
Bull. Nov. Comp.Center, Comp. Science, 34 (2012), 93–103
c⃝ 2012 NCC Publisher

Graph algorithm interactive visualization

D. S. Gordeev

Abstract.
This paper describes a new method of graph algorithm visualization based on a

dynamic approach. Graph algorithms are algorithms processing graphs. The main
advantages of this approach are the possibility to set an algorithm as an input
parameter, to set the graph as an input parameter, and also to adjust visualization
flexibly. Visualization of algorithms is carried out by means of a set of configurable
visual effects. The class of hierarchical graphs is used as an input parameter. This
allows using any type of input graphs and presenting additional data appearing
during the algorithm work as part of a single visualized graph model. This approach
can be used both in research and for education.

Keywords: graph, hierarchical graphs, algorithm, visualization, visual effect

1. Introduction

The graph theory methods have been used successfully to model various
problems that arise in computer science and in practical applications. For
example, constructing the syntax trees in programming, graph coloring prob-
lems in the design of electrical chains, finding the shortest way in the tasks
of creating computer games, etc. More information can be found in [1].
Graph drawing is a useful way of representation of these models, and visual-
ization of graphs is used in many applications for the design and analysis of
communication networks, related documents, as well as static and dynamic
structures of programs. However, systems of related objects frequently are
dynamic. For example, relations between objects or properties of objects can
be changed. If transformation processes can be formalized and presented in
the algorithmic form then it is useful to create a graphical representation
of transformations. There are methods presenting transformations both in
a static and dynamic form. For example, Figure 1 shows visualization of a
sorting algorithm with a static image. This example is described in more
detail in [2].

The following figure shows an example of visualization of a dynamic
system algorithm. More details about this system can be found in [3, 4]

These methods allow us to study graph algorithms and in particular the
processes in connected systems. Research in visualization of algorithms is
mostly focused on the construction of examples of visualization. The main
distinguishing feature of working visualizers is their narrow specialization in
the sense that a new visualizer should be created for each new algorithm.

94 D. S. Gordeev

Figure 1. Visualization of a heapsort algorithm using static image

Figure 2. The algorithm is implemented in the form of an external module to the
Higres system

2. Algorithm visualization methods

This paper describes a method for constructing visualizations based on vi-
sual effects generated by an input algorithm. Visualization of a graph is
a graphic representation of graph elements. Usually graph elements match
some shapes, which makes it possible to build a graph image. For example,
vertices are displayed in a form of circles and, edges in a form of arc lines,
broken lines or smooth curves. Applications of graph algorithm visualiza-
tion can be divided into two types according to the method they implement:
interesting events and the data-driven method [5]. Methods of the first type

Graph algorithm interactive visualization 95

are based on selection of events that occur during execution of an algo-
rithm, for example, comparing the vertex attribute value or removing an
edge. Methods of this type create a visual effect for each interesting event.
Methods of the second type are based on data changing. During an oper-
ation, the memory status is changed, for example, the values of variables.
Further these changes are visualized in some understandable way. In the
simplest case such changes can be displayed in a form of a table of vari-
able values. This approach is used in debuggers of integrated development
environments.

The existing algorithm visualizers have several disadvantages. One of the
major drawbacks is that if there is a need to build visualization of an algo-
rithm arbitrarily close to the original algorithm, then it is necessary to build
a new visualizer. Visualizers often do not show the correspondence between
the algorithm instructions and the generated visual effects or do not allow
reassignment of visual effects to the corresponding events. The disadvan-
tages of some visualizers can also include excessive declarative instructions
in the text of the algorithm. Figure 3 shows the frame constructed by the
algorithm visualization system named Leonardo [6, 7]. As it can be seen, the
Leonardo system uses directives in a specific format, /** Not VisualUpdate
**/, and similar. This declarative structure is used to group visual effects
or to run them directly.

