerge
and disappear without direct modification of the source program code.

The global indexed information about inter-program relationships is kept
in the so-called repository. Based on the repository information, we can find
what objects are referenced from the program being considered. Knowing
the names of referenced objects and the attachment of these objects to Hy-
perCode ports, we can construct inter-program relationships for the purpose
of data flow visualization. For example, suppose we know the name of a phys-
ical file which is written in a given program point. Then we can fetch from
the repository the names of all programs reading from the same file. Fur-
ther on, for each program we can find the corresponding logical name in the
HyperCode database and, finally, the program points where the information
from the original program point comes.

The procedure of detection of dependences between variables depends
on the port type:

1. For a Call port, we know the name of the called program and so it is
sufficient to check if the repository contains that program and, if so,
find paired Using port in its HyperCode database.

2. For a Using port, we need to find all programs that have ports of Call
type addressing the given program name.



90 N.N. Filatkina

3. In order to find the receiving programs in the case when information
is passed through the Screen port, we need to collect complete infor-
mation about screen forms that are registered in the project. Then for
every screen form we find all programs that read from this screen and
program points inside these programs with the corresponding screen
form name.

4. The procedure for Database ports is similar to that for Screen ports,
with the only difference that objects of DMSRecord type are used
instead of screen forms.

5. For a File port, we have to look at the information associated with a
relevant control file and to map the logical file name to the physical file
name. Then from the same information we can find all other programs
and respective logical file names that are used to access the same file,
and finally use the HyperCode databases to find all paired File ports.

The design of the algorithm for reconstruction of inter-program relation-
ships should take care of the following principle issues:

• The graph of cross-program dependences cannot be constructed stati-
cally once and for all, because its fragments can be partially modified
in the process of project analysis.

• Dynamic reconstruction of dependences could involve a rather resource-
consuming search over the repository and HyperCode databases for
paired program points. Moreover, we might need to find the depen-
dences of a particular data item many times and it is important to
avoid repetitive reconstruction of the same relationship.

The solution that satisfies both of these issues is to incrementally update
some internal table which keeps (partial) matching of ports. Whenever an
object in the repository is modified, we can update only that part of the
table which corresponds to the modified object.

Yet another optimization consists in construction of the matching table
on demand: the analysis of a program is postponed until the moment when
it is actually needed for users explorations. The program can be reached
either directly, when the user selects a starting point for data flow analysis
inside this program, or indirectly, when the data flow reaches a paired port
inside the program.

So, with the help of information about heterogeneous system recorded
in the repository, we reconstruct the relationships between parameters of
ports in different programs and use these relationships in cross-program
navigation.



Cross-program data flow visualization 91

6. Data dependences processing

Thus, the following information is collected by the source code analysis for
the purpose of data flow visualization:

• Allocation of all data items: for each data item x the pair [offsetx:sizex]
specifying the memory location is calculated.

• Table of relationships between data items: for each relationship its
type (compute or move) and the reference to a HyperCode construct
that caused the relationship is determined.

• Table of relationships for constant assignments and initializations.

• Table of ports: contains the name, data transfer direction (in, out,
or bidirectional), and the references to communication data items for
each port.

The tracing of cross-program data flows becomes possible because the
visualization system includes the means for port matching as described in
the previous section.

The data flow graph is constructed for a data item that was selected
by a user as a starting point. The graph shows dependences of the memory
location of the data item and is constructed by an iterative algorithm. The
nodes of the graph fall into three categories:

1. a data item node represents a memory location which corresponds to
a non-empty set of (parts of) data items;

2. a port node represents the place where the data flow crosses the limits
of a program;

3. a constant node represents a constant.

For a given memory location [offset0:size0], the following algorithm con-
structs the data flow graph:

1. Initialize the pool of active memory locations with a one–element set
[offset0:size0]; add the new data item node [offset0:size0] to the data
flow graph.

