
Bull. Nov. Comp.Center, Comp. Science, 32 (2011), 77–92
c⃝ 2011 NCC Publisher

Memory organization with parallel access to
information and its application for image

processing

Alina Glodovski, Feodor Murzin, Tatiana Murzina

Abstract. In this paper, a computer memory system intended for storing an ar-
bitrary sequence of multidimensional arrays is described. This memory system
permits parallel access to the cuts distinguished in a given array by fixing one of
the coordinates and to a large set of parallelepipeds which are the same dimension
subarrays of the given arrays. A model of an automatic system for analysis of
dynamical images containing multiple moving objects is also investigated. In the
main, a set of point objects is considered. The peculiarity of the proposed system is
the use of parallelism at all stages: information perceiving, storing, and processing.
Key words: Memory organization, parallel access to information, image process-
ing, objects tracking

1. Introduction

Many different memory systems are used in computer design. Some of them
allow parallel access to information [1, 2] but, as a rule, these memory
systems are highly specialized and provide users with limited possibilities.
Therefore, even the newest and very high speed computers use memory
systems that provide sequential access to information or memory systems
admitting only a small degree of parallelism.

In this paper, a generalization of some approaches to memory organiza-
tion used earlier [3–5] is considered. As a result, a memory system is briefly
described for storing an arbitrary sequence of multidimensional arrays. Cer-
tainly, the total size of arrays should not exceed the whole memory size.
In this memory system, it is possible to implement parallel access to cuts
separated in a given array by fixing one of the coordinates and to a large
set of parallelepipeds, which are subarrays of the same dimension [6].

Here we consider arrays rather than other data types because in this
case the problems being arisen have the purest (refined) form, which facili-
tates their decision. Besides, this data type plays the main role in creating
computers oriented to numerical computations and image processing.

A model of an automatic system for analysis of dynamical images con-
taining multiple moving objects is also investigated. Thereby our investiga-
tions are based on the works [7–9]. The main functions of the considered
system are: transformation of a luminous flux into a two-dimensional matrix
of signals intended for further processing; discovery of objects, estimation



78 Alina Glodovski, Feodor Murzin, Tatiana Murzina

of their coordinates, directions and velocities relative to the coordinate sys-
tem of the gauge; tracking of objects in the feedback regime; and output
of data in a form convenient for a user. The peculiarity of the proposed
system is the use of the parallel memory. Parallelism is used at all stages:
information perceiving, storing, and processing.

2. General principles of parallel access memory organization

Let n1, . . . , nk be positive integers. A set

A(n1, . . . , nk) = {⟨i1, . . . , nk⟩ : ∧k
j=1(0 ≤ ij < nj)}

is called an array. This non-standard usage of the term ”array” will be useful
further. In fact, in computer science, a function of the form

A∗ : A(n1, . . . , nk) → W,

is usually called an array, where W is a set of any type (integer, real, com-
plex, ...) or a set of words in some alphabet. We shall write below A
instead of A(n1, . . . , nk), omitting brackets together with their content. An
arbitrary set S ⊆ A will be called a segment.

Suppose we have N memory modules. A module will be implied as a
chip of semiconductor memory or magnetic bubble memory. Such a module
has an address line, a data line and a read/write signal line. The memory
capacity of all modules is supposed to be the same and equal to K. An array
P = A(N,K) will be called a memory space. Without loss of generality, we
can suppose that only one bit of information is stored into each address.

Let A1, . . . , As be a sequence of multidimensional arrays, respectively,
and G1, . . . ,Gs be sets of segments in A1, . . . , As. The functions f1, . . . , fs
satisfy the following conditions:

domfi = Ai,

rangefi ⊆ P,

i ̸= j → rangefi ∩ rangefj = ∅.
Here dom is the domain and range is the range of values. So the sequence

⟨f1, . . . , fs⟩ determines the distribution of arrays A1, . . . , As in the memory
P . Suppose also that fi is injective, i. e. for every a, b ∈ domfi if a ̸= b,
then fi(a) ̸= fi(b).

