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Hamiltonian systems with continuous
spectrum and vortex structures
in rotating fluid*

M.V. Fokin

The problem of small oscillations of rotating inviscid incompressible fluid
is considered. The linearization of the Euler equation in the rotating coordi-
nate system on the solution, which corresponds to the rotation of the fluid as
a rigid body around z—axis, gives the system of differential equations, first
obtained by H. Poincaré [1]. The systematic investigation of the systems of
equations of this new type began with the work of S.L. Sobolev [2].

The characteristics of spectra in this problem were investigated in detail
in the case when the velocity V = (u, v, w) and the pressure P depend only
on two spatial variables z,z. We consider the case when the fluid domain is
an endless cylinder @ with the ruling parallel to the axis y and the convex
domain © bounded by the smooth contour I in the base. Without loss of
generality we can assume that the angle velocity is k = (0,0,1/2). It was
found [3, 4], that as a result of variations of I' the corresponding self-adjoint
operators may exhibit absolutely continuous bands in their spectra; and
a singular continuous spectrum may arise as well [5, 6]. The aim of this
report is to describe the motion of fluid particles and the evolution of vortex
structures which correspond to the intervals of a continuous spectrum.

Under the assumptions mentioned above we obtain the system of differ-
ential equations ((z,z) € Q,t € R):
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with the initial data
Vlt:D = Vo(z,2), (37, z) € Q, (3)

and the boundary condition on I’
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(uny + wng)|p = 0, (4)

where n = (ny,n3) is a normal vector on I' in the plane z,z. The energy
conservation law holds for any solution of the problem (1)-(4) (see [4]):

£(t) = / (luf? + |o]? + [w]?) dedz = const . (5)
L1

The set of all stationary solutions of the problem (1)—(4) is-described by
the formulae V = (0, #(z),0), P(z) = [ 9(z) dz, where ¥(z) is an arbitrary
smooth function.

The stream function ¥ for the components u, w of V is defined by the

equations
- W= 5— (6)
“= 8z’ T 0z

It follows from (2), (4) that for any smooth solution V, P this function exists
for all t in @ = QUT, and we can assume that ¥|. = 0.

Lemma 1. Let V(z,z2,t), P(z,2,t) be an arbitrary smooth solution of the
problem (1)—(4). Then the corresponding stream function ¥ is the solution
of the following problem

92 (0% 9% 92y
517_2(6‘3:2—'_322)-"322—0, (z,2,t) € 2 xR, (7)
q’l[‘ = Oa (8)
ov
WIt:U = WQ(CE,Z), —ét_ = ‘I’](.’E,Z), (9)
t=0

where the initial data Wy, ¥; are defined uniquely by Vo. Conversely, if
the smooth function ¥(z, z,t) satisfies (7)—(9), then the set of solutions of
(1)-(4) . )

V=V, 2t)+V(z), P=PF(z,zt)+ P(z), (10)

corresponds to W. In (10) Vo, Fo is a particular solution and V, P isan
arbitrary stationary solution.

For the problem (7)—(9) it turned out natural to consider an operator A

defined on smooth functions ¥ in the Hilbert space V‘[)f'%(Q) as the solution
of the problem |
AAY = -V, A¥|- =0, (11)
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where A = This operator is self-adjoint and bounded in the
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(¥, ®) = / (¥, 8, + ¥,3,) dzdy. (12)
Q
Using A the problem (7)-(9) may be written in the following form
V=AY, U0)=¥, V(0)=y, (13)

where ¥(-, -, t) is considered as a function of ¢ with the values in V?/%(Q) The

family of invariant subspaces Hf; of the operator A in ]sz{,(ﬂ) is constructed
in[6]forN >2,k=1,...,N-1, GQD(N, k) = 1. If the initial data ¥, ¥,
are chosen in HE, then the solution of (13) is represented in the following
form (see [6]): '

sin w(s)t
w(s)

where ¢(z, z, s) is the family of generalized eigenfunctions of the operator
A in Ly(R), s is a parameter, w(s) is the function, defined by the choice
of invariant subspace HY and by the geometry of the domain £, ho(s) and
h1(s) are defined by the initial data ¥o, ¥,. The operator A has a continuous
spectrum on Hf; if w(s) is not constant. The solutions (14) may be written
in a special form with the help of a change of variables.