2. Fetch and remove a memory location [offset:size] from the pool.

3. Find all pairs of data items (a, b) related by some relationship R and
having a non–empty memory intersection with [offset:size]:

[offset:size] ∩ [offseta:sizea] 6= 0

or

[offset:size] ∩ [offsetb:sizeb] 6= 0.



92 N.N. Filatkina

4. For each pair found at Step 3, calculate the initial memory locations,
i.e.,

[offset1:size1] = [offset:size] ∩ [offseta:sizea]

and

[offset2:size2] = [offset:size] ∩ [offsetb:sizeb].

5. For each of the non-empty initial memory locations, calculate the in-
duced memory location [offset′:size′] on the opposite side of the rela-
tionship R. For example, if size1 6=0 then, depending on the type of R,
we have the following cases:

(a) a move b : Find the memory location to which the [offset1:size1]
is transferred when a is assigned to b, i.e., [offset′:size′] belongs
to [offsetb:sizeb]:

offset′ = offsetb + (offset1 - offseta)
size′ = min(size1,sizeb - (offsetb - offset′);

(b) a compute b: Since in this type of relationship any part of the
data item a depends on the whole data item b, then

offset′ = offsetb
size′ = sizeb.

The case size2 6=0 is treated symmetrically.

6. If the size of the induced memory location size′ 6=0, then a new data
item node [offset′:size′] is added to the data flow graph (only if this
node does not already exist). The node [offset′:size′] is connected to
the data item node [offset:size]. The arc leads from [offset′:size′] to
[offset:size] if [offset′:size′] was induced from a, and backward other-
wise. The arc is marked by the relationship R. The memory location
[offset′:size′] is added to the pool if a fresh node was created.

7. Find all ports which have a communication data item com that over-
laps with [offset:size]:

[offset:size] ∩ [offsetcom:sizecom] 6= 0.

8. Further processing is similar to the move relationship.

9. Find all constants related to some data item a; add a constant node
and the arc from this node to [offset:size].

10. If the pool of active memory locations is empty, then terminate,
otherwise resume from Step 2.



Cross-program data flow visualization 93

The data flow graph constructed by the algorithm may be used to show
both forward and backward dependences inside the program to which the
initial memory location belongs and the points where the data is transferred
to other programs.

7. Graph visualization

Apparently, graph is one of the most adequate visual representations of a
data flow. A typical scenario of data flow investigation looks like the follow-
ing:

1. A user selects a starting point for the analysis.

2. Some part of the data flow graph for this point is constructed and
displayed.

3. By selecting a node in the graph, a user obtains a list of data items
that overlap with the corresponding memory location sorted in the
decreasing order of “relevance”.

Figure 3. Data flow visualization



94 N.N. Filatkina

4. When a user selects an item in the list, HyperCode positions both the
source code and memory layout on this data item. Then a user may
resume the process by taking the selected data item as a new starting
point.

5. If the selected node is a port node, a user may jump to another program
by fetching the initial memory location attached to the port node at
Step 8 of the algorithm from the previous section.

In practice it has turned out that the main problem of such a visu-
alization is huge and intricate data flow graphs. For example, as soon as
the data flow reaches some “system” variable, the whole program data flow
graph is trapped. Partially this is due to the fact that we consider context-
independent data flow analysis. Some approaches to the solution of this
problem are described below.

7.1. Constraints

The practice of data flow exploration in the general context of business rule
extraction showed that, depending on how the starting point was obtained,
a user is interested in either the forward data flow analysis, or backward,
or both. For example, if the starting point is an in-port, then it makes
sense to trace the forward dependences. On the contrary, for a constant-
based condition, a user most probably will need to navigate the data flow
backward. For this purpose we provide options allowing for cutting off the
part of the data flow graph that is not interesting to the user.