3. Interactive visualization model

A new algorithm visualization model based on the dynamic approach has
been created. The main point of the suggested model is that the given al-
gorithm is formulated in some programming language that allows us to use
instructions in terms of graphs and to execute the program derived from the
text of the algorithm after a set of transformations. More details about the
model can be found in [8]. The result of the program execution is informa-
tion which is to be used in creation of the underlying algorithm visualization.
An example of such instruction can be adding an edge or a change in the
attributes of vertices. The following example shows the breadth-first search
algorithm for any graph. In the given case, Get and Set instructions are
used for reading and changing the graph element’s attribute values. These
instructions have formats Get(vertex, attributename) and Set(vertex, at-
tributename, attributevalue), respectively. To construct a visualization of
the breadth-first search algorithm, the state attribute is appointed to each
graph vertex. The value of the state attribute reflects whether the vertex
was visited during graph traversal.

96 D. S. Gordeev

Figure 3. An example of visualization of operations on binary heaps in the
Leonardo system, AC Programming Environment for Reversible Execution and
Software Visualization

VertexQueue.Enqueue(Graph.Vertices[0]);
while (VertexQueue.Count > 0)
{
Vertex v = VertexQueue.Dequeue();
Set(v, ”state”, ”visited”);
foreach(Edge e in v.InEdges)
{
Vertex t = e.PortFrom.Owner;
string c = Get(t, ”state”);
if(c != ”visited”)
{
Set(t, ”state”, ”visited”);
VertexQueue.Enqueue(t);
}
}
foreach(Edge e in v.OutEdges)
{
Vertex t = e.PortTo.Owner;
string c = Get(t, ”state”);

Graph algorithm interactive visualization 97

if(c != ”visited”)
{
Set(t, ”state”, ”visited”);
VertexQueue.Enqueue(t);
}
}
}
VertexQueue.Clear();

Each instruction of the algorithm generates one or more images of the
current state of the graph model. The graph model is a hierarchical marked
graph. The hierarchical graph H is a tuple of two elements: the first is a
graph G and the second is a tree of fragments. Each fragment is a subgraph
of the graph G. For any two fragments U and V, only one of the following
properties holds: U is a subgraph of V, V is a subgraph of U, or U equals
V. More details about hierarchical graphs can be found in [1]. It is useful to
highlight the current executing instruction in each image because it allows
a user to keep attention on valuable events at this moment. To solve the
problem of highlighting the current executing instruction in the image, the
following approach is used. Each text line of an algorithm can be interpreted
as a function. Also, each text line has a numeric index in all text lines. So
that order value is added to arguments of the function corresponding to the
text line. This additional parameter is the number of the current executing
algorithm instruction. After this transformation, the text of the breadth-
first search algorithm from the above example looks like this:

VertexQueue.Enqueue(Graph.Vertices[0]);
while (WhileCondition(2, VertexQueue.Count > 0))
{
Vertex v = VertexQueue.Dequeue(3);
Set(4, v.ID, ”state”, ”visited”);
foreach(Edge e in ForeachCollection(5, v.InEdges))
{
Vertex t = e.PortFrom.Owner;
string c = Get(7, t, ”state”);
if(IfCondition(8, c != ”visited”))
{
Set(10, t, ”state”, ”visited”);
VertexQueue.Enqueue(11, t);
}
}
foreach(Edge e in ForeachCollection(13, v.OutEdges))
{
Vertex t = e.PortTo.Owner;
string c = Get(16, t, ”state”);

98 D. S. Gordeev

if(IfCondition(17, c != ”visited”))
{
Set(19, t, ”state”, ”visited”);
VertexQueue.Enqueue(20, t);
}
}
}
VertexQueue.Clear();