U(z,z,t) = /82 #(z, 2, 5) (ho(s) cosw(s)t + hy(s)

) ds, (14)

Theorem 1. Let O be a unit disk {z* + 22 < 1} and let us define the
coordinates

§ = zsin(kn/2N)+zcos(kr/2N), 1= —2 sin(kn/2N);l-;cos(kw/2Nj_ (15)

in . There ezists a diffeomorphism F : Q — §,, which is deﬁn_éd by the
functions § = £(z, 2), 5 = 5(z, 2), such that:

i) coofiinate fines.f = const, 77 = const are the segments of stmight lines
in Q; | | B S

ii) any solution (14) of the problem (7)-(9) with the initial data Yo, T,
chosen in the subspace Hf; is represented as

U(z,2,t) = Hi(£(z, 2),t) - Ha(n(z, 2), 1), (8)

where Hy(€,t), Hy(n,t) are defined by the choice of @0, v,.

Let ¥(z, z,¢t) be any solution of (7)-(9), and let V(z, z,t) be the velocity
field corresponding to the chosen function ¥ by Lemma 1.. The motion
of fluid particles in this case is described by differential equations (a dot
denotes the derivative with respect to t):
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T = —\I’;(:L',Z,t), z= ‘I’;(.’E,Z,t), y=v(z, z,1). (17)

The evolution of two coordinates z, z is governed by a time-dependent
Hamiltonian system. If (z(0),2(0)) = (zo,20) € @, then (z(1),2(t)) € Q
for all ¢ for any solution of this system. This fact follows from the condition
¥|.. = 0. The third equation in (17) has a family of solutions

y(t):/ot v(z(s), 2(s), s) ds + yo,

which corresponds to a given solution of the first two equations. The struc-
ture of system (17) is typical for any motion of incompressible fluid, which
is invariant under the action of a one-parameter symmetry group (see [7]).

We now consider the dynamical system in @ = Q x R, which defines for
a given t the stream lines of fluid motion in Q:

dz ov dz OV

Z=-o@n ), =55 0) (18)
% =v(z, 2, (t)), (19)

where notation (t) means that ¢ is fixed. Let D(t) and Ds3(t) be the dy-
namical systems in  and Q respectively, defined by the equations (18) and
(18)-(19). The variable 7 plays the role of auxiliary “time” and acts as a
parameter for the stream lines in @ and for their projections onto Q. Thus
two families of dynamical systems D(t) and D3(t) in Q and Q correspond
to a given solution V(z, z,t) of the problem (1)—(4).

Let K(¥,t) = {(z,2) € Q|V,,.¥ = 0} be the set of all critical points of
the function ¥(z, z,(¢)) in Q (the stationary points of Dy(t)). A level line
{¥(z,z,(t)) = c} is called regularif KN{¥ = c} = 0. We define Az(z, z, (t))
to be a Hessian ¥, V., — (¥,.)? of the function ¥(z, z, (t)). The set K(¥, t)
is decomposed into three disjoint subsets Kp, K., and Ky of hyperbolic
(A < 0), elliptic (A2 > 0) and degenerate (A = 0) points respectively.
Note that K. consists only of the strong local extremums of the function
W(z, 2, (t)), therefore the condition ¥| = 0 implies that (KNT') C (KxUKg).

If (zo,20) € Ke(¥,t), then the level lines {¥(z,z,(t)) = ¢} = 7(c) are
regular in a neighbourhood of this point and define closed orbits of the
dynamical system D(t). Let (z(7),z(r)) be the periodic solution of (18),
corresponding to the orbit y(c), and let T'(c) be it’s period. Denote

T(c)
Ay(c) = fo v(z(7), z(7), (t)) dr,

then the orbits of the dynamical system D3(t) belonging to the cylinder
v(c) x {y} are the “screw lines” with the step Ay(c) for Ay(c) # 0, and the
closed curves for Ay(c) = 0.
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Let U(zo, 2o, (t)) be the largest neighbourhood of the point (%0, 20) € K,
consisting of the regular level lines y(c) plus the given point (zo, z). It is
clear that #(zo, 20, (t)) is an invariant subset of Q under the system D, ().
If we linearize system (18) near the stationary point (zo,yo) € K., then
the corresponding matrix has eigenvalues +iz, where = = 2(zo, 20, (t)) =
VA2(zo, 20, (£)). We can define vortex structures, corresponding to every
point (Zo, 20) € K.(¥,t) (see [8]).

