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A limited area nonlinear normal mode
initialization*
A.A. Fomenko

The paper presents a method of nonlinear normal mode initialization which is
used in the operational technology of the regional numerical weather prediction for
the Siberian region. This technology has been developed at the Siberian Hydrom-
eteorological Research Institute. The comparison of results of forecasting with the
use of the initialization method and without it has been made. The method allows
the efficient suppression of the amplitudes of high-frequency oscillations at the ini-
tial integration stage, the maximal changes in the field of the surface pressure not
exceeding 1-2 hPa.

1. Introduction

The problem of initial adjustment of meteorological fields was formulated in
the finite form at the same time with going in the numerical weather predic-
tion from quasi-geostrophic equations to the primitive ones. The previously
used adjustment of fields on the basis of geostrophic relations or solutions
of the balance equation did not allow one to eliminate or somewhat to es-
sentially suppress amplitudes of high-frequency oscillations, arising at the
initial steps of integration of equations. Nonlinearity of a system of equa-
tions brings about the fact that gravitational waves filtered at the initial
time, arise at the very first integration steps, having an unreally large am-
plitude.

At present, most generally employed is the method of nonlinear normal
mode initialization due to its efficiency and low computer costs. The idea of
the normal mode initialization is based on the fact that for sufficiently high
equivallent depths, eigenfunctions of linearized shallow water equations can
be separated in terms of their eigenfrequencies. Although the normal mode
initialization methods were initially formulated for global and hemispheric
models, by the present time they have found their application to limited-area
models [5, 6].

An alternative of the nonlinear normal mode initialization is the boun-
ded derivative method [2]. It should be noted that the comparison of the
two above-mentioned methods indicates to their similarity and to that of
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their algorithm realization, particularly, if one considers the normal mode
initialization in terms of the physical space [4].

The essence of the nonlinear normal mode initialization is in that the
linearized part of the spatial operator of the problem is expanded in eigen-
functions of the vertical operator. After that, fast and slow modes are
distinguished in the normal mode space and tendencies of high-frequency
harmonics are suppressed. Further we follow a reverse procedure of going
to the original physical space. In principle, it is possible to construct a
procedure allowing an effective suppression of high-frequency disturbances
without going to the normal mode space [13].

The idea of suppression at the initial time not of gravitational waves
themselves but of their tendencies was proposed independently in two pub-
lications [3, 12]. Thus, we can construct an algorithm allowing filtering
(although incomplete) of gravitational waves and suppression of their ampli-
tudes during integration provided the amplitudes of the slow Rossby waves
are conserved.

The present paper proposes an algorithm of the nonlinear normal mode
initialization for the regional atmospheric model [11]. This procedure is
a part of the operational technology of the short-range weather prediction
for Siberia. By present, a version of four-dimensional data assimilation
with 12-hour cycle has been implemented. In this case we made use of 12-
hour prediction of the regional atmospheric model as the first guess for the
analysis [7].

2. Projection of equations onto the vertical
mode space

The initial statement of the model and its numerical realization are presented
in detail in [7]. The conventional notations used below do not demand any
comments and correspond to the ones used in [7]. Let us distinguish in the
original semi-discrete system of equations the linear part

Ju
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are symmetric finite differences with respect to z and y, m,,, m,, m’ are scale
factors in the cartographical coordinates, IIT = (Aoy,. ..,Aon), N is the
number of vertical levels of the model. The subscripts u, v denote the points
on C-grid to which refer the corresponding expressions, the overbar denotes
the finite difference averaging in the respective variable, ®° = &, + RGT.
N, Ny, N1, N,, include nonlinear terms of the corresponding equations,
fo is the mean value of the Coriolis parameter, while its deviations are also
included in the right-hand sides of system (2.1).

Properties of the finite difference scheme in vertical are fully defined by
the matrix of the quasi-statistics G and the matrix of divergence contribu-
tion in the tendency of the temperature B, and the vertical structure of
oscillations will be described by the finite difference.operator

C = RGB + RT I, (2.2)

T, is the column-vector of a certain characteristic temperature profile, in
our case T, = const. Eigenvectors of the matrix C are the vertical normal
modes of the numerical model with whose help the original three-dimensional
model can be reduced to a series (with respect to the number of levels N)
systems of shallow water equations with equivalent depths d,, which are
equal to eigenvalues of the operator C.

The introduction of the operator C' makes it possible to rewrite the two
latter equations (2.1) in the form

od
— +CD = Ny, 2.
5 T o (2.3)
where & = ®° + RT,In Ps-
The use of the transformation

Y~1Cy = diag(dy, ..., dn), (2.4)

where column-vectors of the matrix i represent the vertical modes to which
correspond the eigen-numbers d,, allows us by multiplication of systems

(2.1), (2.3) from the left by 1/~ to go to a series of N shallow water equations
with equivalent depths d,,

ou, _ 1
Bt - fovrfy + m_arén = Ny,
dvy, _ 1
-BT + fouzy + anq}n = Un? (25)
0d,
w +d,D, = Nd)n.

