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Trust-Region solvers: performance and
applications in geosciences

Nikolay I. Gorbenko

Introduction

The Trust-Region (TR) algorithms are relatively new iterative algorithms for
solving nonlinear optimization problems. High efficiency of the TR meth-
ods was demonstrated in a number of recent publications [1]. They have
the global convergence and local super-convergence, which differ them from
the line search methods, commonly used for solving Inverse Problems [2].
The TR techniques are used in a number of well-known SW libraries such
as IMSL, TAO, GALAHAD, LANCELOT, etc. the TR solvers were imple-
mented in FORTRAN. Let us explain the main difference of the TR meth-
ods from the classical Newton ones. Assume we have a current guess of the
solution for the optimization problem. An approximate model can be con-
structed near to the current point. Solution of the approximate model can
be taken as the next iteration point. The classical line search algorithms also
solve approximate models to obtain the search directions. However, in the
TR algorithms, the approximation model is only “trusted” in the region near
to the current iteration. This seems reasonable, because for general nonlin-
ear functions, the local approximate models (such as linear and quadratic
approximations) can only fit the original function locally. The region that
the approximate model is trusted is called “trust region”. The trust re-
gion is adjusted from iteration to iteration, i.e. if computations indicate
the approximation model fit the original problem quite well, the TR can be
enlarged. Otherwise when the approximation works not good enough the
trust region will be reduced.

1. Trust-Region algorithms

Trust-Region algorithms allow to solve:

• nonlinear least squares problem (without and with bound constraints);

• system of nonlinear equations (without and with bound constraints);

• minimization of functional (without constraints).

Let us explain some details of the TR approach through the example of
a nonlinear least squares problem:
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min
x∈Rn

‖F (x)‖ = min
x∈Rn

‖y − f(x)‖22, (1)

y ∈ Rm, x ∈ Rn, f : Rn → Rm, m > n,

where f is a continuous differentiable function. It is easy to see that step
for the TR method is the solution of the subproblem

min
x∈Rn

‖F (xk) + J(xk)Td‖22, where ‖d‖22 ≤ ∆k, (2)

that is the approximation of the target function in the neighborhood of the
current point xk, and J(xk) is the Jacobi matrix of F .

Consider the TR pseudo-code for solving a nonlinear least squares prob-
lem:

Step 1: Choose the initial guess x1 ∈ Rn, ∆1 > 0.

Step 2: Solution of (2) gives the value of dk.

If ‖F (xk)‖2 = ‖F (xk) + J(xk)Td‖2 then stop.

Compute rk =
‖F (xk)‖2 − ‖F (xk + dk)‖2

‖F (xk)‖2 − ‖F (xk) + J(xk)Tdk‖2
.

Step 3: Choose

xk+1 =

{
xk + dk, if rk > 0,
xk, otherwise.

Define

∆k+1 =


α1‖dk‖2, if rk < ν1,
2∆k, if ν1 ≤ rk < ν2,
max{α2‖dk‖2,∆k}, if rk ≥ ν2.

Step 4: k = k + 1, go to Step 2.

The main problem of the TR methods is to solve subproblem (2) that
was studied by many authors. The following lemma is well known [1]:

Lemma. A vector d∗ ∈ Rk is a solution to the problem

min
d∈Rn

(
gTd+ 1

2
dTBd

)
, ‖d‖2 ≤ ∆,

where g ∈ Rn, B ∈ Rn×n is a symmetric matrix, and ∆ > 0, if and only if
there exits λ∗ ≥ 0 such that (B+λ∗I)d∗ = −g and (B+λ∗I) is semi-definite,
‖d∗‖2 ≤ ∆ and λ∗(‖d∗‖2 −∆) = 0.
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The case where B + λ∗I has zero eigenvalues is called a “hard” case and
d∗ can be written down as d∗ = −(B+λ∗I)+g+ν, where ν is a vector in the
null space of B + λ∗I. Except for the hard case, λ∗ is the unique solution
of the equation

1
‖(B + λ∗I)−1‖2

− 1
∆

= 0.

For solving this equation we use the Newton method to calculate λ∗.
We describe how to use the TR region method for a nonlinear least square

method with a simple bound constraining. Let

min
l<x<u

f(x) = min
l<x<u

1
2
‖F (x)‖2.

