
Joint NCC & IIS Bull., Comp. Siene, 16 (2001), 29{44

 2001 NCC Publisher

A general shema for onstraint

propagation

R. Gennari

Various algorithms for ahieving di�erent levels of loal onsisteny (i.e., onstraint

propagation algorithms), even diverse ones for the same kind of loal onsisteny, are

present in the literature and built into existing systems. Due to their variety and diversity,

a natural quest is to searh for a ommon framework. In this artile, we approah onstraint

propagation from a general perspetive, by enlarging on previous algorithm shemata and

augmenting their expressive power: in that, further onstraint propagation algorithms are

instanes of our shema. This is due to new relations that we establish among funtion

sets and use to instantiate our algorithm shema; these relations result from abstrating

ommon properties of the surveyed onstraint propagation algorithms. Hene, our general

approah is expressive enough to bring out the ommon properties of most of the onstraint

propagation algorithms, as well as their distintions.

1. Introdution

Constraint programming onsists of formulating and solving onstraint sat-

isfation problems. One of the most important tehniques developed in that

area is loal onsisteny, whih is also well known as onstraint propagation.

In general, onstraint propagation algorithms aim at pruning the searh

spae, without adding or removing solutions. Lots of these algorithms were

devised for ahieving di�erent levels of loal onsisteny. Besides, various

algorithms were designed and optimized for enforing the same level of loal

onsisteny: some of them were speialized for partiular domains, other for

exploiting a spei� orders over variables et. Moreover, most of onstraint

propagation algorithms were built into the existing onstraint programming

systems.

Due to the variety of onstraint propagation algorithms in the literature

and their importane in pratie, a natural quest is to searh for a ommon

\thread" among them. In [2, 3℄, onstraint propagation algorithms were ap-

proahed from a general perspetive and many of them were proved to be

instanes of a unique shema, namely the Generi Iteration algorithm (GI).

Lately, we generalized GI to a more expressive shema, in whih the latter

an be instantiated to more loal onsisteny algorithms than GI an, f. [8℄.

30 R. Gennari

In the general framework elaborated in [2, 3℄, the author pinpointed the

basi properties that are ommon to most of the funtions for enforing

loal onsisteny. Following the spirit of our previous work [8℄, we enlarge

on that approah in this paper: in fat, we do not only take into onsideration

properties of funtions as in [2, 3℄; besides, we study and emphasize the role

of relations among funtions for enforing onstraint propagation. From our

analysis, we work out a new generalization of the GI shema in [1, 2℄ and of

ours in [8℄: namely, the Generi Iteration algorithm with Funtions (GIF).

This artile is organized as follows: �rst, we introdue our new algorithm

shema and some of its speializations, f. Setion 2. In Setion 3, we de�ne

onstraint satisfation problems, some orderings over them and make expliit

their onnetion with the general algorithm shema. Finally, we show that

our shema an be instantiated to more onstraint propagation algorithms,

like PC-4 and KS, than the previous shemata.

2. The GIF algorithm shema and its

speializations

In [8℄, we introdued the Generi Iteration algorithm with Subsumed Fun-

tions (GISF) as a shema that generalizes the Generi Iteration algorithm

(GI) of [2, 3℄. Moreover, we proved that our shema is more expressive than

GI, in that some loal onsisteny algorithms are instanes of the former

and not of the latter. In this setion, we introdue a shema that generalizes

GISF, too: namely, the Generi Iteration algorithm with Funtions (GIF). Af-

ter introduing GIF, we speialize it: �rst we reall our previous algorithm

shema, namely GISF, and show that GI is an instane of GISF itself; �nally,

we introdue a new speialization of GIF, the Generi Iteration algorithm

with Inluded Funtions (GIIF), and prove its orretness.

2.1. The GIF algorithm shema

While the GI algorithm shema selets funtions from one set, the GIF algo-

rithm shema an hoose funtions from two possibly di�erent sets. There-

fore, the GIF shema an also be instantiated to loal onsisteny algorithms

that are split into two main sub-programs, like AC-4 or PC-4: one performs a

\global pruning" and the other | that is not interleaved with the former |

ahieves the desired level of loal onsisteny by means of some kinds of

more \loal ations".

General shema for onstraint propagation 31

Generi Iteration algorithm with Funtions (GIF)

1. d := ?;

2. G := H;

3. while G 6= ; do

4. hoose g 2 G;

5. G := G� fgg;

6. G := G [update(G;F; g; d);

7. d := g(d)

8. od

The update operator (6th line of GIF) has to satisfy three onditions:

A. if g(d) 6= d, then the following funtions have to be in update(G;F; g; d):

all f 2 F �G suh that f(d) = d and f(g(d)) 6= g(d);

B. g(d) = d implies update(G;F; g; d) = ;;

C. if g(g(d)) 6= g(d), then g is in update(G;F; g; d).

No further restritions are imposed on the general shema. Instead, in the

following, we shall study diverse onditions, namely properties of funtions

or relations among them, under whih that unique shema an be applied to

enfore various forms of loal onsisteny; like, for instane, path onsisteny.