Further on, we will omit the index n for the sake of simplicity.
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Further on, we will omit the index n for the sake of simplicity.

The vertical modes, the corresponding equivalent depths and phase ve-
locities of the gravitational waves for the 15-level atmosphere model are
presented in [15].

3. Projection onto the horizontal mode space

Using the operators rot and div we can readily reduce the obtained system
to the one of the following forms:

oD ~ oDy - ,
B~ QY+ Vi@ =Np, =5 = [Q+ V@ = Np,
Qv 7] _
gt + foD = N, 3—? + f,D*¥ = Ng, (3.1)
0 pdey
S +dD =N, o +dD™ = N,
here 1
Q= E(ﬁxv - ,5ymuu),
1,1 1
Vﬁ = E(aéﬁ + ;ﬁéymv(sy), (32)
1,1
Vz = —n;(mv(sg + 'zﬁymuﬁy).

The corresponding nonlinear terms are still concentrated in the right-
hand sides. Two systems are simultaneously realized due to the use of C-
grid in terms of Arakawa. Note that in principle we can restrict. ourselves to
realization of one system, the first one, for example, and to take into account
the shift of functions with respect to the grid points when recalculating Q
in regard to Q%Y [8, 9].

The approaches to performing calculations without loss of generality will
be demonstrated on system (3.1). In this case the indices z, y will be in the
sequel omitted for simplicity.

Let us transform the first equation of system (3.1) to the form

%‘?——fOQ+A®+¢B=ND, (3.3)
where A is the Laplace operator on the spherical rectangle with zero Dirichlet
conditions at the lateral boundaries. The boundary conditions for @ are
included in ®g. Let ¥ be a matrix whose columns represent eigenvectors
of the operator A, —Ay are eigen-numbers corresponding to these vectors
(k=1,...,K;1=1,...,L). Then, by affecting system (3.1) from the left
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aD
Tm — foQri — Ai®rki + ®B,, = Npyy»
a o
QH —— + foDu = Np,,, (3.4)
3¢’kt
3t + del Ng,,.

Denote

{ Dk
= ( Qi ) . (3.5)
Dy

Then (3.4) in the vector form can be represented as:

d
—J]tg-&-lAX—i-XB—F (3.6)
where .
0 ifo Au ®p,, Np,
A=\ -if, 0 0 , XB= 0 , F=| Np,, |- (37)
—-id 0 0 0 Ns,,

Equation (3.6) is projected onto the normal mode space using represen-
tations

T-YAT = M = diag(p1, p2, p#3), (3.8)
i i
| mE Tma 0 d —f)
r=| % & & |, Tl'=| o £ M} (39)
Tkl 20, 20, .
S d d o fo Am
Tkt Eﬁ .2—"_?:

11 = 0 is frequency of the Rossby stationary mode,

fizz = *ow = Ey/Aud+ f? are frequencies corresponding to inertially-
gravitational oscillations.

Using (3.6) and performing transformations

Y =T71X, N=T"'F,
T T (3.10)
Y = (Y1,Y3,Y3)", N = (N1, NyyNa)',

we arrive at the dynamic equations for the mode coefficients Y;, Y3 3, con-
nected with corresponding eigenfrequencies

d}l dY,
= Mo dt

Introducing the notation

3 tionYosF iop®p,, = Naj3. (3.11)
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Y=Y-Y3, (3.12)

where Yg = (0,9p,,®5,,)7, we can present equations for tendencies of
gravitational mode amplitudes at the initial time in the form

dYs3

R dYp
dt' tionYsz = Nyz— 22

dt '’

(3.13)

which allows us to take into account explicitly the effect of the boundary
conditions on the initialization. In addition, in this case it is easy to apply a
technique, commonly used in the global models [1, 14], to a limited model.

