
Bull. Nov. Comp.Center, Comp. Science, 32 (2011), 57–75
c⃝ 2011 NCC Publisher

Properties of nonlinear systems and convergence
of the Newton-Raphson method in geometric

constraint solving

S. Gatilov

Abstract. The paper describes an application of a variant of the Newton-Raphson
method to solution of geometric constraint problems. Sparsity and rank deficiency
of the corresponding nonlinear systems are emphasized and statistical data are pre-
sented. Several ways of handling underdeterminancy and overdeterminancy in solv-
ing the Newton linear systems are considered. The behavior of Newton’s method
is shown on some examples of nonlinear systems. Two algorithms for solving lin-
ear systems are proposed based on rank-revealing LU and QR factorizations. The
paper is concluded with a numerical comparison of the proposed linear solvers.

1. Geometric constraint problem

A geometric constraint problem (GCP) consists of a finite set of objects
and a finite set of constraints on them. Either two-dimensional or three-
dimensional space is considered. Each object has a type, for example: point,
line, circle, plane, sphere, cylinder, etc. An “engineering variable” is an
important special type of objects that has no geometrical meaning. Each
constraint is imposed on a subset of objects of the problem. Constraints
also have certain types: incidence, tangency, distance, angle, etc. Each type
can have a different meaning depending on the types of objects involved.
An “Engineering equation” is a special type of constraints that allows us
to impose an arbitrary algebraic equation as a constraint on any set of
engineering variables.

A GCP is called underconstrained if it has continuum many solutions.
If the problem is not underconstrained itself but becomes underconstrained
after removing any single constraint, it is called well-constrained. In other
cases, a GCP is considered overconstrained. It should be noted that the
number of solutions is found up to the movement and rotation of the whole
model.

CAD users are generally advised to make their geometric models well-
constrained. However, it is often difficult to avoid overconstraining. More-
over, if a user wants to see the intermediate result of modelling, an undercon-
strained problem is likely to appear since not all the necessary constraints
have been created by that time. Therefore, a geometric solver should not
neglect the underconstrained and overconstrained problems.

58 S. Gatilov

To solve a GCP, the decomposition and simplification methods are nor-
mally used. A lot of approaches are based on the graph structure of a GCP
[13], [14]. The benefits of using a decomposition for solving GCPs are shown
in [8].

The direct way of solving a GCP involves solving a nonlinear system.
The problem is reformulated as a system of nonlinear equations in the mod-
elization process. Each object generates variables and perhaps additional
equations on them, and each constraint turns into some equations and may
also add some helper variables. For example, a 2D point is usually repre-
sented with its coordinates x and y, and a 2D line can be represented as
three variables c, s, d and an equation c2 + s2 = 1. Incidence of a point and
a line produces an equation sx− cy = d.

Geometric constraint solvers often utilize several modelizations to in-
crease the success rate and to improve efficiency. Modelizations must be
correct: given a solution of a nonlinear system, it should be possible to
compute a GCP solution efficiently. At least one of the modelizations used
should also be complete: if a GCP is solvable, then the generated nonlinear
system should also be solvable.

The systems of nonlinear equations can be simplified and decomposed
too. An example of a decomposition heuristic for nonlinear systems is the
Dulmage-Mendesohn decomposition (see [1]). One way of simplifying a non-
linear system is substituting a variable with its direct expression obtained
from some equation. Nonlinear systems can be solved either symbolically or
numerically. Symbolic approaches work only with polynomial systems and
require computation of the Groebner basis, so they are at least exponen-
tial in time [3]. Among numerical approaches, the Newton-like methods are
highly attractive in practice despite some serious disadvantages.

The Ledas Geometric Solver (LGS) is a commercial solver for geometric
constraint problems used in several CAD systems. It is available in both
two-dimensional and three-dimensional variants. Both versions utilize the
graph-based decomposition approaches to reduce a complex problem to a
sequence of smaller ones [11]. The atomic problems that cannot be decom-
posed further are modelized and solved directly by the numerical solver.
A variant of the Newton-Raphson method is the core of this solver. This
paper summarizes the research work intended to analyze and improve the
efficiency of the numerical solver component of LGS. The implementation
of linear solvers described in Section 4 is used in the up-to-date version of
LGS. The statistical data obtained and convergence analysis may be useful
for further improvement of the numerical solver.

Properties of nonlinear systems and convergence of the Newton-Raphson method 59

2. Nonlinear system

2.1. Definitions

A system of m nonlinear equations and n variables can be defined as F (x) =
0, where

F : Rn → Rm, (1)

x =
[
x1 x2 x3 . . . xn

]T
, (2)

F (x) =
[
f1(x) f2(x) . . . fm(x)

]T
. (3)

A nonlinear (or linear) system is considered consistent if and only if there
exists a solution that satisfies all the equations. A point z ∈ Rn is called a
solution or a root of the nonlinear system whenever F (z) = 0, i.e. it satisfies
all the equations. The set of all roots of the nonlinear system is denoted by
Z.