Besides, we an express and analyze di�erent algorithms for the same level

of loal onsisteny; for example PC-1 (f. [1℄) and PC-4 (f. Setion 4). In

fat, those algorithms an be instantiated to our shema by means of spei�

funtions.

Note 1. Suppose that g is idempotent; that is, for every d 2 D, g(g(d)) =

g(d). In this ase, g does not need to be added to update(G;F; g; d) aording

to the third ondition C; f. [2, 3℄.

2.2. The GISF algorithm shema

The GISF algorithm is an instane of the GIF shema. In GISF, the sets of

funtions F and H are not arbitrary but related in order to guarantee that

a �xed point of all the funtions from H is a �xed point of all the funtions

from F . Preisely, let f and g be two funtions on a set D; we say that the

funtion g subsumes the funtion f i� g(d) = d implies f(d) = d. Let F and

H be two sets of funtions de�ned on the same set D; we say that the set

H subsumes the set F i� eah funtion of F is subsumed by a funtion of

H; in that ase, we write subs(F;H) (f. [8℄). On the overall, the ondition

subs(F;H) guarantees that d is a �xed point of all the funtions from F if

it is a �xed point of all the funtions from H.

32 R. Gennari

Note 2. In general, it is not trivial to establish whether a funtion g sub-

sumes a funtion f . However, suppose that f and g are funtions de�ned

on hD;vi and that f is inationary with respet to v: i.e., for all d 2 D,

d v f(d) holds. Further, if f(d) v g(d) for every d 2 D, then g subsumes f .

The following result, onerning the orretness of GISF, was proved

in [8℄.

Theorem 1. (GISF) Let (D;v) be a partial ordering with bottom, ?; sup-

pose that H and F are two sets of funtions on D; if the relation subs(F;H)

holds, then the following statements are valid.

i. Every terminating exeution of the GISF algorithm omputes in d a

ommon �xed point of the funtions in H [F .

ii. Suppose that all the funtions of H [F are monotoni. Then every

terminating exeution of the GISF algorithm omputes in d the least

ommon �xed point of all the funtions from H and F .

iii. Suppose that H and F ontain �nitely many funtions whih are all

inationary. Further, assume that the strit partial order on D satis�es

the asending hain ondition (ACC): namely, there are not in�nite

asending hains of D elements. Then every exeution of the GISF

algorithm terminates. 2

Observe that subs(H;H) always holds; this means that subs is a reexive

relation. Hene the GI algorithm shema is an instane of our GISF algorithm

itself; in fat, it is enough to set F = H in the latter to obtain the GI

algorithm of [2, 3℄. Besides, the GISF shema is stritly more \expressive"

than GI: there are loal onsisteny (preisely, ar onsisteny) algorithms

in it that are instanes of GISF but not of GI; f. [8℄.

2.3. The GIIF algorithm shema

As we have notied, the GISF shema is already a generalization of GI and

is more expressive than the latter. Yet, there are onstraint propagation

algorithms that are instanes of neither GI nor GISF, like the k-onsisteny

algorithm of Cooper, f. Setion 5. In those algorithms, the relation between

H and F is of another sort: basially, H is a subset of F that ontains all

f 2 F for whih f(?) 6= ?; then the update operator piks out from F the

funtions that are still to be inspeted and adds them to G. The Generi

Iteration algorithm with Inluded Funtions (GIIF) is this new instantiation

of the GIF algorithm shema. In the following, we prove the partial and total

orretness of GIIF.

General shema for onstraint propagation 33

Theorem 2 (GIIF). Let (D;v) be a partial ordering with bottom ?; sup-

pose that H and F are two sets of funtions on D; if H is a subset of F that

inludes the set ff 2 F : f(?) 6= ?g, then the following statements hold.

i. Every terminating exeution of the GIIF algorithm omputes in d a

ommon �xed point of the funtions in F .

ii. Suppose that all the funtions in F are monotoni. Then every termi-

nating exeution of the GIIF algorithm omputes in d the least ommon

�xed point of all the funtions from F .

iii. Suppose that F has �nitely many funtions whih are all inationary.

Further, assume that the strit partial order on D satis�es the asend-

ing hain ondition (ACC): namely, there are not in�nite asending

hains of D elements. Then every exeution of the GIIF algorithm

terminates.