Definition

A sequence ⟨f1, . . . , fs⟩ is called universal relative to ⟨G1, . . . ,Gs⟩ if and
only if ∀i∀S ∈ Gi∀s0, s1 ∈ S(s0 ̸= s1 → pr1fi(s0) ̸= pr1fi(s1)), where pr1 is
a projection of the pair on the first coordinate.



Memory organization with parallel access to information 79

Let us consider an example. Suppose that an array (aij),

(0 ≤ i < K, 0 ≤ j < N)

is stored in the memory in natural order, i. e. an element aij is placed in
j-th module on i-th address. In this case it is possible to access the line
i = Const for one clock period by placing the same address α = i into all
modules simultaneously. Extraction of the column j = Const is a more
complex task. It takes time proportional to K. A similar problem appears
in the case when a three-dimensional array is placed in the memory with
the help of standard methods and we are trying to access two-dimensional
cuts or small three-dimensional subarrays.

Universality of ⟨f1, . . . , fs⟩ relative to ⟨G1, . . . ,Gs⟩ means every segment
S ∈ Gi(1 ≤ i ≤ s) to be well distributed in the memory in the sense that
all elements of the segment are stored in different modules. It is exactly
what permits reading/writing the segment S as a whole simultaneously at
any single instant of time. And hereby the addresses {pr2fi(s) : s ∈ S} are
placed into the modules {pr1fi(s) : s ∈ S}.

Of course, there may be no universal sequence relative to ⟨G1, . . . ,Gs⟩.
Then the sets Gt

i (1 ≤ t ≤ m) such that Gt
i ⊆ Gi,∪Gt

i = Gi may be found and
there does exist a universal sequence relative to every tuple ⟨Gt

1, . . . ,Gt
s⟩.

So we can conclude that a certain addressing method allows parallel
access to certain segments only. It may be impossible to implement a par-
allel access to all the segments we are interested in. Therefore, it is useful
sometimes to change an addressing method at the run time.

Note that the question of complexity of an algorithm for fi computation
is also important. A memory control system is outlined in Figure 1.

Figure 1. The scheme of the memory control system

Here Mi are memory modules and li are logical circuitries. The pairs
{fi(s) : s ∈ S} are transferred through the horizontal lines. Hereby, if we
want to take the elements of the segment S in a fixed order s1, . . . , sT , then



80 Alina Glodovski, Feodor Murzin, Tatiana Murzina

it is necessary to input fi(s1) into the first line, fi(s2) into the second one
and so on. These lines also include the read/write lines.

Assume that fi(st) = ⟨νt, αt⟩. The logical circuitry lm connects the
address line and data line with a module when m = νt. It means that νt
is equal to the number of the module connected to a given logical circuitry.
Otherwise connection does not occur.

So in any sense this control system runs as a telephone exchange station.
Note that this control scheme may be easily integrated by means of the
VLSI-technology.

In the papers another control scheme is used. Let S be a segment. Then,
from universality of the sequence ⟨f1, . . . , fs⟩, it follows that every module
contains no more than one element from S. Let α∗[S](n) be equal to an
address of an element from S in a module n, if such an element exists. If
such elements do not exist, then α∗[S](n) is equal to some fixed address.

An access circuitry has two blocks. The first one forms addresses accord-
ing to the function α∗[S]. All addresses are put in simultaneously, each one
into its own module. As an output, we obtain a segment. But its elements
appeared to be rearranged just as a fixed natural order of elements may be
desirable. The second block carries out necessary correction, which is also
desirable to be done simultaneously. When writing, the correction is per-
formed before writing and, when reading, the correction is performed after
it. This scheme of the memory control is shown in Figure 2.

Figure 2. Controlling memory with a corrector

Here Mi are memory modules, A is an address circuitry, C is a corrector,
DR is a data register. The name of the segment S and a read/write signal



Memory organization with parallel access to information 81

are passing into the line Input. The addresses α∗[S](1), . . . , α∗[S](N) are
passing through the lines 1, 2, . . . , N , respectively.

However, such a scheme seems to be less convenient for creating general-
purpose computers, because for arrays of dimension ≥ 3 the correction al-
gorithms are very complicated even for simple sets of segments needed in
practice. But this scheme may be successfully used for processing two-
dimensional arrays.