We will assume that F is at least continuously differentiable everywhere.
In practice most of the equations in F are polynomial. Non-polynomial
(and non-analytical) equations are necessary to support correctly splines
and user-defined curves and surfaces.

The Jacobian of the nonlinear system at a point p is an m × n matrix
J(p):

J(p) =
dF

dx
(p) =

[
∂fi
∂xj

(p)
]
i=1...m,j=1...n

∈ Mm,n(R). (4)

The Jacobian is used to define several properties of nonlinear systems like
overdeterminancy and underdeterminancy.

A matrix is underdetermined if its columns are linearly dependent. Anal-
ogously, a matrix is overdetermined if its rows are linearly dependent. For a
given linear system, the underdeterminancy and overdeterminancy proper-
ties are determined by examining its matrix. The same concepts are defined
for a nonlinear system at a given point: a nonlinear system is underdeter-
mined (overdetermined) at a given point if and only if the same holds true
for the Jacobian of the system at this point.

A nonlinear system is said to have a constant rank point p if its Jacobian
has a constant rank in the vicinity of p:

∃r > 0 ∀x ∈ B(p, r) rank J(x) = rank J(p). (5)

The set Z of all the roots has a simple structure near any constant rank root
z ∈ Z: due to the constant rank theorem, Z is a differentiable manifold of
dimension n− r near z, where r = rank J(z).

60 S. Gatilov

2.2. Properties

If a GCP is underconstrained and modelization is complete, then the non-
linear system also has continuum many roots. Hence, some of them are not
isolated, and the nonlinear system is underdetermined there. On the other
hand, correct modelization of an overconstrained GCP is likely to generate
a nonlinear system which is overdetermined at some points. Modelization of
well-constrained problems may also lead to underdetermined and overdeter-
mined systems. This happens because of the difficulties in expressing some
of the constraints as nonlinear equations. Due to these reasons, a numer-
ical solver should be able to handle underdetermined and overdetermined
problems in the context of geometric constraint solving.

A nonlinear system is also likely to have a sparse Jacobian. It depends
heavily on the modelization used. Here we consider only relatively simple
modelizations which adhere to the following rules:

1. For each object Gi of GCP, a set V (Gi) of variables and a set E(Gi) of
equations are generated. The equations in E(Gi) depend only on the
variables from V (Gi) ∪ V0.

2. For each constraint Cj of GCP, a set V (Cj) of variables and a set E(Cj)
of equations are generated. Denote the set of objects involved in the
constraint Cj as O(Cj). The equations in E(Cj) depend only on the
variables from ∪

H∈O(Cj)
V (H) ∪ V (Cj) ∪ V0.

3. All other variables and equations of the nonlinear system constitute
the sets V0 and E0, respectively. These variables and equations are
global and do not correspond to any object or constraint.

Now suppose that |V0|, |E0|, |V (Gi)|, |V (Cj)|, |O(Cj)| = O(1), i.e. these
quantities are bounded by small constants. Then each equation depends on
no more than O(1) variables except for the equations in E0. The number
of equations in E0 is small (|E0| = O(1)). So the total number of equation-
variable dependencies is O(m+n), where n is the total number of variables
and m is the total number of equations. It means that at any point p the
Jacobian J(p) has no more than O(m+n) nonzero elements and is perfectly
sparse. Note that the proposed assumption is often valid in practice: atomic
geometric objects can be parametrized with a small number of variables (like
two coordinates and a radius for a circle), the arity of constraints is small
(tangency involves exactly two objects), and the number of global variables
and equations is usually small and bounded (they can be used to establish
global coordinates).

Statistical evidence of sparsity and rank deficiency is shown in Table 1.
Data from the two-dimensional and three-dimensional versions of LGS have
been collected. A large amount of GCP tests has been solved, and informa-
tion about all the evaluated Jacobian matrices has been stored in the pro-
cess. The Jacobians collected are further classified as small (ni +mi 6 40),

Properties of nonlinear systems and convergence of the Newton-Raphson method 61

medium (40 < ni + mi 6 400), and large (400 < ni + mi). The aver-
age quantities for all the Jacobians and for each of these groups are given
separately.

Table 1. Statistical data for evaluated Jacobian matrices in nonlinear systems.
Here

∑
Xi is the sum of Xi; Xi is the average of Xi; nnz(Ji) is the number of

nonzero elements in Jacobian Ji; “FR” is the portion of Jacobians that have full
rank, i.e. rank(Ji) = min(mi, ni); “ND” is the portion of mumerically deficient
Jacobians, i.e. rank(Ji) < sprank(Ji), where sprank is the structural rank of the
nonzero pattern, as defined in MATLAB

Version(group) mi ni

∑
nnz(Ji)∑
(ni+mi)

∑
nnz(Ji)∑
nimi

FR ND
∑

dim ker Ji∑
ni

3D(all) 10.06 12.10 1.86 0.030 0.7828 0.1323 0.266
3D(small) 4.49 6.35 1.30 0.306 0.8341 0.0792 0.361

3D(medium) 55.87 59.44 2.26 0.050 0.2584 0.6753 0.194
3D(large) 530.34 550.51 2.54 0.007 0.0053 0.9358 0.117

2D(all) 12.79 12.24 1.45 0.058 0.7835 0.1133 0.051
2D(small) 6.48 6.36 1.13 0.227 0.8075 0.0899 0.072

2D(medium) 51.77 48.51 1.70 0.050 0.6295 0.2646 0.034
2D(large) 327.79 315.80 1.79 0.008 0.4956 0.2855 0.046

The number of nonzero elements is less than 3(n+m) on average, even
for large LGS3D tests. It confirms the hypothesis of a perfectly sparse
Jacobian. The portion of full rank Jacobians is about 78% and goes down
for larger sizes. The portion of numerically deficient matrices is about 12%
and goes up for larger sizes. This data confirms that underdetermined and
overdetermined systems often appear in practice.