Proof. We just need to prove the �rst item, the proof of the other two is

like in [8℄ for the ase of GISF. Consider the prediate I de�ned by

8 f (f 2 F �G ^ f 2 H ! f(d) = d):

The prediate I is established by the assignment G := H; in fat, if f 2

F � G, then f 62 H, hene I trivially holds. Now, suppose that I holds

before a while-loop is entered. After an iteration of the while-body, only

the inspeted funtion g of F an be added to F�G, just in ase of g(g(d)) =

g(d); hene, for the new omputed value of d after the exeution of thewhile-

body, we have that I still holds. Thereby, I is an invariant of the while-loop.

Upon the termination of the algorithm, G is empty and H = F \H, so I

implies I

0

, de�ned by

8 f (f 2 H ! f(d) = d);

hene the prediate I

0

holds as well. The prediate I

0

guarantees that d is a

�xed point of all the funtions from H. We laim that d is a �xed point of all

the funtions from F , too, by de�nition of update. Let ? =: d

0

; : : : ; d

n

:= d

be the sequene from D omputed by the GIIF algorithm, so that, for every

i = 0; : : : ; (n � 1), d

i+1

= g

i+1

(d

i

), where g

i+1

2 F , suh a sequene exists

beause we assume that the algorithm terminates. Suppose that there exists

f 2 (F � H) suh that f(d

n

) 6= d

n

; observe that f 62 H implies that

f(d

0

) = d

0

. Sine the sequene is �nite, f(d

n

) 6= d

n

and f(d

0

) = d

0

, there

must be a maximal i = 0; : : : ; (n�1) suh that f(d

i

) = d

i

and f(d

j

) 6= d

j

for

all j suh that i < j � n. Then update(G;F; g

i+1

;D) adds G the funtion

f , beause of ondition A; notie that f annot be removed from G in any

34 R. Gennari

subsequent iteration of the while-loop, beause of the onditions C and

f(d

j

) 6= d

j

for all j for whih i < j � n. Hene G is not empty after

proessing g

n

, whih is absurd. 2

3. Constraint satisfation problems and partial

orderings

In order to apply the GIF algorithm shema over CSP's, we need to de-

�ne proper orders among CSP's. In the following, we introdue di�erent

orderings that vary aording to the loal onsisteny algorithms whih are

surveyed in the artile.

3.1. Constraint satisfation problems

Consider a �nite sequene X of di�erent variables, say x

1

; : : : ; x

n

for n >

0, with assoiated domains D

1

; : : : ;D

n

. A onstraint sequene s, briey -

sequene, on n > 0 is a stritly growing sequene of di�erent integers from

1; : : : ; n. Let D be the Cartesian produt D

1

� � � � � D

n

and s be the -

sequene i

1

; : : : ; i

m

on n. Then we denote by D(s) the Cartesian produt

D

i

1

�� � ��D

i

n

. For instane, if D

1

= f0g, D

2

= f2; 6g, D

3

= f4g and s is the

-sequene 1; 3, thenD(s) is the set f(0; 4)g. Further, we shall denote by d(s)

an element of D(s), for a tuple d of D

1

�� � ��D

n

: i.e., if s is the -sequene

i

1

; : : : ; i

m

on n and d = (d

1

; : : : ; d

n

), then d(s) is the tuple (d

i

1

; : : : ; d

i

m

).

Given two -sequenes on n of equal length m � n, say s = i

1

; : : : ; i

m

and

t = j

1

; : : : ; j

m

, we write s <

sh

t if, for all k = 1; : : : ; l < m, we have that

i

k

= j

k

and i

l

< j

l

. Moreover, we write s <

sh

t if s and t are -sequenes on

n and the length of s is stritly less than that of t. Hene the relation <

sh

is a total order on -sequenes on n.

De�nition 1. Let X be a sequene of n > 0 di�erent variables with do-

mains D

1

; : : : ;D

n

, the set D be the Cartesian produt D

1

� � � � �D

n

and s

be a -sequene on n; a onstraint on s is a subset of D(s). Then we write

C(s), or C when no onfusion an arise. A onstraint satisfation problem

on X, briey CSP, is a triple P := hX;D; Ci, where D is the sequene of do-

mains D

1

; : : : ;D

n

and C is a sequene of onstraints C(s

1

); : : : ; C(s

n

), that

is ordered aording to the order s

1

<

sh

� � � <

sh

s

n

on -sequenes.

If s is a -sequene on n, then fsg is the orresponding set of integers o-

urring in s; for instane, if s is the -sequene 1; 3; 4, then fsg is the set

f1; 3; 4g. Observe that every set of i � n integers uniquely determines the

-sequene s on n to whih it orresponds; in fat a -sequene is a stritly

growing sequene of integers, so, for example, the set f1; 3; 4g determines the

General shema for onstraint propagation 35

-sequene 1; 3; 4. A -subsequene of s is just a -sequene t on n suh that

ftg is a subset of fsg. Consider a CSP P on n variables and a -sequene

s = i

1

; : : : ; i

k

on n. The set I(s) of all onsistent instantiations relative to

s is the set of all d 2 D(s) suh that d(t) 2 C(t), for all C(t) of P on a

-subsequene t of s.