This paper considers the case when the memory and the system of pro-
cessor elements are separated. In bibliography, one can find investigations of
different systems (systolic multiprocessors, processors on the basis of cellu-
lar logic) in which the memory and processor elements are merged together.
We do not consider this approach to be perspective for designing high per-
formance computers, although it is useful for creating specialized chips.

The memory organization scheme considered above and the ideas of a
cellular logic may be used together. Let the sequences ⟨f1, . . . , fs⟩ and
⟨f ′

1, . . . , f
′
s⟩, be universal relative to ⟨G1, . . . ,Gs⟩ and ⟨G′

1, . . . ,G′
s⟩, respec-

tively. Suppose σi : P → P, (1 ≤ i ≤ s) to be such that for every i there is
a commutative diagram

Ai
id−→ Ai

fi ↓ ↓ f ′
i

P
σi−→ P

.

Then the first distribution of arrays in a memory may be turned into the
second one by execution of the operators σi with the help of cellular logic. In
any sense, memory organized in this way resembles a liquid crystal, which
may be in different states. External effects may turn it from one state
into another. Each state allows access to fixed information to be realized.
Theoretically, we can consider the dynamic case when the states change
continuously. And information needed is extracted in one or several steps
during this process, though the question of practical realization of such a
memory seems to be very complicated.

3. Some permutations and their properties

Let a, b, n be integers, and a, b ≥ 0, n > 0. Let us introduce some notations:
a/n is a quotient resulting from integer division of a by n,
a//n is a remainder resulting from integer division of a by n,
a⊕ b(modn) = (a+ b)//n is a sum of a and b modulo n,
[a]n = n · (a/n) = a− (a//n).
If 1 ≤ j ≤ k and ⟨i1, . . . , ik⟩ is an arbitrary sequence, then
prj(i1, . . . , ik) = ij .
Let A = A(n1, . . . , nk) be an array, k ≥ 2. Define segments



82 Alina Glodovski, Feodor Murzin, Tatiana Murzina

Pj(t) = pr−1
j (t) ∩A = {⟨i1, . . . , ik⟩ ∈ A : ij = t},

BL[r1, . . . , rk](i
0
1, . . . , i

0
k) = {⟨i1, . . . , ik⟩ ∈ A : ∧k

j=1(i
0
j ≤ ij < i0j + rj)}.

For every j, t the first segment is a (k − 1)-dimensional cut separated by
the condition ij = t. The second segment is a k-dimensional parallelepiped
of r1 × . . . × rk size. The point ⟨i01, . . . , i0k⟩ is its apex having the least
coordinates.

In further considerations we will assume that the condition
C0. n1 ≤ n2, . . . , nk is valid.
Define a function λ : A → A by equalities
λ(i1, . . . , ik) = ⟨λ1(i1, . . . , ik), . . . , λk(i1, . . . , ik)⟩,
λ1(i1, . . . , ik) = i1,
λj(i1, . . . , ik) = ij ⊕ i1(modnj), 2 ≤ j ≤ k.

It is evident that the function λ is a permutation on A.
We will define the next function in the case when, besides C0, the fol-

lowing conditions are also valid.
C1. ∧k

j=1 (nj//rj) = 0,

C2. r1 = Πk
j=2(nj/rj).

Define a function ρ : A → A by equalities:
ρ(i1, . . . , ik) = ⟨ρ1(i1, . . . , ik), . . . , ρk(i1, . . . , ik)⟩,
ρ1(i1, . . . , ik) = i1,
ρj(i1, . . . , ik) = ij ⊕ µj(i1)(modnj), 2 ≤ j ≤ k,
µj(i) = rj(i/νj+1), 2 ≤ j < k,
µk(i) = rk(i//νk),
νj = Πk

t=jn
′
t, n

′
t = (nt/rt).

It is easy to see that ρ is also a permutation on A.
We will define the following function σ : A → A for the case when the

conditions C0− C2 are valid.
Let

σ(i1, . . . , ik) = ⟨σ1(i1, . . . , ik), . . . σk(i1, . . . , ik)⟩,
σ1(i1, . . . , ik) = i1,
σj(i1, . . . , ik) = [ρj(i1, . . . , ik)]rj + (ij ⊕ τj(i1)(modrj)), 2 ≤ j ≤ k.
τj(i) = (i/νj)νj+1 + i//nuj+1, 2 ≤ j < k,
τk(i) = i/νk.