3. Newton-Raphson method

Here we consider the classical Newton-Raphson method for solving nonlin-
ear systems. It is an iterative method that calculates series of points (pk)
(approximate solutions). The first approximate solution p0 in series can be
chosen arbitrarily and is usually determined from the current state of the
geometric model. To obtain the next solution, the system is linearized at
the current point, and the produced linear system is solved:

J(pk)△pk = −F (pk), (6)

pk+1 = pk +△pk. (7)

The matrix of the linear system is equal to the Jacobian matrix J(pk) at
the current point pk. If it is invertible, then the inductive relations can be
rewritten as:

pk+1 = pk − J−1(pk)F (pk). (8)

If the linear system is overdetermined, then it can be inconsistent. On the
other hand, the underdetermined linear system can have multiple solutions.

62 S. Gatilov

This is why it is necessary to clarify the meaning of the linear system solution
△pk in (6) to define completely the Newton-Raphson iteration.

3.1. Underdetermined linear system

If a linear system is underdetermined and consistent, then the set of its
solutions is a linear manifold of nonzero dimension. In this case, the solu-
tion with the minimal norm is a sensible choice for Newton’s method. The
Newton iteration with this choice is more likely to produce a solution of the
nonlinear system which is close to the start point p0. This choice is also
beneficial for convergence of Newton’s method.

Consider a very simple example (a circle equation):

x2 + y2 = 1. (9)

The linear system in Newton’s method is:

2xk△xk + 2yk△yk = 1− x2k − y2k. (10)

Here △xk and △yk are the unknowns. Obviously, this linear system is
always underdetermined.

First suppose that the minimum norm solution of the system is always
chosen. Then in polar coordinates the Newton recurrent formula is:{

Rk+1 =
1+R2

k
2Rk

,

φk+1 = φk.
(11)

The Rk series converges quadratically to 1 from any start point except R0 =
0. Hence, the Newton iteration converges quadratically to the closest root
from any start point except p0 = 0.

On the other hand, the solution of the linear system can be chosen in
a simple way. Suppose that the Gaussian elimination is used to solve the
system. Then one variable (let it be △yk) is free and the other one (△xk)
is dependent. The free variable can be set to any value. The most natural
choice is zero. With this choice of the solution, the following recurrent
relation is obtained: {

xk+1 =
1−y2k+x2

k
2xk

,

yk+1 = yk.
(12)

If |y0| < 1, then there is quadratic convergence to some root. It is obvious
that, if |y0| > 1, no solution can be found because yk is constant and no
solution with |y| > 1 exists. An important note: even the local convergence
is missing for the roots x = 0 and y = ±1.

So even this simple example shows that choosing the minimum norm
solution of a linear system is a good idea. A question yet unanswered here

Properties of nonlinear systems and convergence of the Newton-Raphson method 63

is what norm to use. It is better to use a norm induced by an inner product
because there are efficient linear solvers for this case. The ordinary dot
product is enough.

Note that the choice of the minimum norm solution is sensible to variable
scaling. Generally, in geometric problems all the quantities are expressed in
terms of some units of measurement. Each variable represents either some
length, some angle or some derived quantity (like area, volume, etc). The
dimensional analysis states that there is no sense in the standard dot product
over variables if they have different units of measurement. It is necessary to
determine the characteristic size of the problem for each of the independent
units of measurement: length and, optionally, angle. The characteristic
length can be chosen as the maximal absolute initial value of all the variables
representing length. The characteristic angle can be set to 2π. Then all
the variables can be replaced with their dimensionless equivalents, e.g. x
replaced with x̂ = x/L. Such scaling improves convergence and leads to
more natural solutions. Poor scaling can force a nonlinear solver to favor
changing some quantities over the others in order to satisfy the constraints.
For example, the solution may contain heavily rotated objects even if only
a slight change is enough.

The ideas of this section have been tested on the 3D version of Ledas
Geometric Solver. The test base of LGS3D consists of 21 243 geometric
problems; some of them are inherently inconsistent. The nonlinear systems
generated for these tests are in general highly underdetermined: the ratio
of the Jacobian kernel dimension to the number of variables is about 0.27
on average. The nonlinear solver with the Gaussian elimination that sets
free variables to zeros failed to solve 4 024 problems. After the linear solver
had been modified to produce a solution with minimal L2-norm, it failed
to solve 3 483 problems. Implementation of the appropriate variable scaling
reduced the number of unsolved problems to 3 264. These improvements are
considered substantial for this test base.

