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Modeling of wave fields for various structures
of mud volcanoes∗

B.M. Glinsky, D.A. Karavaev, V.V. Kovalevsky, V.N. Martynov

In the Kerch–Tamagne areas, mud volcanoes and associated “pressed
synclines” are evolving. The problem of genesis of mud volcanoes is debated;
researchers of mud volcanoes do not have a common opinion about the
mechanism of their formation. The necessity of studying the mud volcanoes
structures is also connected with the fact that some mud volcanoes in the
Tamagne mud volcanoes provinces represent a real danger for the population
at moments of intensive eruptions because of the immediate proximity from
settlements.

It is not excluded that processes associated with general decontamination
of the Earth underlies the mechanism of formation of mud volcanoes. It is
known that millions of cubic meters of methane per day are derived from
the Black sea bottom.

In [1–5], the proposed vibroseismic method of monitoring the magmatic
structures with a controllable seismic source will make possible to receive a
new knowledge about the structure of volcanoes, their origin and dynamics
of the behavior of dilatancy structures of living volcanoes with vibroseismic
monitoring of these structures.

The solution to the fundamental problem of studying the structures of
mud volcanoes is related to the development of theoretical, methodical and
experimental bases of sounding the dilatancy zones of volcanoes with appli-
cation of powerful vibrators. One of the key problems of studying volcanoes
of the given type is the construction an adequate mathematical models for
given structures describing the propagation of elastic waves generated by a
powerful vibrator.

It is known that mathematical modeling is an effective tool to study
the processes of propagation of elastic waves in various models of complex
subsurface geometries. Currently, a wide spectrum of numerical methods
as applied to the full wave fields simulation in inhomogeneous elastic media
is available, for example [6]. The difference method and the finite element
method are the most flexible from all known methods of numerical modeling
of elastic waves propagation in the case of complicated three-dimensional
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inhomogeneous elastic media. However, their use demands high computer
costs even with application of the cluster super computers.

The developed program is intended for the numerical modeling of elastic
waves propagation in three-dimensional inhomogeneous models of elastic
media, using a finite difference method.

In 1], the results of the first vibroseismic experiments of research into
the mud volcano Shugo are presented. It was found out that the wave field
of seismic waves has a complex structure in the volcano vicinity. Further
direction of experimental research will be defined by the results of numerical
modeling to be used when interpreting the data of vibroseismic sounding of
mud volcanoes in the Tamagne province.

We propose the further investigation of volcanic pipes using vibroseismic
methods with application of seismic vibrators and areal recording systems.
It is assumed that the choice of the scheme of observation and interpreta-
tion of results of field experiments will be made on the basis of results of
mathematical modeling.

1. Statement of problem

Numerical modeling of processes of the seismic waves propagation in com-
plex subsurface geometries is carried out on the basis of a full system of
equations of elasticity theory written down in velocities of displacements
and stresses.

For calculation of theoretical seismograms resulting from the influence
of a concentrated source located in an anisotropic medium it is necessary to
define components of the vector of displacement velocities (U, V,W ) and the
strain tensor (σxx, σyy, σzz, σxy, σxz, σyz), satisfying the following equations:
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The density ρ = ρ(x, y, z) is supposed to depend on the coordinate x, y,
and z, and the right-hand side has the following form:

→
F (t, x, y, z) = Fx

→
i + Fy

→
j + Fz

→
k .

For example, for a source of the type “vertical force” type we have:

→
F (t, x, y, z) = δ(x− x0)δ(y − y0)δ(z − z0)f(t)

→
k ,

where (x0, y0, z0) are the coordinates of the source.

2. Method of solution

The technique of a problem solution is based on the finite difference method.
The principles of constructing a difference scheme is based on the method
of finite volumes considered in [7]. The basic condition of constructing the
scheme used is the fulfilment of integral laws of conservation.

In this connection, the difference factors (λ, λ+ 2µ, µ, ρ which can have
discontinuities) that participate in a difference scheme are calculated on the
basis of integral laws of conservation [7].

For this purpose, we convert the Hooke matrix. The new values approxi-
mating the integrated law of conservation are recalculated with the formulas
presented in [7], then we convert the matrix again and obtain the one with
factors to be used to resolve the scheme.

The resulting scheme has the second order of approximation with respect
to time and space [7].

The general version of the finite difference scheme is implemented for
grids with a variable step, but for simplicity, a version of the scheme with
equal steps in spatial variables is considered here.
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The finite difference scheme in this case is as follows:
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An example of calculation of the weighed factor c66 for calculation of
σxy is as follows:
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Factors c55 and c44 are defined by similar formulas.
We have the following criterion of stability of the scheme in question [7]:
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Here ∆x, ∆y, ∆z are discretization steps in spatial variables and τ is a
discretization step with respect to time; Vp,max is a maximal velocity of
elastic waves propagation.