Analogously, the function σ is a permutation on A.

4. Data addressing

Now suppose we have two injective functions
ε0 : A(n2, . . . , nk) → {i : 0 ≤ i < N},
ε1 : {i : 0 ≤ i < n1} → {i : 0 ≤ i < K}.
They generate a function



Memory organization with parallel access to information 83

ε = ε0×ε1 : A(n1, . . . , nk) → P = A(N,K), which can be defined by the
formula

ε(i1, i2, . . . , ik) = ⟨ε0(i2, . . . , ik), ε1(i1)⟩.
Let us introduce functions

λ∗(i1, . . . , ik) = ελ−1(i1, . . . , ik),

ρ∗(i1, . . . , ik) = ερ−1(i1, . . . , ik),

σ∗(i1, . . . , ik) = εσ−1(i1, . . . , ik).

We will consider below the following sets of segments:

CUT j = {Pj(t) : 0 ≤ t < nj},
CUT = ∪k

j=1CUT j ,

BL(r1, . . . , rk) = {BL[r1, . . . , rk](i
0
1, . . . , i

0
k) : ∧k

j=1(0 ≤ i0j ≤ nj − rj)},
RBL(r1, . . . , rk) =
= {BL[r1, . . . , rk](i

0
1, . . . , i

0
k) :∈ Bl(r1, . . . , rk) : i01//n′

k = 0}.
The following theorems are valid.
Theorem 1.
The sequence ⟨λ∗⟩ is universal relative to ⟨CUT ⟩.
Theorem 2.
The sequence ⟨ρ∗⟩ is universal relative to

⟨CUT 1 ∪ BL(r1, . . . , rk)⟩.
Theorem 3.
The sequence ⟨σ∗⟩ is universal relative to

⟨CUT ∪ RBL(r1, . . . , rk)⟩.
The following theorem shows that if parallel access to a large number of
segments is demanded, then the corresponding universal function may be
not existing.
Theorem 4.
Assume there exist at least two j such that rj < nj , together with the
conditions C1, C2 and the condition

C3. Πk
j=2nj = N.

Then there is no f : A(n1, . . . , nk) → P such that ⟨f⟩ is universal relative to
⟨CUT ∪ BL(r1, . . . , rk)⟩.
The proofs of all these theorems are given in [6].

5. Some examples

Let us now consider several methodical examples.

Example 1

Let (ai,j), (0 ≤ i, j < 4) be a two-dimensional array. Then n1 = n2 = 4
and λ1(i1, i2) = i1, λ2(i1, i2) = i2 ⊕ i1(mod4). Suppose ε1, ε2 are identical
functions. The following table shows the elements in the memory.



84 Alina Glodovski, Feodor Murzin, Tatiana Murzina

M0 M1 M2 M3

α = 0 a00 a01 a02 a03
α = 1 a11 a12 a13 a10
α = 2 a22 a23 a20 a21
α = 3 a33 a30 a31 a32

It is easy to see that the elements of every row are stored in different
modules. And the elements of every column are stored in different modules.
We have λ∗(i1, i2) = ⟨λ−1

1 (i1, i2), λ
−1
2 (i1, i2)⟩ = ⟨i1, i2 ⊕ (4− i1)(mod4)⟩.

Suppose we use the memory control system outlined in Figure 1. For exam-
ple, we want to read/write the first row ⟨a10, a11, a12, a13⟩ or the first column
⟨a01, a11, a21, a31⟩. Then in the first case the sequence
{λ∗(1, 0), λ∗(1, 1), λ∗(1, 2), λ∗(1, 3)} = {⟨1, 3⟩, ⟨1, 0⟩, ⟨1, 1⟩, ⟨1, 2⟩}.
should be inputed in the horizontal lines. And in the second case we should
input the sequence
{λ∗(0, 1), λ∗(1, 1), λ∗(2, 1), λ∗(3, 1)} = {⟨0, 1⟩, ⟨1, 0⟩, ⟨2, 3⟩, ⟨3, 2⟩}.
These sequences may be generated and inputed in the lines in parallel.