3.2. Overdetermined linear system

Consider one more example of a nonlinear system:
x2 + y2 = 2,

x = 1,

y = 1.

(13)

Obviously it is always overdetermined and has a unique root x = y = 1.
The linear system produced by Newton’s method is:2xk 2yk

1 0
0 1

[
△xk
△yk

]
=

2− x2k − y2k
1− xk
1− yk

 . (14)

64 S. Gatilov

Now we are going to analyze the consistency of this linear system. The
values of both unknown variables can be uniquely determined from the last
two equations. So the system is consistent if and only if these values satisfy
the first equation. By substituting △xk = 1 − xk, △yk = 1 − yk into the
first equation, after some simplification we get:

(xk − 1)2 + (yk − 1)2 = 0. (15)

So the linear system produced by Newton’s method is consistent if and only
if xk = yk = 1. Since this point is an exact solution of the nonlinear system,
it is of no interest to us. At any other point, the linear system is inconsistent,
although the nonlinear system is consistent.

So even a consistent overdetermined nonlinear system can produce in-
consistent linear systems in the Newton-Raphson method. In order to solve
such problems, the linear solver should be able to treat inconsistent systems
too. It cannot produce a correct solution of the linear system, but it can give
an approximate solution which can be used as a step in Newton’s method.

The solution of the linear least squares problem can be used:

△pk ∈ argmin
d∈Rn

∥J(pk)d+ F (pk)∥. (16)

The set of the linear least squares solutions is known to be equal to the set
of solutions of the normal equations, so (16) is equivalent to:

JT (pk)J(pk)△pk = −JT (pk)F (pk). (17)

This linear system is always consistent and gives one way to compute the
desired solution. The Newton-Raphson method utilizing the least squares
solution of a linear system is also known as the Gauss-Newton method.

There is also another favorable choice of the approximate solution. Choose
any r = rank J(pk) linearly independent rows of the Jacobian matrix J(pk).
Solve r equations corresponding to these rows and simply ignore all the other
equations. The chosen rows can be called base rows since they completely
determine the solution of the linear system. Such a solution can be easily
obtained from the Gaussian elimination. If row pivoting is used, then the
set of satisfied equations may differ from iteration to iteration.

There is intuition behind this choice. First of all, satisfying the base r
linear equations is equivalent to performing a Newton step for the reduced
nonlinear system that consists only of the equations corresponding to the
base rows:

F (x) = (fb1(x), fb2(x), . . . , fbr(x)) = 0. (18)

And second, as the current approximate solution pk in Newton’s method
tends to the constant rank root p, the residues of the non-base m− r linear

Properties of nonlinear systems and convergence of the Newton-Raphson method 65

equations tend to zeros (follows from the constant rank theorem). So the
error of this approximate solution gets small in terms of residue.

For both choices of the approximate solution, Newton’s method can con-
verge to a non-root attractor. Consider the following overdetermined system
(a > 0 is a constant scaling parameter):{

x2 − 1 = 0,

a(x− 1) = 0.
(19)

The Newton linear system is:[
2xk
a

]
△xk =

[
1− x2k

a(1− xk)

]
. (20)

If the LU-based linear solver from Section 4.1 is used, then only one
linear equation is satisfied at each iteration. Row pivoting ensures that the
equation with the maximum absolute value of derivative is satisfied.

xk+1 =

{
1+x2

k
2xk

, if |2xk| > a,

1, else.
(21)

The second branch immediately produces the root of the system. The first
branch converges to −1 from x0 < 0 and to 1 from x0 > 0. If a 6 1

2 and
x0 6 −2a, then Newton’s method converges to −1, which is a root of the
first equation but is not a root of the system.

Choosing the least squares solution for the linear system solves this prob-
lem but generates a new one. The recurrent expression is:

xk+1 = xk +
(xk − 1)(2x2k + 2xk + a2)

4x2k + a2
=

2x3k + 2xk + a2

4x2k + a2
. (22)

The root xk = 1 is always a fixed point of the iteration. However, two

additional fixed points appear when a <
√
2
2 . They correspond to the local

minima of L2-norm ∥F (x)∥ of the nonlinear system.{
x∗1 =

−1+
√
1−2a2

2 ,

x∗2 =
−1−

√
1−2a2

2 .
(23)

It can be checked that 0 <
dxk+1

dxk
(x∗2) < 1 for 0 < a <

√
2
2 . Hence, x∗2 is an

attracting fixed point for such values of the constant a. Newton’s method
locally converges to this point though it is not a root of the system.

4. Linear solvers

A linear solver solves the linearized system (6) at each iteration of the
Newton-Raphson method:

66 S. Gatilov

Ax = b, (24)

where A ∈ Mm,n(R), b ∈ Rm. In this paper only direct methods are consi-
dered. The choice of the linear solver algorithm is affected by the following
facts:

1. The linear solver should be able to handle rank deficient matrices.
It is important because the nonlinear systems in a GCP are often
overdetermined, underdetermined, or both (noted in Section 2).