The above example shows changes in the attributes of the graph ele-
ments, too. This is a typical situation for algorithms implementing only
traversal of a graph - a method when all graph vertices are visited one by
one. For example, the Pruefer encoding algorithm constructs a sequence of
numbers by the given tree graph. During the coding process, the vertices
of the graph are removed one by one. To perform this operation, the Re-
moveVertex(. . .) instruction should be used, which leads to generation of a
visual effect of the corresponding vertex disappearing. Here is an example
of the Pruefer encoding algorithm, how it can be formulated as a parameter
of the graph algorithm visualization system:

int i=0;
List<Vertex> Leafs = new List<Vertex>();
int n = Graph.Vertices.Count;
while(i++ <= n-2)
{
Leafs.Clear();
foreach(Vertex v in Graph.Vertices)

if(v.OutEdges.Count == 0) Leafs.Add(v);
Vertex codeItem = Leafs[0].InEdges[0].PortFrom.Owner;
Output.Add(codeItem);
RemoveVertex(Leafs[0]);
}

Each algorithm instruction generates some information during execution
of the transformed text of the original algorithm. This information describes
the number of the current instruction, the name of an attribute of a graph
element, the previous value of the attribute, a new value of the attribute
and the identifier of the graph element. This information allows us to get
the full log of operations executed over graph elements. This operation log
contains the detailed information on the state of the graph model during
the algorithm running. Further the log of operations, the input graph and
the original text of the algorithm can be used to generate the algorithm
visualization. Each operation log entry corresponds to some graphical effect
over visual representation of graph elements. The simplest example of the
visual effect for the breadth-first search algorithm is to change the color of

Graph algorithm interactive visualization 99

the graph vertex representation when a state attribute of the vertex has been
changed and to change the color of the text of the corresponding instruction.

4. Algorithm visualization system

A system of graph algorithm visualization has been constructed using the
suggested model. This system consists of several components: an algorithm
execution module, a graph editor and a graph algorithm visualizer. It can be
assumed without loss of generality that data are passed between components
in a text form. This is useful if the components are implemented on different
platforms and with different tools. The purpose of the algorithm execution
module is to generate the execution log. The algorithm running is separated
from its visualization. This allows us to perform the algorithm once and after
that the operation log can be used to visualize and refine the visualization
many times. This can be useful when computationally-intensive algorithms
are visualized. In such cases the second cycle of execution of the algorithm
is complex.

To provide correct work of the algorithm execution module, it is neces-
sary to meet a significant condition. Since any existing compiler or inter-
preter can be used to create this module, the algorithm must be formulated
in the language supported by the selected compiler or interpreter. Actu-
ally this is not a restriction on the algorithm implementation language since
many programming languages allow graph structures to be used in the pro-
gram source code. So, the given algorithm text can be considered as a ready
program source code. Also this allows us to transmit the input graph in this
compiled program and to generate the log of operations.

Another significant restriction relates to the algorithmic complexity. In
this approach, it is reasonable to visualize only efficient algorithms, because
it will take much time to build the operation log of execution of an inefficient
algorithm. We can use a small input graph for this case. This assumption
allows us to construct visualization for a reasonable time.

The algorithm execution module takes the given algorithm text in an
appropriate programming language, executes it and returns the log of oper-
ations generated during the algorithm run on a particular graph. The log
of executed operations contains information about all changed attributes
of graph elements and about graph elements added or removed during the
execution. Further this information is used to generate the algorithm visu-
alization.

The second main component of the visualization system is the visualizer
itself. At its input, this component receives the algorithm text, the graph,
the log of operations and additional graphical options. A log information
item is added by special instructions created at the stage of preparation of
the algorithm text. For example, these special instructions are the functions:

100 D. S. Gordeev

Set(. . .), Get(. . .), IfCondition(. . .), WhileCondition(. . .) and ForeachCol-
lection(. . .). Their first argument is the number of the corresponding text
line. IfCondition(. . .) and WhileCondition(. . .) do not perform any changes
in the graph model state but at least allow us to make a visual selection of
the text line where it was inserted. ForeachCollection(. . .) is to be used
to generate information which allows highlighting a set of vertices before
they will be actually enumerated. To add these functions into appropriate
places of the original text of the algorithm, it is sufficient to use a contextual
replacement. The purpose of the preparation stage is to eliminate the need
for declarative structures, which have no relation to the actual nature of the
algorithm.