Example 2
Let (aij), (0 ≤ i, j, k < 3) be a three-dimensional array. Then
n1 = n3 = n3 = 3, λ1(i1, i2, i3) = i1,
λ2(i1, i2, i3) = i2 ⊕ i1(mod3),
λ3(i1, i2, i3) = i3 ⊕ i1(mod3).
The following diagrams show the standard distribution of the elements

of an array and the distribution according to the permutation λ.
Let ε0(i2, i3) = 3i2 + i3 and ε1(i1) = id be an identical function. The

following table shows the distribution of elements in the memory according
to the function λ∗.

Distribution of elements according to λ∗

M0 M1 M2 M3 M4 M5 M6 M7 M8

α = 0 a000 a001 a002 a010 a011 a012 a020 a021 a022
α = 1 a111 a112 a110 a121 a122 a120 a101 a102 a100
α = 2 a222 a220 a221 a202 a200 a201 a212 a210 a211

It is easy to see that the elements of every cut ij = Const are stored in
different modules. The numbers of modules and the addresses needed for
reading/writing an arbitrary fixed cut may be generated and inputted in
parallel.

Example 3
Let n1 = n2 = 16, r1 = r2 = 4 and (aij), (0 ≤ i, j < 16) be a two-

dimensional array.



Memory organization with parallel access to information 85

Figure 3. Distribution of the elements of a three-dimensional array

Then we have following formulas:
σ1(i1, i2) = i1, ρ2(i1, i2) = i2 ⊕ 4(i1//4)(mod16),
σ2(i1, i2) = [ρ2(i1, i2)]4 + (i2 ⊕ (i1/4)(mod4)).
The conditions C1 − C2 are also valid because 16//4 = 0 and 4 = 16//4.
Suppose ε1(i1) = id are identical functions. The following table shows the
distribution of elements in the memory according to the function σ∗.

In this case we have a possibility to perform parallel access to all rows
and columns. Moreover, there is a parallel access to squares of size 4 × 4
from every layer
4s ≤ i1 < 4(s + 1), (0 ≤ s < 4). All is easy for the memory control system
outlined in Figure 1.

Suppose we use the memory control system outlined in Figure 2. For
example, correction needed for the rows is cyclical transfers of intervals
of length 4 and cyclical transfers inside intervals. For high dimensions, the
correction algorithms are complicated. It is often not clear how in these cases
a correction may be done in a parallel mode. Even in the two-dimensional
case the corrector hardware costs are essential.

6. Parallel system for analysis of images

A model of an automatic system for analysis of dynamical images containing
multiple moving objects is investigated, in the main, a set of point objects



86 Alina Glodovski, Feodor Murzin, Tatiana Murzina

aij ≡ aij

is considered. Some computer experiments are also presented.
The main functions of the considered system are as follows:

• transformation of a luminous flux into a two-dimensional matrix of
signals intended for further processing;

• discovery of objects, estimation of their coordinates;

• directions and velocities relative to the coordinate system of the gauge;

• tracking of objects in the feedback regime; output of data in a form
convenient for a user. The peculiarity of the proposed system is the use
of parallelism at all stages: information perceiving, storing and pro-
cessing. Everything is based on using the parallel memory described
above.

The structural scheme of the system is presented below



Memory organization with parallel access to information 87

Figure 4. The structural scheme of the system

A is a photo-receiving matrix, S0, S1 are gate schemes, AG is a generator
of addresses, Mi are memory modules, C are controllers, Ω is a commutator
network,

Pi are processors, TC is a controller controlled by a clock-pulse generator,

HC is a host-computer, P is peripheral equipment, D is a line of data,

A is an address line, R/W is a read/write line.

The luminous signal is perceived by the photo receiving matrix process-
ing as a charge coupling device. The dimension of the matrix M × M is
quite big, for example M = 1024. The gate scheme S is placed on the same
crystal. At present chips have not too much pins. Therefore, the first aim is
to narrow the information flow. Suppose N ≪ M and M is divisible by N .