This means that matrix factorization should have rank-revealing capa-
bilities, which is a rather tough requirement for sparse factorizations.

2. In case of an underdetermined system, the linear solver should produce
a solution with a small norm. The benefits of the minimum norm
solution choice were discussed in Section 3.1.

All the solvers described below produce minimum L2-norm solutions
for consistent systems. Moreover, if the system is inconsistent, then
the solution has the minimum norm among all the solutions with the
same residue.

3. The linear solver should exploit sparsity of the Jacobian matrix for
good performance.

High-performance factorization packages designed specifically for dense
matrices are not suitable for this problem. For instance, using LA-
PACK routines DGETRF and DGEQP3 will most likely lead to
wasting a lot of flops and time.

Note that it is better to avoid solving the normal equations (17). The
number of nonzero elements in the normal matrix JTJ is generally greater
than in the original matrix J . Moreover, the condition number of the nor-
mal matrix is the square of the condition number of the original matrix.
Therefore, it is harder to correctly detect the rank of the normal matrix,
and performance may decrease. Despite these problems, some approaches
have been proposed for solving the augmented equations [16].

In the algorithm descriptions below, the sign “=” is used to indicate a
mathematical equality, and the sign “:=” is used for assignment and involves
all the necessary computational steps.

4.1. Solver based on LU factorization

4.1.1. Algorithm

In this type of a linear solver, the rank-revealing LU factorization is applied
to the Jacobian matrix:

Properties of nonlinear systems and convergence of the Newton-Raphson method 67

L,Pr, Pc, U := FactorizeLU(A), (25)

LPrAPc = U =

[
G H
0 S

]
, (26)

where Pc ∈ Mn,n(R) and Pr ∈ Mm,m(R) are permutation matrices produced
by pivoting, L ∈ Mm,m(R) is a lower triangular matrix with units on its diag-
onal, G ∈ Mr,r(R) is an upper triangular invertible matrix, H ∈ Mr,n−r(R)
is an arbitrary matrix, and S ∈ Mm−r,n−r(R) is a matrix consisting of small
values (usually max

i,j
|Si,j | < ε).

The matrix S is considered to be numerically zero, so r is the computed
numerical rank of the matrix A. Now given the right side vector b of the
system, we apply row transformations to it:

c := LPrb. (27)

Ignoring numerical errors, the original linear system (24) is equivalent to:{
Uy = c,

x = Pcy.
(28)

Now recall the structure of the matrix U . The last m− r rows are con-
sidered to be numerically zero. If any of the last m−r elements of the vector
c are nonzero, then the system is inconsistent. To handle inconsistency, the
values of the last m− r elements of c are simply ignored:

c̃ := (c1, c2, . . . , cr, 0, 0, . . . , 0)
T . (29)

After replacing c with c̃, the system (28) becomes consistent:

Uy = c̃. (30)

And we continue to solve the corrected system instead of the original one:

Ax = b̃ = Pr
−1L−1c̃. (31)

Assuming that x = Pcy, the set of solutions of (31) is equal to the
set of solutions of (30) due to invertibility of LPr. Since Pc is orthogonal,
∥x∥ = ∥y∥. Hence, if the minimum norm solution y of (30) is found, then
the corresponding x will be the minimum norm solution of the corrected
system (31).

To obtain a solution of (30), we set the last n− r variables to zeros and
run triangular solve to compute the first r variables:

68 S. Gatilov

yo :=
[
G−1c̃1..r 0

]
. (32)

Then the basis of the kernel of U is computed. The kernel basis is stored
in the matrix K ∈ Mn,n−r(R). Each column of K contains a single base
vector of the kernel space.

K :=

[
G−1H
E

]
, (33)

where E is the identity matrix. It is easy to validate that UK = 0 (if the S
part is considered to be zero).

The kernel basis is orthonormalized with the modified Gram-Schmidt
algorithm:

KQ := OrthonormalizeMGS(K). (34)

This kernel basis can be used to compute the orthogonal projection of the
solution yo on kerU . The difference between yo and its projection is the
minimum norm solution of (30):

α := (KQ)T yo, (35)

y∗ := yo −KQα. (36)

Obviously, y∗ is a correct solution of (30) because it differs from the solution
yo by a vector from kerU . It has minimum norm because it is orthogonal
to kerU .

Finally, the column permutation is applied to obtain the minimum norm
solution of (31):

x∗ := Pcy
∗. (37)

And this solution serves as an approximate solution of the original system
(24) in Newton’s method.

4.1.2. Discussion

The algorithm described above does not use the last m−r rows of the matrix
U and of the vector c at all. Recall that L is a lower-triangular invertible
matrix. Then each i-th row of U is a linear combination of the first i rows
of PrAPc and vice versa. The same is true for the vectors c and Prb. Hence,
the algorithm does not use the last m− r rows of the matrix PrAPc and the
vector Prb.

Define the set of indices:

Properties of nonlinear systems and convergence of the Newton-Raphson method 69

I = Pr
−1{1, 2, . . . , r}. (38)

The rows with indices from I are the base rows. All the other rows of the
vector b are not used in the algorithm at all. It means that the obtained
solution satisfies the base r equations and ignores the rest m− r equations.
This is exactly the way of handling inconsistency that was discussed at the
end of Section 3.2.

