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Causal trees and timed causal trees categorically∗

N. S. Gribovskaya

Abstract. Causal trees represented by Darondeau and Degano are one of the truly
concurrent model for distributed systems and processes. The model is more basic
than other truly concurrent models because it defines concurrency and causality
with respect to a branch, but on the other hand it is more expressive than the
latter because its possible runs can be freely specified in terms of a tree.

The intention of the paper is to connect two distinct approaches to which the
category theory has been applied in order to investigate causal trees and their
timed extensions. In particular, we establish that in the case of causal trees, the
approaches are equivalent, but it is not true in the case of timed causal trees.
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1. Introduction

In [13], Winskel used the category theory to relate and unify the many con-
currency models. The main idea is to formalize models as categories: each
model is equipped with a notion of morphism. Theoretical category no-
tions such as adjunctions and (co)reflections can then be applied to clarify
the relationships between the models. This approach has helped to clarify
the connections between interleaving and truly concurrent models such as
synchronization trees, transition systems, event structures, trace languages,
asynchronous transition systems, Petri nets, causal trees and others (for
instance, see [1, 14, 5]). Later, in [8], the authors establish connections be-
tween some real-time extensions of the concurrency models. This approach
has several advantages. First, the structure in the category of models (for
example, products and coproducts, see [2]) allows us to construct compos-
ite models from simpler sub-components. Second, the categorical approach
often makes it straightforward to extend and generalize results by modify-
ing the structures under consideration. Finally, the approach has also been
applied to unify and understand apparent differences between the extensive
amount of research within the field of behavioral equivalences. For example,
in [7] Joyal, Nielsen, and Winskel have proposed abstract ways of capturing
the notion of behavioral equivalence through open maps based bisimilarity
and its logical counterpart — path bisimilarity. As shown in [7, 10, 6, 11, 12],
bisimilarity induced by open maps makes possible a uniform definition of the
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numerous suggested behavioral equivalences (e.g., trace and testing equiva-
lences, bisimulation, barbed and weak bisimulations, strong history preserv-
ing bisimulation, etc.) across a wide range of models for concurrency (e.g.,
transition systems, event structures, Petri nets, timed transition systems,
timed event structures, etc.).

In [9], Meseguer and Montanari introduced another categorical approach
in the setting of the model of Petri nets. According to it, each Petri net can
be regarded as a labelled transition system for its operational semantics, in
which the states are markings and the transitions are sequential and parallel
compositions of the events of the net. In fact, such transition system yields
a category called the behavior category of the Petri net. Then the authors
defined a semantic category of Petri nets, whose objects are their behavior
categories.

In [3], Brown and Gurr established a precise connection between the
Winskel’s category of Petri Nets (in which morphisms consider only a static
structure) and the semantic category of Petri Nets (in which morphisms
consider a purely dynamic behavior of nets) and applied these results to the
Petri Nets timing.

This paper connects the two mentioned above approaches in the setting
of another truly concurrent model — causal trees of Darondeau and Degano
[4] — and its timed variant — timed causal trees. In particular, we establish
that in the case of causal trees the approaches are equivalent, but it is not
true in the case of timed causal trees.

The rest of the paper is organized as follows. The basic notions and
notations related to causal trees and definitions of the structural (whose ob-
jects are causal trees) and semantic (whose objects are behavior categories)
categories of causal trees (CT and CT, resp.) are introduced in Section 2. In
the next section, we prove that the categories mentioned above are equiva-
lent. The timed extension of causal trees and two categories of timed causal
trees are represented in Section 4. In Section 5, we establish a coreflection
between the semantic category whose objects are behavior categories with
timings and the structural category of timed causal trees. Section 6 contains
conclusion and some remarks on future work.

2. Causal trees and their categories

The causal trees were introduced by Darondeau and Degano in the late
1980s [4]. These trees are a special kind of synchronization trees with en-
riched action labels that supply information about the transitions that are
causally dependent on each other.

Recall some elementary definitions of causal trees theory. For a start, we
introduce some auxiliary notions and notations. Let L be a finite alphabet
of actions. Let us consider a definition of the concept of synchronization
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trees.

Definition 1. A synchronization tree S is a tuple (S, sin, L, T ), where S
is a set of states with the initial state sin and T ⊆ S × L × S is a set of
transitions, such that

(i) for all states s ∈ S, there exists a sequence sin
a1−→ s1 . . . sk−1

ak−→ sk

(k ≥ 0) such that s = sk,

(ii) for all sequences s0
a1−→ s1 . . . sk−1

ak−→ sk (k ≥ 0), if s0 = sk then

k = 0,

(iii) if s′
a−→ s and s′′

a′−→ s, then s′ = s′′ and a = a′.