Moreover, S makes a permutation of data according to some algorithm.
The scheme S is controlled by the controller TC, which is controlled by the
clock-pulse generator. Simultaneously, TC activates the block AG generat-
ing the addresses.

It generates an address, which is the same for all modules, and forms the
read/write signal.

Thus, information on some N points (pixels) is transferred simulta-
neously into N modules of memory and placed there in some nonstandard
manner. Suppose that capacity of every memory module is K ≥ M2/N . It
is sufficient to transfer all matrices of the size M ×M after several steps. It
is easy to see that a mapping of an array of size M ×M into a rectangular
array of size K ×N appear.

Consider in more detail the properties of this mapping we need. Suppose
in addition that N is a square, i. e. N = n2. The mapping is constructed
so that, for every square of size n× n from the initial array, the elements of
this square will be placed in different memory modules. In general, they can
be stored with different or same addresses. The second fact is not essential.
The fact that the elements lie in different modules allows us to generate in
parallel all necessary addresses and to transfer simultaneously all elements



88 Alina Glodovski, Feodor Murzin, Tatiana Murzina

of the square to one or several processors for execution. This means we use
windows of size n× n. Thereby every window is accessible.

Now we will describe the use of functions in more detail.
Define a function ρ : A → A by the equalities
ρ(i, j) = ⟨ρ1(i, j), ρ2(i, j)⟩,
ρ1(i, j) = i,
ρ2(i, j) = j ⊕ n∗(modM), n∗ = n · (i//n).
Let us notice that the given function represents a special case of a func-

tion ρ considered earlier. Therefore we use the same symbol for its designa-
tion.

The inverse function ρ−1 : A → A has the form
ρ−1(i, j) = ⟨ρ−1

1 (i, j), ρ−1
2 (i, j)⟩,

ρ−1
1 (i, j) = i,

ρ−1
2 (i, j) = j ⊕ n(modM), n = M − n∗.

Let us introduce a function ε : A → A by the equalities
ε(i, j) = ⟨ε1(i, j), ε2(i, j)⟩,
ε1(i, j) = iN ′ + j/N,N ′ = M/N,
ε2(i, j) = j//N.
Let us denote ρ∗(i, j) = ερ−1(i, j). It is easy to prove that ρ is an

injective mapping from A toA. It is also obvious that
ρ∗(i, j) = ⟨ρ∗1(i, j), ρ∗2(i, j)⟩,
ρ∗k(i, j) = εkρ

−1
k (i, j), (k = 1, 2).

The set
W (i0, j0) = {⟨i, j⟩ ∈ A : i0 ≤ i < i0 + n, j0 ≤ j < j0 + n}

will be called a square window of size n× n.
The set of all windows we will designate by
W = {W (i0, j0) : 0 ≤ i0, j0 ≤ M − n}.
As usual, if f is a function, domf is its domain, Q ⊆ domf , then f | Q

designates a restriction of f to the set Q.
Theorem 5.
For every W ∈ W, the function ρ∗2 | W is injective.

Here we omit the proof.
Now we consider a simple example for N = 16. Thereby every window

of size 2 × 2 will be accessible in the parallel mode. We will also have a
possibility to see how ρ−1 and ε work together.

The mapping described above can be executed directly on a photo-
receiving matrix working on the principle of Charge Couple Device (CCD).
For this purpose it is enough to have an additional ring register (see Figure
6) also working on the principle of CCD.

Each next line is read out in a working line which represents the bottom
part of the ring register. Further, using the ring register, a cyclic shift of
elements on a necessary number of positions is made. The result is placed
in the line L. Another part of a ring is used as auxiliary.