The most computationally expensive steps of the algorithm are LU fac-
torization (25) and kernel orthonormalization (34). If the implementation
does not use sparsity at all, then LU takes Θ(rmn) time and MGS takes
Θ((n − r)2n) time. It is highly beneficial to exploit sparsity of the ma-
trix A at least to some degree in LU factorization. Complete pivoting in
LU should be avoided at all costs since it requires a full scan of all the re-
maining nonzero elements at each step of LU factorization. The simplest
approach of exploiting sparsity is to avoid computations for the eliminations
with zero coefficients in LU. It is generally enough to decrease dramatically
the computational time for the problems of size about 1 000× 1 000.

The MGS step takes Θ(k2n) time, where k = n − r is the dimension
of the kernel. If the degree of underdeterminancy of the Jacobian is very
small, i.e. k

n ≪ 1, then the MGS step takes a negligible time. Therefore, the
LU-based solver fits the problems with low underdeterminancy. However,
as k and n become comparable, the time taken by MGS starts to dominate
totally.

It should be noted though that exploiting sparsity in MGS is not very
helpful. In fact, MGS computes QR factorization of the matrix KT . The
Q-factor is calculated explicitly, and the R-factor is discarded in the process.
The MGS algorithm is seldom used for sparse matrices in practice because
the number of nonzero elements in Q-factor is usually large [5, section 5.6].
Besides, theK matrix itself can be denser than the original matrix A. There-
fore, the usage of the QR-based linear solver can improve performance on
the problems with a high underdeterminancy degree.

4.2. Solver based on QR factorization

4.2.1. Algorithm

To find the minimum norm solution, we start with rank-revealing QR fac-
torization of the transposed matrix AT :

Q,Pr, Pc, R := FactorizeQR(AT), (39)

QPrA
TPc = R =

[
G H
0 S

]
, (40)

where all the matrices are defined in a way similar to LU in (26), except for
Q ∈ Mn,n(R), which is an orthogonal matrix.

70 S. Gatilov

After transposing (40), the problem can be turned into the equivalent
one:

RT y = c, (41)

y = QPrx, (42)

c := Pc
−1b. (43)

Since Q and Pr are orthogonal, L2-norms of x and y are equal. Now let
us examine system (41) closer. Recall that we assume S to be numerically
zero. Then [

GT 0
HT S ≈ 0

]
y = c. (44)

The values of the first r variables in this system are uniquely determined
from the first r equations. The system does not depend on the last n − r
variables, so their values can be chosen arbitrarily. Obviously, setting them
all to zeros gives the minimum norm solution of the system. Triangular solve
is performed here:

y∗ :=

[
(GT)

−1
c1..r

0

]
. (45)

System (44) is consistent if and only if the solution y∗ satisfies the last
m − r equations. First, suppose that it is true. Then, the minimum norm
solution of the original system (24) is computed as:

x∗ := Pr
−1Q−1y∗. (46)

Otherwise, the system is inconsistent. In this case we try to obtain the
minimum norm least squares solution. To achieve this, QR factorization of
the matrix A can be used:

Q̂, P̂r, P̂c, R̂ := FactorizeQR(A), (47)

Q̂P̂rAP̂c = R̂ =

[
Ĝ Ĥ

0 Ŝ

]
. (48)

Then the right-side vector is corrected as follows:

ĉ := Q̂P̂rb, (49)

c̃ := (ĉ1, ĉ2, . . . , ĉr, 0, 0, . . . , 0), (50)

Properties of nonlinear systems and convergence of the Newton-Raphson method 71

b̃ := P̂r
−1

Q̂−1c̃. (51)

The right-side vector c̃ lies in the image of the matrix R̂ and is the closest
one to ĉ in the sense of L2-distance. Since Q̂ and P̂r are orthogonal, b̃ is
also the closest right-side to b that gives a consistent system. This is why
if the vector b̃ is used as the right-side instead of b in the remaining part of
the algorithm, the x∗ is the least squares minimum norm solution of system
(24). So, after computing the corrected right-side b̃, go to step (43) and
continue until the solution x∗ is found.

4.2.2. Discussion

The QR-based linear solver computes the minimum norm least squares
solution, which can be expressed in terms of the Moore-Penrose pseudoin-
verse matrix [15] as x∗ = A†b. In this case the Newton-Raphson method
turns into:

pk+1 = pk − J†(pk)F (pk). (52)

Convergence of the Newton-Raphson method defined as (52) has been
thoroughly studied for the constant rank (5) case. Perhaps it was considered
in [2] for the first time. Since then numerous local and semilocal convergence
theorems have been given in [9], [17], [10]. Some of them provide quadratic
convergence. Convergence to singular roots has also been studied in [4].
Since convergence to singular roots is generally only linear, several acce-
leration techniques have been proposed to restore superlinear convergence
[7].