The construction and placement of the whole data flow graph is not only
resource consuming, but also, generally speaking, undesirable because a user
will hardly be able to comprehend the huge picture at once. It is more im-
portant to present some neighborhood of the given data item and provide
a mechanism to control the size of the sub-graph depending on the user
preferences and the complexity of the graph. We allow for imposing a re-
striction on the total number of nodes in the neighborhood and implicitly on
its radius, presuming the breadth-first search method of graph construction.

7.2. Graph unfolding

Suppose that we have two dependences between a couple of data items:
the first one being direct while the second one being formed by a chain of
assignments and redefinitions by other data items. Then the clearness of the
first dependence is of higher priority. The significance of local information
is reflected by the use of graph unfolding — a tree that is obtained from the



Cross-program data flow visualization 95

graph by systematic copying of nodes with more than one arc. The procedure
is also known as cloning.

Figure 4. Data flow graph unfolding

The cloning is performed in such a way that each node of the original
graph has a counterpart, called representative, in the resulting tree with
the same number of adjacent arcs and a number of clones with exactly
one incoming arc. The methods of visualization of and manipulation with
unfolded graphs are much simpler than the general ones. In particular, we
can guarantee that for any node all related nodes are placed nearby. The
unfolding may also be placed in such a way that all arcs go in one direction,
e.g. from left to right, even if the data flow graph presents both forward and
backward dependences. Of course, the tree structure can be placed without
arc intersections.

Figure 4 shows an example of unfolding layout. All clones are displayed
borderless. We allow for interactive restructuring of unfolding: if a user wants
to see the relationships of some clone node, he can swap it with a correspond-
ing representative node. The resulting tree is obviously a different unfolding
of the same data flow graph.



96 N.N. Filatkina

8. Path explorer

The possibility to restrict the size of the neighborhood of the initial data
item is often not enough to get rid of the redundant information in the data
flow graph. In order to achieve the precise specification of the neighborhood,
we allow a user to construct it incrementally, selecting only the significant
information paths. This process resembles a game of maze exploration: the
user purposefully moves along some path gradually getting more general vi-
sion of the maze. The system prevents the user from falling into infinite loops
and highlights the places that were already visited but not yet investigated.
Moreover, when the user returns to some previously visited place he finds
it in the same degree of openness at which he has left it. Unlike the game
of maze, we do not construct and place the whole “map” in advance. The
preliminary (and for the most part unnecessary) work of graph placement
would take too much time. On the other hand, if the graph is constructed
incrementally, the addition of a new node may completely change the lay-
out and disorient the user. We have decided to use the standard tree view
representation by extending its behavior in such a way that at most one of
the nodes corresponding to the same memory location can be expanded.

A typical scenario of data flow exploration is the following:

1. A user specifies the starting point of the analysis.

2. Expansion of the node that corresponds to the current program point
leads to the list of all its immediate dependences and corresponding
data items.

3. A data item from the list that was obtained on the previous step or
any item that was not expanded yet is selected as the next current
point.

4. Steps 2, 3 are iterated as long as needed.

Experimentally we have found out that the readability of the tree improves
significantly if browsing is restricted either to forward or backward direction.
The direction of exploration is fixed for each starting point. A user may
change the direction but then the process of exploration resumes from the
beginning.

A user may also switch to the diagrammatic representation at any time
in order to have the general view of the explored area.

9. Impact report

If the starting point is a data item that is used for inter-program communi-
cation, for example, that is passed as a parameter via a common global area



Cross-program data flow visualization 97

Figure 5. Path explorer

to the program being called, it might happen that the graph of dependent
data items touches upon a considerable part of programs in the project and
passes through a large number of external objects, such as screen forms, ta-
bles, or files. Huge sizes and heterogeneity of the resulting graph requires a
systematic study and processing of acquired knowledge. The impact report
presents the resulting graph as a hierarchy over data items and correspond-
ing memory locations. On the top level of the hierarchy, the information
is grouped by repository objects. Here external objects, which carry inter-
program relationships, are considered along with programs. Such a grouping
allows for catching the general picture straight away: how many and what
programs depend on the value of the data item that was chosen as the start-
ing point. The next level of detail contains the list of data items that caused
a particular object to appear in the report. For instance, for a screen form,
those data items that are used to communicate with the screen are listed.
Finally, it is possible to see the so-called confirmation path for each impacted
occurrence of a data item. In contrast to the graphical representation of data
flows, this approach is not aimed at showing all existing dependence paths
from the starting point to a particular program point that appears in the
data flow graph. We show only the list of all affected program points and are