4. Nonlinear normal mode initialization

As an initial step for performing the nonlinear initialization we take a linear
balance state

Yl(a) =Y, Yz(,(:)a) = (DBH' (4‘1)
Since
Y, dQri ~ fo®w
Y = ( Y, ) =T'X = | —ionDii+ foQu + Au®u |, (4.2)
Y ok Dt + foQri + AP

we obtain the expressions for the linear balance state in terms of expansion
coefficients of solving the original system (3.1) in eigenvectors of the Laplace
operator on the spherical rectangle

oy =0,

QY = Qu - f—;(foka + M@ — ®p,,), (4.3)
a’kl .
(0) _ d . A
@, =Pu - a_g(foQkZ + Mi®w — ®B,,)-
ki

Introducing the vector ¢ resulted from the operator ¥~! acting on V2@
from the left makes it possible to rewrite the result of linear initialization in
the final form

DY = o,
2QY = Lo (1. 0u - du)
Kk = &E[ okl ki) (44)

o d ., ~
A‘I’L) = ——(foQkt — ¢x1)-
T
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Here the shift of functions with respect to each other has been already
taken into account.This shift is due to the use of C-grid. It is easy to show
that the inverse transformation to the physical space can be interpreted as
a geostrophic balance of linearized equations (3.1)

D@ =0, £,0© = vl (4.5)

where
HA®® = 4(V?® - £,Q), H=f?-dVi (4.6)

The main idea of nonlinear initialization is in the demand for the time
tendency of gravitational mode amplitudues to be equal to zero at the initial
time under assumption that nonlinear terms of equations slowly change with
respect to time. This is valid for small Rossby’s numbers. This demand
brings about the iterative scheme to define correctness of the original values.

Thus, the gravitational components of the original fields are not rejected
as in the case of linear initialization, but are transformed so as to be sta-
tionary for the given model. This method of nonlinear initialization brings
about a somewhat balanced low-frequency state of the original fields which
correspond to the solution on a slow variety. Turning to system (3.13) fol-
lowing [1, 12] it is easy to construct an iterative process for determining the
correctness of the balanced state

, (v 1 dviyY
Ay =0, AV = ii-&—;—zéi'—. (4.7)
Hence )
W _y L (P23 _dop |
AY) = iiom( - — )- . (4.8)

In terms of the expansion coefficients of the solution of system (3.1) in
eigenvectors of the Laplace operators, on the spherical rectangle we have

” foQp = gln)
AD;; Tkt
AX®) = W | = LDy 4.9
Atb};}’ ab=D
B K

which in the original physical space of system (3.1) corresponds to

HADW = £,0" 7" _ v2el-n),

HA®™ = —dpt-1), (4.10)

ad" = %’A@(”).
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which in the original physical space of system (3.1) corresponds to

HADW) = foé(”—l) — vt

HA®W) = —gD-1), (4.10)

ad" = %A@M.

Thus, when conducting nonlinear initialization the effect of boundary
conditions in the limited model is explicitly taken into account. The hori-
zontal velocity components are reconstructed on the basis of the solution of
equations with respect to D and Q

1
Vimyu=8,D - mﬂymﬁQ,

. (4.11)

m'm,

Vim,v = §;Q + 8,mZD.

u

5. Numerical experiments

The developed method of nonlinear initialization was used in the operational
technology of numerical short-range weather prediction for the Siberian re-
gion. The technological line is based on the model having 15 non-uniform,
vertically distributed o-levels. The longitude-latitude resolution is 1.66° x
1.25°. The domain of integration is included in the spherical rectangle
40° — 146.6° E and 40° — 80° N.

The initialization procedure can be performed directly in the physical
space based on relations (4.5), (4.6), (4.10). However, if we select the method
of expansion in eigenfunctions as a method of inversion of the Laplace oper-
ator, then the solution of the above-mentioned systems is, in fact, equivalent
to the procedure of using relations (4.4), (4.9) on whose realization an op-
erative version of nonlinear initialization is based. In addition, numerical
experiments have shown that the initialization of the first three vertical
modes at three iterations is sufficient.

Figure 1 shows the time-dependent behavior of the surface pressure value
with initialization or without it. The data of the operative analysis during
1200 GMT of August 4, 1992, was taken as the initial data. The boundary
conditions were formed from the geopotential data in the GRID-code. The
temperature was reconstructed from the hydrostatic equation, the values
of horizontal components of wind speed at the boundaries being assumed
geostrophic. Figure 1is an illustration of the fact that the initialization effect
is dramatic not more than 12 hours, which is proved by formal statistical
estimations of the prediction quality.
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Figure 1. Surface pressure-time plot for grid point at 55 N, 81 E, starting at 1200

GMT 4 August 1992. Before normal-mode initialization (heavy line) and after
normal-mode initialization (thin line) of three vertical modes with three iterations.
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Figure 2. Changes of sea level pressure (hPa) at 1200 GMT, 4 August 1992, by
initialization of three vertical modes with three iterations.
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6. Conclusion

The paper presents the normal mode nonlinear initialization method for
the regional atmospheric model. The procedure is used in the operational
technology of the short-range weather prediction for the Siberian region since
January, 1992. The method allows one to suppress efficiently amplitudes of
high-frequency perturbations at the initial integration stage by inessential
changes of the original meteorological elements.
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