A solution to a CSP P on n variables is a tuple of I(s), where s is the

-sequene of all integers 1; : : : ; n; then I(s) is the solution set of P , usually

written as Sol(P). A CSP P is globally onsistent i� D = Sol(P). Two

CSP's on the same sequene of variables X are equivalent i� they have the

same solution set.

3.2. Partial orderings

So far, we have an algorithm shema, namely GIF, that is able to ompute the

ommon �xed point of funtions de�ned on a partial ordering with bottom.

We aim at applying the GIF algorithm to CSP's and instantiating it to some

loal onsisteny algorithms that modify onstraints. Hene, we need to feed

the GIRF algorithm with suitable funtions that are apable of modifying

onstraints, as well as to devise a partial order between problems. In the

following, we de�ne the orderings that we shall use lately in this artile; f.

also [1℄ and [4℄ for similar ones.

De�nition 2. Consider a CSP P and all its onstraints C

1

; : : : ; C

n

. The

ompletion of P is the CSP

�

P that has the same sequene of variables and

domains as P , but the onstraints of whih are as follows: for eah -sequene

s on n, if C(s) 2 C, then C(s) is the onstraint on s of

�

P ; otherwise C(s) is

D [s℄. We say that a CSP P is omplete i� P =

�

P .

However, if we work with binary CSP's P (CSP's that have only binary

onstraints), the hoie of

�

P is not optimal: we may add too many onstraints

to P . Hene, we re�ne the above de�nition as follows.

De�nition 3. Consider a CSP P on n > 0 variables, a natural number

k not greater than n, two CSP's

�

P

k

and

�

P

s

k

that have the same sequene

of variables and domains as P . Then

�

P

k

is the k-ompletion of P if the

onstraints of P

k

are all the k-ary onstraints of

�

P ; the problem P is k-

omplete i� P =

�

P

k

. Whilst

�

P

s

k

is the k-strong ompletion of P i� the

onstraints of

�

P

s

k

are all the i-ary onstraints of

�

P for every 0 < i � k, the

problem P is k-strong omplete i� P =

�

P

s

k

.

A CSP P and its ompletions de�ned above are equivalent problems. Fur-

thermore, a CSP P on n variables is n-strong omplete i� it is omplete.

36 R. Gennari

De�nition 4. Consider a CSP P and the Cartesian produt C of all the

onstraints of

�

P . The onstraint order of P is the binary relation v de�ned

as follows: given two subsets B and B

0

of C, B v B

0

i� B � B

0

.

Let F(C) be a family of subsets ofC to whihC belongs. Then hF(C);v;Ci

is a onstraint ordering of P and its bottom is C.

It is immediate to verify that the binary relation introdued above is a

partial order, beause so is �. Moreover, the Cartesian produts C is the

bottom of v.

Observe that, given a CSP P , there is always a onstraint ordering of P ,

namely, the one based on the power set }(C). Yet, we may want to deal only

with onstraints of a �xed arity, like in path or k-onsisteny algorithms;

hene we restrit the above introdued order as follows.

De�nition 5. Consider a CSP P and the Cartesian produt C

k

of all the

onstraints of

�

P

k

. The k-onstraint order of P is the restrition of v to

subsets of C

k

: we write it as v

k

. Let F(C

k

) be a family of subsets of C

k

to whih C

k

belongs. Then hF(C

k

);v

k

;C

k

i is a k-onstraint ordering of P

with bottom C

k

.

Consider now the Cartesian produt C

s

k

of all the onstraints of

�

P

s

k

. The

k-strong onstraint order of P is the restrition of v to subsets of C

s

k

: we

write it as v

s

k

. Let F(C

s

k

) be a family of subsets of C

s

k

to whih C

s

k

belongs.

Then hF(C

s

k

);v

s

k

;C

s

k

i is a k-onstraint ordering of P the bottom of whih

is C

s

k

.

Indeed, the restrition of }(C) to k-ary relations gives rise to a k-onstraint

ordering of P ; onsidering the restrition to all i-ary relations of }(C), for

eah 0 < i � k, we obtain a k-strong onstraint ordering of P .

4. The path onsisteny algorithm PC-4

The PC-4 algorithm was designed in [10℄; however, here we refer to its or-

reted form given in [9℄. This algorithm enfores path onsisteny on binary

CSP's. In this setion, we prove that PC-4 is an instane of the GISF algo-

rithm shema; hene, in the following, we restrit our attention to binary

CSP's.