¢ Suppose (2o, 20) € K¢(¥,t), and let U(zo, 2o, (t)) be the above-mentio-
ned neighbourhood, invariant under D;(t), of the point (2o, 20). We
call the set of all orbits (stream lines) of the dynamical system Ds(t)
belonging to &/ x {y} a swirl, the point (zg,2) - the center of the
swirl, the straight line (zo,20) x {y} - the (instantaneous) azis of
rotation, (g, 20, (t)) — the velocity of rotation of the swirl, and the
neighbourhood U — the domain of influence of the swirl.

The set K(¥,t) in Q is defined for a given ¢ by the system
U (z,zt) =0, V. (z,2,t)=0. (20)

If the coordinates (2o(to), zo(to)) of the center of one of the swirls has been
found for t = to, then the condition Aa(zo, 20,t0) > 0 implies that for soine
€ > 0 the smooth solution (7o(t), 20(t)) of the system (20) is defined for
all [t - to] < =. This solution describes the motion of the center of the
swirl in Q2. Respectively, the velocity of rotation a(t) = 2(zo(t), 20(t),t) is a
smooth function of ¢ on the interval |t —to] < £. The moments of arising and
disappearance of swirls are connected with the bifurcations in the family of
dyunamical systems D;(t) when ¢ is increasing. It follows from the definition
of U that it’s boundary JU lies in some level set {¥(z, z, ()) = ¢}, containing
at least one hyperboalic or degenerate point from the set KCj U Ky.

Theorem 2. Let V(z,2,t) be a velocity field in Q defined by Lemma 1 for
a given smooth solution W(z, z,t) of the problem (7)-(9) with the initial data
from the subspace HE,. Then in the coordinates & ny) ((&n) € Q,y€R)

(see Theorem 1 for the definition of &, n) the system (17) for fluid particles
motion takes the following form

£ = j;éﬂ—)hz(n) sin(ws (n)t + B2 (1)), (21)
0 = J—ié,—n)hl(e) sin(wr (€)t + 91 (6)), (22)
¥ = v(& nt), (23)

where J1(&,n) is the Jacobian of the inverse map F~': (&,n) = (z(&, ),
& m). vl mt) = v(z(§,m),2(&,),t). The functions w (), wy(n) are
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defined by the geometry of the domain Q and satisfy the condition wy (§)|r =
wa(n)|p. The functzons h1(€), ha(n), 91(€), 92(n) are defined by the choice
of o, ¥, € HN in (9).

- To illustrate the_ effects which correspond to a continuous spectrum we
consider in @1 = 3 x{y} the system of differential equations similar to
(21)-(23)

£ = —nsin(1 +en’)t, ‘ - (29
i = Esin(1+¢(1 - €2)), (25)
§ = ncos(l+en®)t + &cos(1 + (1 — €2))¢, (26)

where € > 0; and € = (z + 2)/V2, 1 = (z — 2)//2 are new coordinates in
the unit disk ©; of the plane z, =.

Suppose the right-hand sides of equations (24)-(26) are components of
the velocity vector V(€,7,t). It can be easily verified that the conditions
V-n|go =0, divV = 0 are satisfied; and the energy conservation law (5)
holds. Moreover, if we consider V (-, -,t) as a function of ¢ with the values in
the Hilbert space Hy = {U(£,7n) = (u1, uz, u3)|(€,1) € £} with the norm

W12 = [ (1l + fuaf® + uaf?) dé dn,
1

then V{(:,-,t) has a continuous energy spectrum and there are no limit
points for V(-,-,t) in Ho when t — too, because ||V(:,-,t)|| = const and
w-lim¢ 3400 V (-, -, ) = 0 in Ho. Let wy (€) = (1 - €2), wa(n) = 1+¢€n?, then
Hamiltonian for the first two equations is