The first order necessary conditions for a vector minimizer for (1) are stated
as

D(x)−2∇f(x) = D(x)−2F ′T (x)F (x) = 0, (3)

where D is the diagonal scaling matrix [3]:

D(x) = diag
(
|ν1(x)|−1/2, |ν2(x)|−1/2, . . . , |νn(x)|−1/2

)
, (4)

with

νi =



xi − ui, if ∇f(x)i < 0 and ui <∞,
xi − li, if ∇f(x)i > 0 and li > −∞,
min(xi − li, ui − xi), if ∇f(x)i = 0 and ui <∞ or li > −∞,
−1, if ∇f(x)i < 0 and ui =∞,
1, if ∇f(x)i > 0 and li = −∞,
1, if ∇f(x)i = 0 and ui = −li =∞.

for i = 1, 2, . . . , n.
Let Ω = {x ∈ Rn; l ≤ x ≤ u}, and write int(Ω) for a strict non-empty

interior of Ω. At each iteration, the basic structure of the method involves
the solution to an elliptical trust-region subproblem and computation of a
search step to update the current iteration. Let xi ∈ int(Ω) and trust-region
size ∆ > 0 be given. We consider the elliptical trust-region subproblem
given by:

min
p

{
mk(p) : ‖Dkp‖ ≤ ∆k

}
,

where mk(p) is quadratic model for f at xk, i.e.

mk(p) =
1
2
‖Fk + F ′kp‖2 =

1
2
‖Fk‖2 + F Tk F

′
kp+

1
2
pTF ′Tk F ′kp. (5)

Let ptr(∆k) and pc(∆k) be a solution and the Cauchy point of trust-region
subproblem (4), respectively. Namely, pc(∆k) is a minimizer of mk along
the scaling steepest descent direction dk subject to the satisfaction of the
trust-region bound, i.e.
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pc(∆k) = τkdk = −τkD−2
k F Tk F

′
k, (6)

where
τk = arg min

x>0

{
mk(τdk) : ‖τDkdk‖ ≤ ∆k

}
.

The function mk(τdk) is quadratic in τ , and the unconstrained minimizer
has the form τ = −∇fTk dk/‖F ′kdk‖2 and τk is given by

τk = min

(
‖D−1

k F ′Tk Fk‖2

‖F ′kD
−2
k F ′Tk Fk‖2

,
∆k

‖D−1
k F ′Tk Fk‖

)
(7)

The search step p(∆k) used in our algorithm is defined by a linear combi-
nation of the two vectors ptr(∆k) and τk, i.e.

p(∆k) = tp̄c(∆k) + (1− t)p̄tr(∆k) (8)

where t ∈ [0, 1] is a suitably chosen scalar. The vector p̄c(∆k) in (8) is equal
to q, where q = q1 − αq2 is component-wise given by

(q1)i =


(l − xk)i, if (xk + ptr(∆k))i ≤ li,
ptr(∆k)i, if li < (xk + ptr(∆k))i < ui,
(u− xk)i, if (xk + ptr(∆k))i ≥ ui;

(9)

(q2)i =


(l − xk)i, if (xk + ptr(∆k))i ≤ li,
0, if li < (xk + ptr(∆k))i < ui,
(u− xk)i, if (xk + ptr(∆k))i ≥ ui.

(10)

At the kth iteration we consider the second degree polynomial r(α) =
mk(q1 − αq2). On the basis of the current information, r(α) simulates the
restriction of f at the points q1 − αq2 for α varying from 0 to 1. Therefore
we compute the value α∗ that minimizes this model and choose α according
to fixed lower and upper bounds, 0 < α1 < α2 < 1. This means that we set

α∗ = arg min
α
r(α) =

F Tk F
′
kq

2 + (q1)TF ′Tk F ′kq
2

(q2)TF ′Tk F ′kq
2

, α = max(α1,min(α∗, α2)).

Now we consider the choose of the vector p̄c(∆k). If the point (xk +
pc(∆k)) ∈ int(Ω), we simply take p̄c(∆k) = pc(∆k). Otherwise, p̄c(∆k) is a
simple scaling of pc(∆k) obtained by a step-back along it. In other words,
letting λk be the stepsize along pc(∆k) to the boundary, i.e.

λk = min
l≤x≤u

∆k
i , ∆k

i =

max
{

(l − xk)i

(pc(∆k))i
,

(u− xk)i

(pc(∆k))i

}
, if (pc(∆k))i 6= 0,

∞, if (pc(∆k))i = 0.
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The step p̄c(∆k) is given by

p̄c(∆k) =

{
pc(∆k), if λk > 1,
θλkpc(∆k), otherwise,

(11)

for some fixed θ ∈ [0, 1].
The scalar t in (8) is chosen in order to satisfy the following conditions

ρ(p(∆k)) =
mk(0)−mk(p(∆k))
mk(0)−mk(p̄c(∆k))

≥ β1, (12)

for the given constant β1 ∈ (0, 1) and

mk(p(∆k)) ≤ mk(ptr(∆k)). (13)

To meet conditions (12), (13), we compute the scalar t in (8) according to
the following strategy. If ρ(ptr(∆k)) ≥ β1, we simply set t = 0, i.e. we
choose p(∆k) = p̄tr(∆k) as potential step. Otherwise, we fix p(∆k) so that
xk + p̄tr(∆k) is the point which lies on the segment from xk + p̄tr(∆k) to
xk + p̄c(∆k) and satisfies ρ(p(∆k)) = β1.