A log item may also contain information about the value of an attribute
of a graph element. A graph element is a vertex, an edge or a port. If
there is a vertex with its incident edge, then a port is a point where the
edge enters the vertex. When rendering, it can be useful that the points
are allocated for these additional objects. Ports simplify calculation of coor-
dinates of graphical primitives which represent the edge elements. Strictly
mathematically, it is possible to simulate a port with a labeled vertex. So
the class of graphs with ports is isomorphic to the class of all graphs.

An attribute of a vertex, an edge or a port can have a string name and a
string value. The log of operations stores the previous value of the attribute
for a particular graph element. This information is also useful for building
the visualization, since it is possible to make a smooth visual effect from a
previous value of an attribute to its new value.

It is not obvious how to bind information from a log item to the visual
effect. In this case, a user needs to interfere in order to set an explicit binding
between the set of attributes in the text of the algorithm and the desired
visual effects. For example, if the operation of a log item is about changing
the coordinates of the graph element reflected with the use of the attribute
“position”, then it is reasonable to bind the attribute with the visual effect,
which leads to a shift of the graph element. Another user example is to bind
all log items to the effect of a color mark of a current graph element under
processing. It can be a current vertex visited in the algorithm of deep-first
search or in any other graph traversal. In this aspect the suggested approach
is close to the interesting events approach, where an algorithm instruction
is an interesting event.

The figure below shows an example of visualization of the deep-first
search algorithm on the graph, which is actually a binary tree graph. The
figure is one of the screenshots taken during the process of visualization
of the deep-first search algorithm. The left side of the figure displays the
text of the algorithm formulated in terms of graphs. The attribute of a
graph vertex state indicates the fact that the vertex has already been visited
during the process of the graph traversal. A line of the algorithm text has

Graph algorithm interactive visualization 101

one of the following states: dark thin, light thin and thick. The first state
means that the instruction has been executed at least once. The second
state means that the current image and the last shown visual effect is the
result of this instruction. The last state means that the instruction has not
been executed yet. The right part of the figure displays the graph model,
which is a hierarchical graph with attributes. Only if this attribute is set,
the corresponding attribute will be created during visualization. In this
example, the visited vertices get the state attribute that changes the color
of a vertex. Also, this attribute’s value corresponds to the increase of line
width showing the graph vertex circle. Vertices shown in a thin line have
not been visited yet.

Figure 4. Visualization of the deep-first search algorithm. This is one of interme-
diate images

There are methods that improve understanding of a graph algorithm vi-
sualization based on visual effects. If there is a rendering context of a visual
effect for a log item, then this context can be used to improve understanding
of the algorithm. For example, a smooth visualization along the edge con-
necting the previous and the current vertices can be used for visualization
of the deep-first search algorithm. In this case, the context of visualization
for the current vertex is the previous vertex. If the previous vertex is not
incident to the current one, then the following method can be used. It is
necessary to find the shortest path from the current vertex to the previous
one and, after that, to apply a smooth visualization along the edges of this
path. This method helps us to improve understanding of visualization of the
algorithm because a user can track the path of the graph vertices traversal.
Figure 4 shows how visualization is used with a rendering context. In this
example, vertex 13 has been visited after vertex 14 and vertex 14 is the ren-

102 D. S. Gordeev

dering context for vertex 13. This means that, when vertex 13 is visited, all
edges from the shortest path between these two vertices will be rendered ac-
cording to the visual effect specified in the settings. So, the thickened light
line is used for drawing edges which belong to the path from the current
vertex to the root of the tree graph. A thick dark line is used for drawing
edges which are incident to already visited vertices.