The most computationally expensive steps in the QR-based solver are ob-
viously QR factorizations. QR factorization is more computationally expen-
sive than LU factorization. It requires more computation per each nonzero
element, and in the sparse case it leads to more fill-in [12]. The QR facto-
rization of A can be skipped if the linear system is consistent. However, if
the linear system is inconsistent, two factorizations are required.

The QR factorization exploits sparsity of the matrixAT much better than
the kernel orthonormalization does. Therefore, it is much more suitable
for problems with a high degree of underdeterminancy. Overdetermined
systems often produce inconsistent linear systems, and two factorizations
are computed in this case.

It is possible to compute the least squares minimum norm solution with
a single SVD factorization. The SVD factorization of the matrix A is defined
as:

UAV = diag(σ1, σ2, . . . , σk), (53)

where U ∈ Mm,m(R) and V ∈ Mn,n(R) are orthonormal matrices, σi are
nonnegative singular values in descending order and k = min(m,n). This

72 S. Gatilov

factorization is much more computationally expensive than QR and has
problems with exploiting sparsity.

5. Numerical results

We compare the linear solvers described above on large GCP tests from the
LGS3D geometric solver test base. The geometric solver considered uses
correct and complete modelization and solves the nonlinear system by the
Newton-Raphson iteration. To improve global convergence, the line search
is used in Newton’s method. This is the only major difference from the
classical Newton’s method. The linear solvers behave precisely as described
in Section 4.

The solvers named “LU” and “QR” use in-house LU and QR facto-
rizations, respectively. Both factorizations are left-looking, use only row
pivoting (no column pivoting). QR factorization is based on householder
reflectors. The factorizations are semi-sparse: they store input/output mat-
rices in the compressed sparse column format, but they do not try to pre-
dict any sparsity patterns during factorization. The factorization skips a
column if all the potential pivots in it are less than the given threshold.
This helps to determine approximately the rank of the matrix. Columns are
grouped into blocks of size 16 to reduce sparsity overhead when applying
transformations. Multi-threading and SSE2 are not used by the in-house
factorizations. Since multicore workstations become increasingly popular,
parallelization and vectorization are planned for future improvements.

The solver named “QRL” is a QR-based solver that uses LAPACK
routines DGEQP3 and DORMQR to perform factorization and multi-
plication on Q-factor. DGEQP3 performs a dense householder QR facto-
rization with column pivoting via BLAS3 operations. The AMD ACML
vendor-optimized implementation of LAPACK and BLAS is used. SSE2
is used in this library to improve performance. The rank is determined by
comparing diagonal values of the R-factor with the same threshold as in
in-house factorizations.

The hardware setup is Intel Core2 Quad Processor Q9300 (2.50 GHz,
6MB L2 cache). All the runs are performed in a single-threaded mode. Note
that the “QRL” solver relies on ACML which has a parallelized version. So
it would potentially run up to 4 times faster if launched in a multi-threaded
mode on this hardware.

It should be emphasized that we do not intend to compare available
linear solvers or factorization implementations here. The only purpose of
including the “QRL” solver in the comparison is to show high benefits of
exploiting sparsity for the linear systems considered. Fully dense LAPACK
QR solver is significantly slower than its semi-sparse equivalent. Even if
ACML utilized all 4 CPU cores, the performance gap would still remain.

Properties of nonlinear systems and convergence of the Newton-Raphson method 73

Table 2. The testing results on LGS3D GCP tests. The overall time spent by
the geometric solver (in seconds) and whether the test was solved is shown for
each combination “test + linear solver”. Note that solved tests generally consume
significantly less time than the unsolved ones

Test Upd Arb Var Diam Box
m× n 67 45 163 252 126 214 778 1 268 421 518

LU 0.112 N 0.487 Y 0.475 N 1.863 Y 3.901 N
QR 0.096 N 0.098 Y 0.109 Y 1.066 Y 1.502 Y
QRL 0.111 N 0.168 Y 0.113 Y 2.542 Y 2.329 Y

Table 3. Results of testing linear solvers on several linear systems. Here m, n are
the sizes of a matrix, r is its approximate rank as determined by the “QRL” solver,
NNZ is the number of nonzero values in it. slv is ‘Y’ for consistent systems. All
the timings are measured in seconds

Test m n r NNZ slv LU QR QRL

Box1 421 518 397 3 785 N 0.036 0.076 0.274
Box2 923 921 881 4 663 N 0.074 0.337 2.244
Var1 472 505 444 1 972 Y 0.011 0.008 0.013
Var2 569 609 534 1 879 N 0.013 0.036 0.462
Diam1 484 320 9 1 903 N 0.058 0.005 0.065
Diam2 778 1 268 778 5 428 Y 0.790 0.073 1.165

The semi-sparse version also requires much less memory and can easily get
into L2 cache unlike the dense solver.

It is not so evident which of the solvers is better: LU of QR. For the linear
systems with a low degree of underdeterminancy (Box1, Box2, Var1, Var2),
the LU-based solver is usually much faster. It confirms that LU factorization
is generally faster than QR factorization, especially in sparse context. The
usage of the second QR factorization in the case of an inconsistent system
also significantly decreases performance of the QR-based solver. However,
on tests with a high degree of underdeterminancy (Diam1, Diam2) LU-based
solver spends almost all the time on the kernel orthonormalization by MGS,
whereas the QR-based solver even benefits from the low rank of the system.