4.1. Preliminaries

Given a onstraint C(i; j) and any its subset B(i; j), the transposed B(i; j)

is the relation B(j; i) the elements of whih are all pairs (d; d

0

) suh that

(d

0

; d) 2 B(i; j). The transposed relations will help us to better desribe the

PC-4 algorithm; however, given a CSP P and a onstraint C(i; j) of it, C(j; i)

General shema for onstraint propagation 37

is not a onstraint of P , aording to De�nition 1. The PC-4 algorithm is

split into two parts, as explained in the following.

The �rst part. Suppose we are given a onstraint C(i; j) of the input CSP

(i.e., i < j) and a variable x

k

of the problem suh that k 6= i; j. For eah

(a; b) 2 C(i; j), the algorithm heks whether there exists in D

k

suh that

(a;) 2 C(i; k) and (; b) 2 C(k; j); if exists, then Total := Total + 1,

S

iak

:= S

iak

[f(j; b)g and S

jbk

:= S

jbk

[f(i; a)g. After the searh for

supports in D

k

is omplete, Counter [(i; a; j; b); k℄ is set to Total and so is

Counter [(j; b; i; a); k℄. If (a; b) has no supports in D

k

(i.e. Total is 0), then

the algorithm sets M [i; a; j; b℄ and M [j; b; i; a℄ to 1 in order to reord that

either (a; b) or (b; a) are to be eliminated. So the set List is initialized with

all the tuples (i; a; j; b) for whih M is 1.

The seond part. The seond part onsists of a while-loop that termi-

nates when List is empty. An element (i; a; j; b) is hosen and deleted from

List. Then all pairs (k;), suh that (a;) 2 C(i; k) and (; b) 2 C(k; j),

are heked. Suppose that (a;) is no longer supported in C(i; k) or (; b)

is no longer supported in C(k; j) (i.e., Counter [(i; a; k;); j℄ = 0 or

Counter [(j; b; k;); i℄ = 0); if (a;) or (; a), and (; b) or (b;) have not

been removed yet (i.e., M [i; a; k; ℄ = 0 and M [j; b; k; ℄ = 0), then they are

deleted and the e�ets of their removal are propagated by adding (i; a; k;)

and (j; b; k;) to List.

4.2. PC4 is an instane of GISF

While ar onsisteny algorithms remove elements from domains

(f. [8℄), path onsisteny algorithms delete pairs from binary onstraints.

Consider the 2-onstraint losure of P and the Cartesian produt C

2

of its

onstraints; hene, our funtions are of the form f : B �! B, where B is a

subset of C

2

. As in the ase of (G)AC-4 (f. [8℄), we shall instantiate GISF

with two sets of funtions, H and F : the funtions of H perform a \global"

ation, so to speak, and take are of the �rst part of the algorithm used to

reate List; the funtions of F have a more \loal" behavour.

For the sake of readability, we introdue a new relation that we shall

use for de�ning our funtions: onsider a subset B of C

2

; assuming that

0 < i < j � n, the pair (a; b) 2 B(i; j) belongs to Del(B; i; j; k) i�, for all

 2 D

k

,

(a;) 62 B(i; k) _ (; b) 62 B(k; j):

Notie that the relation Del(B; i; j; k) is a subset of B(i; j).

1. For every onstraint C(i; j) of the given P

2

, k = 1; : : : ; n, k 6= i; j, and

(a; b) 2 C(i; j), we de�ne a funtion �(i; a; j; b; k)(B) := B

0

,

38 R. Gennari

where B; B

0

� C

2

and eah B(r;m)

0

is de�ned as follows:

B(r;m)

0

:=

8

>

<

>

:

B(r;m)� f(a; b)g if r = i; m = j and (a; b) 2 Del(B; i; j; k);

B(r;m) otherwise:

Basially, �(i; a; j; b; k) removes (a; b) from B(i; j) i� there is no 2 D

k

suh

that (a;) 2 B(i; k) and (; b) 2 B(k; j).

2. Let us onsider two onstraints C(i; k) and C(k; j) of C

2

, or their trans-

posed; further, let us hoose (a;) 2 C(i; k) and (; b) 2 C(k; j). Then we

de�ne two new di�erent funtions, namely �(i; a; j; b; k;)(B) := B

0

and

�(j; b; i; a; k;)(B) := B

00

, in the following way:

B(r;m)

0

:=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

B(i; k)� f(a;)g if r = i; m = k; i < k and

(a;) 2 Del(B; i; k; j);

B(k; i)� f(; a)g if r = k; m = i; k < i and

(; a) 2 Del(B; k; i; j);

B(r;m) otherwise;

B(r;m)

00

:=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

B(k; j)� f(; b)g if r = k; m = j; k < j and

(; b) 2 Del(B; k; j; i);

B(j; k)� f(b;)g if r = j; m = k; j < k and

(b;) 2 Del(B; j; k; i);

B(r;m) otherwise:

Intuitively, the funtion �(i; a; j; b; k;) removes (a;) ((; a) if k < i) from

B(i; k) (from B(k; i) if k < i) i� a or have lost their unique support b in

D

j

; whilst �(j; b; i; a; k;) removes the pair (; b) ((b;) if j < k) from B(k; j)

(from B(j; k) if j < k) i� or b have lost their unique support a in D

i

.