3 7
V(& n,t) =/ ssin wl(s)tds+/ ssinwq(s)t ds. (27)
0 0
For a given t the critical points of ¥(&,7,t) are defined by the system
€sin(wy(§)t) =0, nsin(wz(n)t) = 0. (28)

Let Hﬁf be the intersection of ; with the quadrant {£ > 0,7 > 0}. and let
w1(€) = (1 — &%), wa(n) = 1+ en®. Then (28) reduce in Q' to the system

wi(€)t = (141 - €3))t = jnr, wa(n)t = (1 +en)t = jmm, (29)
where Jym,n € N, GCD(m,n) = 1; and the following inequalities hold

1
< —<
I-I—e n"1+

EQuations (29) imply that the critical points of ¥(£,7,t) in _ﬁf localize on
arcs 7y of ellipses
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@:(m{'2 +nn%) =m(14¢) - n.

Let (£;(¢),n;(t)) € ¥ be a solution of (29). By direct checking one can
easily conclude that this solution is defined for ¢ € (t],t3), where

d={re  &@=0 ne)=/20E0n

t=jmm, &)= 2LEE)=m iy,

em

imme . ) . .
J - the intervals of existence for these solutions - in-

Intervals A; =
crease with j. Calculating the values of ¥¢; and W7y we obtain:

: . 92 (1Y% — _0i(_1\in nwé?(t)
Wee (€(t), m;(t), t) = —2e€3(t)(—1)""t = —25(-1) o1 (0)

. . — 9er (£ (NI — 0 (_1\im nan?(t)
Won(€5(2), mi(8), 8) = 2emf(t)(—-1)"™t = 2j(~1) w———-_z(ﬂj(t)).

The point (&;(t),n;(t)) is hyperbolic for all j if m + n = 2[. In the case
m+n = 2l +1 this point is hyperbolic for j = 2k and elliptic for j = 2k + 1.
The velocity of rotation of the swirl with the center in the elliptic point

(&(2),m;(2)) is

2i(t) = 2(&;(t),m;(t)) = jen&;(t)n;(¢) (30)

wi(§5(2))wa(n;(2))

The velocities of rotation of swirls passing through the given point (&g, 7o) €
Yn' form an arithmetic progression. We define the velocity of motion of the
swirl along the line v as U;(t) = (&5(t), m;(t)). One can obtain from (29)

that .
gy < 91&G®) _ wiEG®) L wa(mi(t) | wR(ni(e))
&) = 2i“t§_,,-(t) B 2j::n1r§,-(t)’ n;(t) = - 225t1;,-(t) B 2j:m;‘l)j(t). (31)
It follows from (30)-(31) that
(1)U, = ‘/mwi‘(fj(t))n}(t) + o (0, (1) €20)
J - .

mn

This means that for all swirls with the centers (&(8),m5(t)) = (€0, m0) € ¥
passing through. the given point on 4™ the value 2;(t) - |U;(t)| does not
depend on j.

It is easy to verify that the total number N (t) of critical points of the
Hamiltonian function ¥(¢,n, t) in ‘ﬁl increases with ¢; and the following
estimate for large values of ¢ holds o
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N(t) > 6t2, (6 =é(e) > 0).

The diameters of the domains of influence of the swirls are decreasing when
j is increasing.

The specific process of arising, evolution and disappearance of the vor-
tex structures is described by the system (24)-(26). The number of vortex
structures increases in time and their scale decreases in the case of contin-
uous spectrum for all systems of the type (21)-(23). This effect may be
considered as one of the mathematical models of development of turbulence
in the rotating ideal fluid and short-term atmospheric vortex phenomena (as
tornado, for example). -

The projection of trajectories of fluid particles onto plain £, n for given initial data
£(to) = 0.38, n(to) = 0.73, ¢ = 0.1 and time interval [to, 2o + 50]: a) to = 21.6;
b) to = 113.5; c) o = 221.3;'d) to = 345.1. '
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The illustration of the fluid particles motion corresponding to the system

(24)—(26) is given in the figure. The large scale motion for sniall values of ¢
transforms into microoscillations of fluid particles for large values of ¢.
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