Displaying of additional data structures can also be used to improve
understanding of visualization of a graph algorithm. For example, the deep-
first search algorithm uses a stack and the breadth-first search algorithm
visualization uses a queue. The content of a stack or a queue can be rep-
resented as a graph. Since the visualization system allows us to use the
hierarchical graphs, a stack graph or a queue graph can be included into
a graph model for a particular visualization. So the working graph model
consists of a graph with two vertices. The first vertex contains a stack graph
and the second contains an input graph. Such graph model can be visualized
with the created module of the system of graph algorithm visualization. The
queue or stack size is changed during execution of the given algorithm and
the corresponding vertices are added or removed from the stack graph. Hi-
erarchical graphs are helpful for this purpose. If there is no stack or queue,
then a tree of fragments only consists of one fragment, the input graph. For
a stack the graph model consists of three fragments: a root and two children.
The first child is the input graph and the second is a graph representation of
the stack. So, if the given algorithm uses an input graph and N additional
structures, then the tree of fragments contains N+2 elements. It is a root
element and its N+1 children, one of which is the input graph and others
are graph representations of additional data structures.

5. Conclusion

This paper describes the model of interactive visualization of graph algo-
rithms, providing the capability to build the algorithm visualization with
the help of a flexible system of visual effects and using the algorithm as an
input parameter. Also, the paper describes a method to improve under-
standing of the graph algorithm visualization using additional information
generated during execution of the input algorithm. A system for graph al-
gorithm visualization has been created. It implements visualization in two
steps: first, the algorithm text is transformed into a program ready for exe-
cution; after that the program is executed with the given graph as a param-
eter. The result is a log of items, each of which contains information about
changes in the graph model state. Second, the visualizer receives the input
graph, the original algorithm text, the log of execution and visual effects set-
tings. As a result, the visualization system works out a sequence of images
corresponding to the graph model of intermediate states of the algorithm.

Graph algorithm interactive visualization 103

The visualization system allows testing of the proposed method of graph
algorithm visualization. A substantial set of graphic effects significantly im-
proves control of the algorithm visualization. Interactivity of visualization
is supported by the capability to configure visual effects, to change the text
of the algorithm and to build visualization once again. The implemented
system allows us to observe the performed changes immediately. Any hier-
archical graph can be a parameter for the visualization system. The class of
algorithms admissible for our system is a subject for further research. At the
moment, no restrictions are found and the set of implemented visual effects
is predefined. An opportunity to extend the set of effects dynamically also
is a matter for further research.

References

[1] Kasyanov V.N., Yevstigneyev V.A. Graphs in programming: processing, visu-
alization and application.– SPb. BHV-Petersburg, 2003. – 1104 with. silt. ISBN
5-94157-184-4

[2] http://corte.si/posts/code/visualisingsorting/

[3] Lisitsyn I.A., Kasyanov V.N. Higres — visualization system for clustered graphs
and graph algorithms // Proc. of Graph Drawing 99. – Berlin a.o.: Springer
Verlag, 1999. – P. 82–89. — (Lect. Notes in Comput. Sci.; Vol. 1731).

[4] Higres system. – Available at http://pcosrv.iis.nsk.su/higres/

[5] Demetrescu C., Finocchi I., Stasko J.T. Specifying Algorithm Visualizations:
Interesting Events or State Mapping? // Proc. of Dagstuhl Seminar on Software
Visualization – Lect. Notes Comput. Sci. – 2001. – P. 16–30.

[6] Demetrescu C., Finocchi I. A general-purpose logic-based visualization frame-
work
Proc. of the 7th Internat. Conf. in Central Europe on Computer Graphics, Vi-
sualization and Interactive Digital Media (WSCG’99), Plzen, Czech Republic,
February 1999.. – P. 55–62.

[7] Leonardo system. – Available at
http://www.dis.uniroma1.it/∼demetres/Leonardo/

[8] Gordeev D.S. Model of interactive visualization of graph algorithms. // Works of
KIS 2011 /Working seminar “The knowledge-intensive software”. – Novosibirsk:
A.P. Ershov Institute of Informatics Systems, Siberian Branch of the Russian
Academy of Sciences, 2011. – P. 58–62.

104