Memory organization with parallel access to information 89

Figure 5. The function ρ−1 makes permutations inside lines;
the function ε cuts lines into pieces, then places them one under another



90 Alina Glodovski, Feodor Murzin, Tatiana Murzina

Figure 6. Schemes of data reading from photo-reception matrices:
a) the standard scheme;
b) the scheme with the ring register

Now suppose that there is a dynamical image containing multiple moving
points. For every window in which the moving object appears, the system
initiates an individual file in the memory of one of the processors. Further
the system renovates the file contents. Processors perform simultaneously.
First of all, this performance includes a forecast of the object movement
direction. The forecast data are used by the system to perform access to
the next window. Moreover, some results of every, processor may be trans-
ferred into the common line connected with the host-computer (it may be
a personal computer). These results may be used for visualization of the
situation. The visualization algorithms are implemented on the host-compu-
ter and serve for representation of information in a form for convenient a
user. The movement directions may be shown by pointers. Velocities may
be shown in the numerical form and so on. Usually every processor tracks
its own object. When the number of moving points is greater than the
number of processors, some processors (or even all) may track several ob-
jects. In this case, the reaction of the system is slowed down. The processors
receive access to information with the help of the gate scheme S1 and the
commutator-network Ω. We suppose that, at the initial stage, information
about objects location is received by processors from the discovery block.
Further they work independently using comparison of information obtained
at the previous and at the current stage.

7. Conclusion

Let us briefly consider the memory control scheme presented in Figure 1.
This scheme provides us with the possibility of increasing both the number
of memory modules and the number of address generators. The integrated
circuitry implementation of this scheme should allow the access range and



Memory organization with parallel access to information 91

capacity of the memory-processor channel to be essentially increased.
The detailed analysis of the memory control scheme shown in Figure 2

makes it clear that the hardware costs essentially increase with the growth
of N and complication of the access mode in the case of hardware implemen-
tation of address calculation and corrector. However, we can distinguish a
set of operations which are used for many interesting memory access modes:
integer addition and subtraction, integer multiplication, displacements, and
transfers.

In order to decrease the hardware costs and to increase the functional
capabilities of the system, we propose to include a small special processor
for address calculation for every memory module. The pipe-line mode of
address processing, together with availability of long sequences of a single
segment type, should allow us to combine high-speed characteristics of the
hardware implementation with the possibility of working with segments of
almost all usual types.

We can also say the following about the automatic system for dynami-
cal image analysis: an additional special discovery block is necessary. The
main problem of the discovery block is the search of new objects to transfer
information about them into the tracking block. Certainly, if we deal with
high velocities of objects and slow reaction of the system, it cannot track
their movement. In these cases, it is possible to lose moving objects from
the field of view.

References

[1] Colboum C.J., Heinrich K. Conflict-free access to parallel memories // J. of
Parallel and Distributed Computing. 1992. – N 14. – P. 193–200.

[2] Das S.K., Finocchi I., Petreschi R. Conflict-free star-access in parallel memory
systems // J. of Parallel and Distributed Computing. – 2006. – Vol. 66, Iss. 11.
– P. 1431–1441.

[3] Van Voorhis D.C., Morrin T.H. Memory systems for image processing // IEEE
Trans. on Computer. – 1978. – Vol. C-27, N 2. – P. 113–125.

[4] Van Voorhis D.C., Morrin T.H. Memory Systems for Image Processing. – Los
Catos, CA, August, 1975. – (IBM Systems Communication Division / Working
Paper 16 / A45).

[5] Van Voorhis D.C., Morrin T.H. United States Patent N3, 995, 253, November
30, 1976.

[6] Murzin F.A., Sluev V.A. A memory organization for parallel computers // New
Generation Computing J. – 1988. – Vol. 6, N 1. – P. 3–18.

[7] Bratsev S.G., Murzin F.A., Nartov B.K., Puntus A.A. The conflict of complex
systems. Models and control. – Moscow Aviation Inst., 1995. – ISBN 5-7035-
0554-2. (In Russian)



92 Alina Glodovski, Feodor Murzin, Tatiana Murzina

[8] Bratsev S.G., Murzin F.A., Nartov B.K. A parallel automatic system for image
processing // Computer Algebra and its Application in Mechanics. – 1992. –
Nova Science Publishers, Inc. – P. 129–133.

[9] Bratsev S.G., Murzin F.A., Nartov B.K. Optimum targets search and dynamic
image processing // Advances in Modeling & Analysis. – AMSE Press, France–
Russia. – 1993. – Vol. 26, N 4. – P. 1–11.