In fact, p(∆k) is given by (8) setting

t =
zTu− w
‖u‖2

, (14)

where
u = F ′k(p̄c(∆k)− p̄tr(∆k)), z = −(Fk + F ′kp̄tr(∆k)),

w =
(

(zTu)2 − 2‖u‖2
(
F Tk F

′
k(p̄tr(∆k)− β1p̄c(∆k))−

1
2
‖F ′kp̄tr(∆k)‖2 −

β1

2
‖F ′kp̄c(∆k)‖2

))1/2

.

A good agreement between the model function mk and the target func-
tion f is ensured for the following standard condition

ρf (p(∆k)) =
f(xk)− f(xk + p(∆k))
mk(0)−mk(p(∆k))

≥ β2 (15)

with a given constant β2 ∈ (0, 1). If this condition is not met, we reject
p(∆k) and adjust the trust-region size ∆k with a successive reduction so
that p(∆k) satisfies the accuracy requirement (14).
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Algorithm (the kth iteration).
Let xk ∈ int(Ω), ∆k > 0, β1, β2, δ1 ∈ (0, 1), ∆min > 0, α ∈ (0, 1), be given.
Compute the matrix Dk by (3).
Set ∆̄k = max{∆k,∆min}, set ∆∗k = ∆̄k.
Repeat

Set ∆k = ∆∗k.
Find the solution ptr(∆k) to problem (4).
Compute the Cauchy step pc(∆k) by (6).
Compute p̄tr(∆k) and p̄c(∆k) by (9)–(11).
Find t such that (12), (13) be satisfied.
Set ∆∗k = δ1∆k.

2. Numerical results

We apply our TR methods to several standard test problems found for the
unconstrained and constrained optimizations in collection tests from CUTEr
and Minpack. The TR solvers show the excellent performance vs. VNI IMSL
Fortran library v5.0 and TAO v1.8.1. On benchmark tests, the TR solvers
give the following average 10 times speed-ups vs. IMSL and 5 times average
speed-ups vs. TAO (Figure 1).

We use the common 1D basin modeling equation (16) derived from
Darcy’s law and the assumption of mass conservation:

R(t, z)
∂P (t, z)
∂t

=
∂

∂z

(
D(t, z)

∂P (t, z)
∂z

)
+ f(t, z), (16)

where P is the excess pore pressure, R is the effective compressibility of
porous media, D is the fluid conductivity matrix with allowance for the
permeability anisotropy and f is a sources term that includes external and

Figure 1. Comparison with IMSL
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internal overpressuring factors: sedimentation and hidrocarbon generation [5].
It is needed to solve equation (16) for P as a function of depth z and time
t with some imposed boundary and initial conditions.

The forward model operator C[x] corresponding to the numerical solu-
tion of (1) is determined for a limited set of parameters X controlling the
current values of the coefficients of (16). Some of the control parameters such
as isobaric extensibility and isothermal compressibility of the pore water are
treated as fixed physical properties. Parameters such as a temperature gra-
dient, compaction and conduction constants are considered to be regionally
fixed parameters. The sedimentation rate and the lateral conduction are
specified at each particular location. A data transformation operator T [a]
is introduced, which transforms data from the space A of observations to
a space with common scaling that is the modeling output. The inverse
problem with respect to the present-day excess pore pressure profile can be
formulated as minimization of an object function, describing the norm of
the vector of misfit between the real data and the modeling results, i.e.,
nonlinear least squares.

The modeling-inversion scheme is a common tool in both the prediction
from seismic data and the estimation from well logs. The model can be

Figure 2. Porosity (top) and pressure (bottom) comparison on synthetic data
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Figure 3. Application of the modeling-inversion technique to data derived from
the sonic log: results of porosity (top) and pressure (bottom) comparison

calibrated by the same scheme when sufficient data are available. This
scheme was verified on synthetic data (Figure 2). Practical examples from
the North Sea reveal that our method is fully applicable to real data
(Figure 3).
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