Notie that, for every funtion �(i; a; j; b; k) 2 H and �(i; a; k; ; j; b) 2 F ,

the following relation holds, if i < j:

�(i; a; j; b; k)(B) � �(i; a; k; ; j; b)(B);

otherwise the following is true if j < i:

General shema for onstraint propagation 39

�(j; a; i; b; k)(B) � �(i; a; k; ; j; b)(B):

Thereby subs(F;H) holds. Now, we an de�ne update as follows.

� If �(i; a; j; b; k)(B) = B, then update(G;F; �(i; a; j; b; k); B) = ;. Oth-

erwise, the set update(G;F; �(i; a; j; b; k); B) ontains all the following

funtions:

1. �(i; a; j; b; k;) suh that (a;) 2 B(i; k), (; b) 2 B(k; j) and

furthermore, for all b

0

2 D

j

, we have that (; b

0

) 62 B(k; j);

2. �(j; b; i; a; k;) suh that (a;) 2 B(i; k), (; b) 2 B(k; j) and

furthermore, for all a

0

2 D

i

, we have that (a

0

;) 62 B(i; k).

� If �(i; a; j; b; k;)(B) = B, then update(G;F; �(i; a; j; b; k;); B) = ;.

Otherwise, the set update(G;F; �(i; a; j; b; k;); B) ontains all the fol-

lowing funtions:

1. �(i; a; k; ; l; e) suh that (a; e) 2 B(i; l) and (e;) 2 B(l; k) and

furthermore, for all

0

2 D

k

di�erent from , we have that (e;

0

) 62

B(l; k);

2. �(k; ; i; a; l; e) suh that (a; e) 2 B(i; l) and (e;) 2 B(l; k) and

furthermore, for all a

0

2 D

i

di�erent from a, we have that (a

0

; e) 62

B(i; l).

The update operator above satis�es A and B; the last ondition, C, is

trivially ful�lled, beause all of the onsidered funtions are inationary,

f. Note 1.

Corollary 1 (GISF for path onsisteny). Consider a CSP P := hX;D;

Ci with the assoiated 2-onstraint order and the sets of funtions H and F

as de�ned above. If D is �nite, then every exeution of the GISF algorithm

terminates omputation of the greatest path onsistent problem equivalent

with P .

Proof. Indeed a �xed point of the funtions from H is a path onsistent

problem equivalent to the given one. As subs(F;H) holds, a �xed point of

the funtions from H is a �xed point of the funtions from F , too. Further-

more, if all domains are �nite, so is H [F . Our statement follows now from

Theorem 1. 2

We are left to prove that the PC-4 algorithm is indeed an instane of

GISF.

Theorem 2 (GISF for PC-4). PC-4 is an instane of the GISF algorithm

shema.

40 R. Gennari

Proof. The �rst part of the PC4 algorithm is reprodued by iterating GISF

with the funtions fromH, none of whih is any longer introdued by update.

For every onstraint C(i; j) of P

2

(line 2 of PC-4), k = 1; : : : ; n (line 3 of

PC-4) and (a; b) 2 C(i; j) (line 4 and 5 of PC-4), the �rst for-loop of the

PC-4 algorithm heks whether there exists 2 D

k

that supports a and b; if

there is no suh , then (a; b) is removed from C(i; j) and the e�ets of its

removal are propagated. The funtion g(i; a; j; b; k) has a similar behaviour:

it removes the pair (a; b) i� there is no support in D

k

for a and b; then

the e�ets of the removal of (a; b) are propagated by means of the update

operator.

After inspeting all funtions from H, we feed GISF with the funtions from

F that are added by update; so we an reprodue the seond part of the

PC-4 algorithm, namely, the seond for-loop, by hoosing the funtions

�(i; a; j; b; k;) and �(j; b; i; a; k;), onseutively. 2

5. The KS algorithm

The KS algorithm by Cooper [5℄ is an optimization of the synthesis algorithm

by Freuder [7℄. The algorithm by Cooper an enfore either k-onsisteny

or k-strong onsisteny over a CSP. In this setion, we prove that the GIIF

shema an be instantiated to the KS algorithm.