98 N.N. Filatkina

ready to explain why they were affected by producing an arbitrary (hope-
fully the shortest) path in the data flow graph that leads from the starting
point to the selected item. The linear presentation of a confirmation path
makes it much easier to trace it as compared to graphical representation.
That is especially important because of a large size of data flow graphs for
real programs.

A typical scenario of using impact report consists in the following:

1. A user specifies a number of starting points for the analysis and initi-
ates the construction of the report.

2. When the report is done, a user selects an object of interest on the
top level for detailed investigation.

3. Moving down the hierarchy, a user selects an impacted data item for
an object selected on the previous step.

4. Then, for each affected occurrence of the data item, a user may see a
confirmation path.

5. If it is necessary to view another object or data item, a user should
return to a higher level of the hierarchy and resume exploration in a
different direction.

Thus we present a general project-wide view in a compact form at the
expense of ignoring local details.

10. Related works

Today the problems of reengineering are very popular. An extensive survey
of both research and commercial projects in the field can be found in [17,
20]. The tools for program code browsing similar to HyperCode are widely
used both in software development tasks [8, 7, 12, 14, 15] and in the problems
of software comprehension and maintenance [5, 11, 13, 16].

The most related system for program comprehension, which we know of,
is Gupro [3]. It allows for working with a project that include programs in
various languages, including Cobol and JCL. Gupro supports incremental
analysis and inter-program relationships.

The diagrammatic representation of information collected by various
types of program analyzers is extensively used in a number of systems. One
of the most advanced among them is Rigi and its extensions [10, 18]. The
importance of reducing the visual complexity of a graph is addressed in
[9], where hierarchical displays are considered: selection operations alter-
nate with hiding or grouping operations. Since we aim at the development
of an interactive tool for data flow exploration, we should provide a fast and



Cross-program data flow visualization 99

good-quality method of automatic graph drawing. An overview of graph
drawing methods can be found in [21].

A different technique for information visualization is offered by SeeSoft
system. It represents the text lines as thin colored rows within columns.
The color of each row is determined by a statistic associated with each line
[6]. SeeSlice promotes this technique for program slice visualization and, in
particular, cross-program data flow impact analysis [2].

11. Conclusion

The study of a data flow is an important subtask in the process of pro-
gram understanding. We have described some means for visualization of a
data flow in heterogeneous legacy systems. The presented techniques allow
for processing of a large amount of information gathered by the data flow
analysis. The system combines various representations of dependences be-
tween data items and allows a user to focus on the view that is the most
appropriate to her/his current task.

The low-level type systems of legacy languages, such as COBOL, lead
to the necessity of dealing with memory locations, rather than the declared
data items. This provides simple rules for evaluation of dependences based
on the overlay of memory locations, but at the same time requires special
efforts to establish natural correspondence between memory locations and
source code constructs.

The main problem we tried to attack is the huge size and entanglement
of data flow graphs. Several approaches aimed at reducing the complexity
by incremental construction of the graph and limitation of the viewpoint
neighborhood have been presented.

References

[1] Baburin D.E., Bulyonkov M.A., Emelianov P.G., Filatkina N.N. Visualization
facilities in program reengineering // Programming and Computer Software.
— 2001. — Vol. 27, N 2. — P. 69–77.

[2] Ball Th., Eick S.G. Visualizing program slices // Proc. of IEEE Symp. on
Visual Languages, St. Louis, Missouri, 1994 (VL1994). — P. 288–295.