The general scheme of calculations looks as follows. First, at the first
time half-step, components of the vector of displacement velocity and then at
the second time half-step, necessary stress components are defined. Further,
the new components of the vector of displacement velocity are calculated on
a new time half-step.

3. The method of absorbing boundaries

It is necessary to use absorbing boundaries because the calculation domain is
limited. The absorbing boundaries are necessary when we want no reflections
of elastic waves from boundaries of the calculation domain. In this paper,
we use the realization of the PML (“Perfectly Matched Layers”) method
idea that is stated in [8, 9].

The essence of a method is in creating an absorbing zone. In such a
zone, the basic desired values are recalculated with finite difference formu-
las (2), and outside of the absorbing zone all is recalculated with initial finite
difference scheme (1).

To describe the PML method let us construct a finite difference scheme
for discretization of equations in the absorbing zone. For simplicity, let
us present equations of the finite difference scheme, the other equations
being obtained in a similar way. Before we turn directly to the equations
for calculation of the absorbing boundaries, let us introduce the following
notations:



6 B.M. Glinsky, D.A. Karavaev, V.V. Kovalevsky, V.N. Martynov
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Thus, each of the desired values is represented as sum of several compo-
nents, whose values should be defined. Then, applying the method [8], the
equations for calculation in the absorbing zone will take the form:
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Here dx, dy, dz are factors of absorption along the corresponding direc-
tions of spatial variables. The presented equations correspond to the PML
model in the nodes, where absorption in all three directions is required.
The calculation inside the PML layers is done with zero factor of absorption
in the direction that is orthogonal to that of calculation. Let us consider
this on an example of the cross-section in plane Oxy: dx = 0 for the PML
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layers along the direction y and dy = 0 for the PML layers along the di-
rection x. Having defined the components ux, uy, uz from the equations,
we obtain the final value of u by summation of all the defined components
u = ux + uy + uz for each point of the finite difference scheme in the PML
zone. In the same manner, we obtain the value σxx = σx

xx + σy
xx + σz

xx for
the PML domain. Similar operations take place for the rest finite difference
equations for obtaining the desired values in absorption zones.

4. Construction of three-dimensional model of elastic media

The problem of constructing a three-dimensional model of an elastic medium
is sufficiently complicated. There are several ways of assigning a three-
dimensional model of the elastic media.

In the general case, it is supposed that the three-dimensional model of
media (λ, µ, ρ) is set in the nodes of a three-dimensional grid with arbitrary
steps in spatial variables. In this case, it is assumed that any external
“constructor” of model is used.

We used the own constructor of the model realizing the construction of a
tree-dimensional model of elastic media to carry out the calculations needed
here.

Let there be built a coarse-grain model of a medium. This model consists
of parallelepipeds, in whose vertices parameters of this medium are set. The
parameters are continuous inside each block, the discontinuity of the media
parameters on the boundaries of blocks being allowed. Then there is an
interpolation of necessary values (parameters of the medium) onto a finer
grid with help of a finite element method. Then geometrical objects (which
are analytically set): cylindrical, conic, ellipsoidal, etc., can be imbedded
into a constructed 3D medium model on the fine-grain grid. Such objects can
substitute the parameters on this fine with their own parameters. We allow
the possibility of intersection and imbedding of objects. Thus, the medium
parameters are defined by objects according to the given priority [10].

As a result, the “constructor” of elastic media model defines data needed
for calculation of the factors λ, µ, λ+ 2µ, and ρ at each point of a difference
scheme.

The developed “constructor” of the model makes possible to set compli-
cated models of media that are close to real objects.

5. Algorithm of program parallelization

There are two realizations of a parallel program with the help of the parallel
programming languages MPI and OpenMP. In view of the tendency of devel-
opment of the multiprocessor cluster systems, where the majority of clusters
consist of “nodes”, which include several multicore processors with common
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memory, it is meaningful to apply a “hybrid” technology of parallelization
for the three-dimensional finite difference schemes. We will use OpenMP
for parallelization inside each “node”, and MPI between “nodes”. This con-
siderably reduces the volume of information exchanges between the nodes.
Subdivision of the calculation domain into layers along the coordinate Z is
technologically convenient for both versions. The number of nodes in each
layer is defined depending on the number of possible computing cores. Each
computing node will calculate the number of layers equal to that of proces-
sor cores it has. For data exchange in a boundary layers nodes the MPI
version of a parallel program is used.

6. Models for numerical calculations

Results of field experiments have shown that the structure of mud volcanoes
has a complex geometry and an inhomogeneous structure of a medium,
which contains a liquid, bubbles of gas, non- inhomogeneous inclusions, etc.
All this have an influence on the structure of a wave field observable in the
experiments. In this paper, we carry out numerical modeling, for presenting
influence of geometry of a model on the structure of a wave field. This
means we do not consider the features connected with the presence of a
heterogeneous media structure. In this case, at the first stage, we consider
simple models, which allow studying the main features.