5.1. Preliminaries

The onepts of ar and path onsisteny were generalized in [7℄ to k on-

sisteny. Given a CSP P on n variables and an integer 1 � k < n, onsider

a -sequene s := i

1

; : : : ; i

k

on n. Consider a positive integer j 62 s and

1 � j � n, and a -sequene s

0

on fsg [fjg; then a k-onsistent instantia-

tion d of I(s) is a projetion (over s) of a (k + 1)-onsistent instantiation of

I(s

0

) i� there exists d

0

2 I(s

0

) suh that d

0

(s) = d. A CSP P on n variables

is 1-onsistent i�, for every i = 1; : : : ; n, the set I(i) is not empty. A CSP

P on n variables is (k + 1)-onsistent for 0 < k � n i� any k-onsistent in-

stantiation is a projetion of a (k+1)-onsistent instantiation. Furthermore,

the CSP P is k-strong onsistent i� it is i-onsistent for eah 0 < i � k. In

partiular, P on n variables is onsistent if it is n-strong onsistent.

The KS algorithm is split into two main sub-programs: the initializa-

tion proess takes plae in the �rst step; then the pruning of k-inonsistent

values from domains begins the seond step. The seond sub-program on-

sists of two main ations: the algorithm hooses a tuple d that is already

removed from C(t), for t of length i; if i < k, the e�ets of the removal

of d are �rst propagated onsidering all (i + 1)-onsistent instantiations d

0

General shema for onstraint propagation 41

suh that d

0

(t) = d; if i > 1, the e�ets of the removal of d are propagated

onsidering all (i� 1)-onsistent instantiations d

0

suh that d

0

= d(s) for all

-subsequenes s of t of length (i� 1).

5.2. GIIF an enfore k and k-strong onsisteny

Given a -sequene s on n of length 0 < i � k, let us hoose an element

d 2 D(s). Consider C

s

k

and, if (i + 1) < k, a -sequene s

+

of length

(i + 1), a -subsequene of whih is s; furthermore, if (i � 1) > 0, hoose a

-subsequene s

�

of s whose length is (i� 1). Then we onsider any subset

B of C

s

k

. We an now de�ne two subsets, the �rst of B(s

+

) and the seond

of B(s

�

), that will help us to better desribe our funtions. Suppose that

d 62 B(s); then we have that

d

+

2 Del

+

(B(s

+

); d) i� d = d

+

(s);

d

�

2 Del

�

(B(s

�

); d) i� d(s

�

) = d

�

and 8 a (a 2 B(s)) a(s

�

) 6= d

�

):

Instead, if d 2 B(s), then both Del

+

(B(s

+

); d) and Del

+

(B(s

�

); d) are

empty.

1. Consider a -sequene s on n of length 1 � i < k, a tuple d 2 D(s) and

any subset B of C

s

k

; then we de�ne the funtion �

+

(s; i; d)(B) := B

0

,

where B

0

:= B

0

1

� : : :�B

0

n

and, for every t, we have

B(t)

0

:=

8

>

>

>

<

>

>

>

:

B(t)�Del

+

(B(t); d) if s is a -subsequene of t

and the length of t is i+ 1;

B(t) otherwise:

Basially, �

+

(s; i; d) removes all the tuples of length (i+1) a projetion

of whih is d, if d is not in B(s).

2. Consider a -sequene s on n of length 1 < i � k, a tuple d 2 D(s) and

any subset B of C

s

k

; then we de�ne the funtion �

�

(s; i; d)(B) := B

0

,

where B

0

:= B

0

1

� : : :�B

0

n

and, for every t, we have

B(t)

0

:=

8

>

>

>

<

>

>

>

:

B(t)�Del

�

(B(t); d) if t is a -subsequene of s

and the length of t is i� 1;

B(t) otherwise:

Basially, �

�

(s; i; d) removes all the tuples of length (i � 1) that are

projetions of d but of no other i-onsistent instantiation, if d 62 B(s).

42 R. Gennari

We instantiate G with the subset H of all funtions �

+

(s; i; d) and �

�

(s; i; d)

suh that d 62 C(s); observe that the funtions modifying C

s

k

are among

those of H. Then the update operator will take are of adding all the fun-

tions of F we need for enforing (strong) k-onsisteny.

� If �

+

(s; i; d)(B) = B, then update(G;F; �

+

(s; i; d); B) = ;. Otherwise,

the set update(G;F; �

+

(s; i; d); B) ontains all funtions �

+

(s

0

; i; d

0

),

for eah s

0

a -subsequene of whih is s and the length is (i+1), and

d

0

2 Del

+

(B(s

0

); d).

� If �

�

(s; i; d)(B) = B, then update(G;F; �

�

(s; i; d); B) = ;. Otherwise,

the set update(G;F; �

�

(s; i; d); B) ontains all funtions �

+

(s

0

; i; d

0

),

for eah -subsequene s

0

of s the length of whih is (i � 1), and d

0

2

Del

�

(B(s

0

); d).