6. Conclusion

The nonlinear systems specific to geometric constraint solving are consi-
dered. The conducted analysis suggests that these systems are highly rank-
deficient and sparse. Statistical data confirm these conclusions. Simple
examples show that the usage of the minimum norm solution of linear sys-
tems is preferred in the underdetermined case. Handling inconsistent linear
systems is clearly unavoidable for some overdetermined cases. Some possible
ways of doing it are discussed.

74 S. Gatilov

Two linear solvers based on rank-revealing matrix factorizations are de-
scribed. One of them is claimed inefficient for highly underdetermined cases
because it utilizes kernel orthonormalization to minimize the solution norm.
It is shown that fully dense factorizations are slow because the systems
solved are very sparse. It is strongly advised to use factorization that ex-
ploits sparsity for better performance. Ideally, a high-performance sparse
rank-revealing factorization should be used. For instance, SuiteSparseQR
[6] can be used for the QR-based solver.

References

[1] Ait-aoudia S., Jegou R., Michelucci D. Reduction of constraint systems. –
1993.

[2] Ben-Israel A. A newton-raphson method for the solution of systems of equa-
tions // J. Math. Anal. Appl. – 1966. – Vol. 15. – P. 243–252.

[3] Buchanan S. A., de Pennington A. Constraint definition system: a
computer-algebra based approach to solving geometric-constraint problems //
Computer-Aided Design. – 1993. – Vol. 25, N 12. – P. 741 – 750.
http://www.sciencedirect.com/science/article/pii/001044859390101S.

[4] Chen X., Nashed Z., Qi L. Convergence of newton’s method for singular
smooth and nonsmooth equations using adaptive outer inverses // SIAM
J. on Optimization. – 1997. – February. – Vol. 7. – P. 445–462.
http://dx.doi.org/10.1137/S1052623493246288.

[5] Davis T. A. Direct Methods for Sparse Linear Systems (Fundamentals of Al-
gorithms 2). – Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2006.

[6] Davis T. A. Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-
revealing sparse QR factorization // ACM Transactions on Mathematical Soft-
ware. – 2011. – Vol. 38, N 1.

[7] Decker D. W., Kelley C. T. Convergence acceleration for newton’s method at
singular points // SIAM Journal on Numerical Analysis. – 1982. – February.
– Vol. 19, N 1. – P. 219–229.

[8] Decomposition plans for geometric constraint systems, part i: performance
measures for cad // J. Symb. Comput. – 2001. – April. – Vol. 31. – P. 367–
408. http://dl.acm.org/citation.cfm?id=374530.374535.

[9] Dedieu J.-P., Kim M.-H. Newton’s method for analytic systems of equations
with constant rank derivatives // J. Complex. – 2002. – March. – Vol. 18. –
P. 187–209. http://portal.acm.org/citation.cfm?id=636282.636290.

[10] Dedieu J. P., Shub M. Newton’s method for overdetermined systems of equa-
tions // Math. Comput. – 2000. – July. – Vol. 69. – P. 1099–1115.
http://portal.acm.org/citation.cfm?id=349856.349871.

Properties of nonlinear systems and convergence of the Newton-Raphson method 75

[11] Ershov A. G. Algorithms and software systems for parametric geometric mod-
elling problems: Ph.D. thesis / A.P. Ershov Institute of Informatics System
SBRAS. – 2007. http://www.iis.nsk.su/files/news/ershov.pdf.

[12] Gilbert J. R., Ng E. G., Ng G. Predicting structure in nonsymmetric sparse
matrix factorizations // Graph Theory and Sparse Matrix Computation. –
Springer-Verlag, 1992. – P. 107–139.

[13] Hoffmann C. M., Lomonosov A., Sitharam M. Planning geometric constraint
decomposition via optimal graph transformations // Proceedings of the Inter-
national Workshop on Applications of Graph Transformations with Industrial
Relevance. – AGTIVE ’99. – London, UK: Springer-Verlag, 2000. – P. 309–324.
http://dl.acm.org/citation.cfm?id=646676.702135.

[14] Joan-Arinyo R., Tarrés-Puertas M., Vila-Marta S. Treedecomposition of
geometric constraint graphs based on computing graph circuits // 2009
SIAM/ACM Joint Conference on Geometric and Physical Modeling. –
SPM ’09. – New York, NY, USA: ACM, 2009. – P. 113–122.
http://doi.acm.org/10.1145/1629255.1629270.

[15] Penrose R. A generalized inverse for matrices // Proceedings of the Cambridge
Philosophical Society 51. – 1955. – P. 406–413.

[16] Saunders M. A. Solution of sparse linear equations using cholesky factors of
augmented systems: Tech. rep.: SOL, 1999.

[17] Xu X., Li C. Convergence of newton’s method for systems of equations with
constant rank derivatives // J. Comp. Math. – 2007. – Vol. 25. – P. 705–718.

76