To study the structure of wave field obtained when carrying out field
experiments with the mud volcanoes in the Kerch–Tamagne area, test cal-
culations were done for the following models of media.

In all models under study, the medium consists of three horizontal layers
(a middle layer is low-velocity and has thickness of 1 km). A cylindrical sub-
area with elastic properties similar to those of the middle layer is imbedded
into the upper layer. The coordinates of the center of the base of cylinder
are (4.4 km, 3.5 km).

The containing medium has the following parameters: Vp = 2 km/s,
Vs = 1 km/s, ρ = 1 g/sm3. The cylindrical subarea and the middle layer
have the parameters Vp = 1 km/s, Vs = 0.7 km/s, ρ = 1 g/sm3.

Figures 1–4 present the models under study: the cross-section with the
plane Oxz of the domain in question which passes through the center of a
source, and with the plane Oxy near to the free surface. The size of the
containing medium being 7 km in all directions.

The source of “the center of pressure” type with a carrier frequency of
4 Hz is close to the free surface. The coordinates of the source are (3 km,
3.5 km, 0.4 km).

Four sensor cables of observation are located near to the free surface,
each one containing 25 geophones. A distance between the geophones is
0.25 km. The places of sensors are marked with numbers on Figures 1–4.
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Figure 1. Model 1: The base of cylinder is a circle of 1 km diameter

Figure 2. Model 2: The base of cylinder is an ellipse with semi-axes of 0.8
and 0.4 km

Figure 3. Model 3: The base of cylinder is a shape composed from circles of
0.2 km diameter

Figure 4. Model 4: The base of cylinder is a shape composed from circles of
0.2 km diameter
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7. Results of numerical modeling

In Figures 5–12, the snapshots of a wave field were made in the planes Oxy,
Oxz, and Oyz passing through the point of the source location.

Figure 5. Model 1: Component W , plane Oxy, t = 1.5 and 2.7 s

Figure 6. Model 1: Component W , plane Oxz, t = 1.5 and 2.7 s

Figure 7. Model 2: Component W , plane Oxy, t = 1.5, 2.7, and 4.3 s
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Figure 8. Model 2: Component W , plane Oxz, t = 1.5, 2.7, and 4.3 s

Figure 9. Model 3: Component U , plane Oxy, t = 1.5 and 2.7 s

Figure 10. Model 3: Component U , plane Oxz, t = 1.5 and 2.7 s
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Figure 11. Model 4: Component U , plane Oxy, t = 4.3 and 5.1 s

Figure 12. Model 4: Component U , plane Oxz, t = 4.3 and 5.1 s

8. Interpretation of the numerical results

In this section, the results obtained with the use of snapshots of a wave field
and theoretical seismic traces are discussed. Even for the chosen, simple
models of elastic media, we obtain rather a complicated wave picture which
is necessary for interpreting. The picture of a wave field can essentially
change depending on a set of factors, for example: a distance from a source
up to an object, elastic properties of a medium and an object, the sizes of a
medium and an object.

In this paper, we do not consider a wave picture which is recorded on
the geophones located before object. Therefore we restrict ourselves only to
the description of a wave field behind an object.

Several groups of waves (2–9) are distinguished for Model 1 (Figure 13a).
Observing the structure of a travel-time curve and with allowance for the ar-
rival time of waves, it is possible to conclude that 2 is PP-wave, 3 is PS-wave,
4 is PPP-wave, 5 is PPS-wave, waves 8–9 are associated with reflection from
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a b

c d

Figure 13. Theoretical seismic traces, “cable” 3, component U :
a) Model 1, b) Model 2, c) Model 3, and d) Model 4

the first and the second interfaces. Waves 6 and 7 are generated by the
cylinder.

Quite a different picture can be seen in the elliptic cylinder model (Fig-
ure 13b). In this case, groups of waves 4 and 5 are absent. Dynamics of
PS-wave 3 whose amplitude increases towards the main axis of the elliptic
cylinder sharply changes.

For Models 3 and 4 (Figures 13c and 13d), pictures of seismic traces
are similar: S-wave is not observed in them. Essentially, the wave picture
for waves 2–4 has not changed, while for transverse waves, SS-wave has
essentially damped, which is caused by the presence on boundaries of a
“cylinder” of heterogeneities comparable with the length of S-wave. This
has led to dispersion of energy inside the cylinder.

9. Conclusion

The “toolkit” for carrying out the numerical modeling of elastic waves prop-
agation in models of complex subsurface geometries has been developed. It is
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helpful when planning and carrying out natural geophysical studies and in-
terpreting the results obtained.

The numerical modeling calculations on multiprocessor computers are
carried out with the help of the developed program. In the future, it is
supposed to conduct a series of calculations for various models of media
characteristic of the structure of the mud volcano “Karabetov mountain”. It
is assumed that the obtained numerical results will be used when choosing a
scheme and interpreting results of observation with vibroseismic monitoring
of this volcano.
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