Corollary 1 (GIIF for k and k-strong onsisteny). Consider a CSP

P with a �nite variable domain.

� If we instantiate GIIG only with funtions of type �

+

, then the algo-

rithm terminates, omputing the greatest k-onsistent problem that is

equivalent to the input one.

� If we instantiate GIIF with all the above de�ned funtions, then the

algorithm terminates, omputing the greatest k-strong onsistent prob-

lem that is equivalent to the input one.

Proof. Observe that a �xed point of all the funtions �

+

and �

�

is a k-

strong onsistent problem equivalent to the given one; as well, if we just

instantiate F and H with the �

+

funtions, then we enfore k-onsisteny.

As the variable domains are �nite, so is F ; furthermore, the relation H � F

holds and H ontains all the funtions that modify the bottom C

s

k

. So we

an apply Theorem 2. 2

Now we an prove that KS is an instane of the GIIF algorithm shema.

Theorem 2 (GIIF for KS). The KS algorithm is an instane of GIIF.

Proof. The instantiation of List (that ontains the elements to be removed)

in KS is reprodued by the instantiation G := H in GIIF. The seond sub-

program of the KS algorithm is split into two parts. The funtions of the

form �

+

take are of the �rst part, while the funtions of the form �

�

are

employed in the seond. 2

Note 1. As remarked in [5℄, the KS algorithm only enfores k-onsisteny if

the seond step of the seond subprogram is never exeuted. So does the GIIF

algorithm if we use only the funtions of the form �

+

, f. also Corollary 1.

General shema for onstraint propagation 43

6. Conlusions

In this paper, we enlarged on previous algorithm shemata for loal on-

sisteny ([2, 8℄), establishing a more expressive shema, namely GIF, spe-

ializations of whih the previous shemata turned out to be. After analyz-

ing various algorithms for ahieving di�erent levels of loal onsisteny, we

brought out some of the relations among the sets of funtions that are suÆ-

ient for orretness of GIF and neessary for instantiating it to most of the

onstraint propagation algorithms: aording to the relation held and the

funtions hosen, we obtain a speialization of GIF for a spei� loal on-

sisteny algorithm. In this paper, we surveyed the PC-4 and KS, and proved

that they are all instanes of speializations of GIF; in a previous work ([8℄),

we did it for AC-4, AC-5 and their generalization for hyper ar onsisteny;

f. also [2, 3℄ for many other onstraint propagation algorithms whih GI,

hene GIF, an be instantiated to.

Referenes

[1℄ K.R. Apt, The Rough Guide to Constraint Propagation, Pro. of the 5th In-

ternational Conferene on Priniples and Pratie of Constraint Programming

(CP'99), Springer-Verlag Leture Notes in Computer Siene 1713, pp. 1{23.

[2℄ K.R. Apt, The Rough Guide to Constraint Propagation, Pro. of the 5th In-

ternational Conferene on Priniples and Pratie of Constraint Programming

(CP'99), Springer-Verlag Leture Notes in Computer Siene 1713, pp. 1{23.

[3℄ K.R. Apt, The Role of Commutativity in Constraint Propagation Algorithms,

ACM TOPLAS, 22(6), pp. 1002{1036, 2000.

[4℄ S. Bistarelli, R. Gennari and F. Rossi, Constraint Propagation for Soft Con-

straint Satisfation Problems: Generalization and Termination Conditions,

Pro. of the 6th International Conferene on Priniples and Pratie of Con-

straint Programming (CP2000), Springer-Verlag Leture Notes in Computer

Siene, 1894, pp. 83{97.

[5℄ M. Cooper, An Optimal k-Consisteny Algorithm, Arti�ial Intelligene, 41,

pp. 89{95, 1989.

[6℄ R. Deheter and Peter van Beek, Loal and Global Relational Consisteny,

Theoretial Computer Siene, 173, pp. 283{308, 1997.

[7℄ E.C. Freuder, Synthesizing onstraint expressions, Communiation of ACM,

21, pp. 958{966, 1978.

[8℄ R. Gennari, Ar Consisteny via Iterations of Subsumed Funtions, Pro. of

Computational Logi 2000 (CL2000), Springer-Verlag Leture Notes in Com-

puter Siene, 1861, pp. 358{372.

44 R. Gennari

[9℄ C.-C. Han and C.-H. Lee, Comments on Mohr and Henderson's Path Consis-

teny Algorithm, Arti�ial Intelligene, 36, pp. 125{130, 1986.

[10℄ R. Mohr and T.C. Henderson, Ar and Path Consisteny Revisited, Arti�ial

Intelligene, 28, pp. 225{233, 1986.

[11℄ U. Montanari, Networks of onstraints: Fundamental properties and applia-

tions to piture proessing, Information Siene, 7(2), pp.95{132, 1974.