[3] Kullbach P.D. B., Winter A., Ebert J. Program Comprehension in Multi-
Language Systems. — Koblenz, 1998. — (Tech. Rep. / Universität Koblenz-
Landau, Institut für Informatik; N 4–98).

[4] Chen P.P. The entity relationship model — toward an unified view of data //
ACM Trans. on Database Syst. — 1976. — Vol. 1, N 1. — P. 9–36.



100 N.N. Filatkina

[5] Cleveland L. A program understanding support environment // IBM Sys-
tems J. — 1989. — Vol. 28, N 2. — P. 324–344.

[6] Eick S. Graphically displaying text // J. of Computational and Graphical
Statistics. — 1994. — Vol. 3, N 2. — P. 127–142.

[7] Morrison R.R. et al. Current directions in hyper-programming // Lect. Notes
Comput. Sci. — 2000. — Vol. 1755. — P. 316–340.

[8] Jones T. S., Welsh J. Software visualisation in a language based editor // Proc.
of the 1997 Software Visualisation Workshop, Adelaide, Australia, 11–12 Dec.
1997. — P. 9–18.

[9] Kimelman D., Leban B., Roth T., Zernik D. Reduction of visual complexity
in dynamic graphs // Lect. Notes Comput. Sci. — 1994. — Vol. 894. —
P. 218–225.

[10] Müller H.A. Rigi — A Model for Software System Construction, Integration,
and Evaluation based on Module Interface Specifications: PhD thes. — Rice
University, Houston, 1986.

[11] Müller H. A., Tilley S.R., Orgun M.A., Corrie B.D., Madhavji N. H. A reverse
engineering environment based on spatial and visual Proc. of SIGSOFT’92. —
SIGSOFT Software Engineering Notes. — 1992. — Vol. 17, N 5. — P. 88–98.

[12] Normark K. A hyperstructure programming environment for CLOS // Tech-
nology of Object-Oriented Languages and Systems — TOOLS4. — Prentice
Hall, 1991. — P. 127–140,.

[13] Oman P. et al. Maintenance tools // IEEE Software. — 1990. — Vol. 7, N 3.
— P. 59–65.

[14] Østerbye K. Literate Smalltalk programming using hypertext. — Aalborg,
1993. — (Rep. / Univ. of Aalborg. Institute for Electronic Systems; N R 93-
2025).

[15] Pokrovskii S.B., Stepanov G.G. Hypertext-based environment for software
development // Aids and Tools for Programming Environment. — Novosibirsk,
1995. — P. 100–110 (in Russian).

[16] Sim S. E., Clarke Ch. L.A., Holt R.C., Cox A.M. Browsing and searching
software architectures // Proc. of the IEEE Intern. Conf. on Software Main-
tenance. — IEEE Computer Society Press, 1999. — P. 381–390.

[17] Sim S. E., Storey M.-A.D. A structured demonstration of program compre-
hension tools // Proc. of WCRE 2000, Brisbane, Australia, 23–25 Nov. 2000.
— P. 184–193.

[18] Best C., Storey M.-A.D., Michaud J. SHriMP views: An interactive and cus-
tomizable environment for software exploration // Proc. of Intern. Workshop
on Program Comprehension (IWPC ’2001), Toronto, Ontario, Canada, May
12–13, 2001. — P. 111–112.



Cross-program data flow visualization 101

[19] Automated Software Re-engineering / Ed. by A. N. Terekhov, A. A. Terekhov.
— St.-Petersburg, 2000 (in Russian).

[20] Tilley S.R. Domain-Retargetable Reverse Engineering: PhD thes. — Depart-
ment of Comput. Sci., Univ. of Victoria, January 1995 (available as technical
report DCS-234-IR).

[21] Tollis I. G., Di Battista G., Eades P., Tamassia R. Graph Drawing: Algorithms
for the Visualization of Graphs. — Prentice Hall, 1999.



102