We shall write s
a−→ s′ to denote a transition (s, a, s′).

Thus, we have that in a synchronization tree every state is reachable
and there is no backwards branching or cycles. Moreover, it holds that in
a synchronization tree S for all states s ∈ S there exists a unique sequence

sin
a1−→ s1 . . . sk−1

ak−→ sk (k ≥ 0) such that s = sk, due to the items (i)

and (iii). We denote the sequence as rs.
Now, we can recall the definition of causal trees.

Definition 2. A causal tree C over L is a tuple (S, sin, L, T,<), where
(S, sin, L, T ) is a synchronization tree over L and <⊆ T × T , the causal
dependency relation, is a strict order such that if (s, σ, s′) < (s′′, σ′, s′′′),

then there exists a sequence s′ = s0
σ1−→ s1 . . . sk−1

σk−→ sk = s′′ (k ≥ 0).

Intuitively, this condition reflects a natural property of causality: if a
transition is the cause of another transition, then the first transition must
have happened before the second one. We say that two transitions (s, σ, s′),
(u, σ′, u′) ∈ T are consistent (denoted (s, σ, s′) Con (u, σ′, u′)) iff they appear
on the same branch. Also, we say that two consistent transitions (s, σ, s′)
and (s′′, σ′, s′′′) are concurrent iff they are not identical and not related by <.
Note that, in contrast to event structures, here concurrency is meaningful
only when interpreted with respect to a branch.

Example 1. An example of a causal tree, C1, is depicted in Figure 1. This
causal tree consists of six states (s0, s1, s2, s3, s4 and s5) and five transitions
((s0, a, s1), (s1, c, s2), (s0, b, s3), (s3, a, s4) and (s4, c, s5)). Moreover, the
first transition is the cause for the second one and the third transition is
the cause for the fifth one. It is clear, that (s0, b, s3) and (s3, a, s4) are
concurrent transitions, but (s0, b, s3) and (s1, c, s2) are not.
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(s0, a, s1) < (s1, c, s2);
(s0, b, s3) < (s3, c, s5).C1 :

Figure 1. An example of a causal tree

In 2007, Fröshle and Lasota [5] define the structural category of causal
trees and investigated how the category relates to other model categories.
Now, we are ready to introduce this category. Note that the morphisms of
the category preserve concurrency as the morphisms of other truly concur-
rent models.

Lemma 1. The following data:

• objects are causal trees over L,

• morphisms from an object C = (S, sin, L, T , <) to an object C′ =
(S′, s′in, L, T ′, <′) are functions f : S → S′ such that such that
f(sin) = s′in, for all (s, σ, s′) ∈ T it holds that (f(s), σ, f(s′)) ∈ T ′,
and if (f(s), σ, f(s′)) <′ (f(u), σ′, f(u′)) then (s, σ, s′) < (u, σ′, u′),
for all (s, σ, s′) Con (u, σ′, u′),

• composition is given by function composition,

define a structural category CT of causal trees over L.

Define the behavior of causal trees. A run of C is a sequence r := sin = s0
σ1→
K1

s1 . . . sn−1
σn→
Kn

sn (n ≥ 0), where Ki = {j | 1 ≤ j < i, (sj−1, σj , sj) <

(si−1, σi, si)}. We identify the state sn of the run r as last(r). The run r as
above is said to generate the word α(r) = σ1 . . . σn and the causal sequence
cas(r) = K1 . . . Kn. The set of runs of C is denoted as Runs(C).

Example 2. Contemplate the causal tree C1 in Figure 1. It holds, that r :=
s0

a→
∅

s1
c→

{1}
s2 is a run of C1. Moreover, r generates the word ac and the

causal sequence ∅{1}.

Now we define the behavior of a causal tree C by the category with the
runs of C as objects and the extensions of the runs as morphisms.
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Lemma 2. Let C = (S, sin, L, T,<) be a causal tree over L. The following
data:

• objects are the runs of C,
• morphisms are run extensions, i.e. µ : r → r′ is a morphism from a

run r to a run r′ if and only if r is a prefix of r′,

• composition of morphisms is given by composition of functions,

define a category Beh(C) (the behavior category of C).

We expect a map between behavior categories to indicate how to simu-
late, or implement, the runs of one causal tree in another. An evident choice
of a map between behavior categories is a structure-preserving functor.

Lemma 3. The following data:

• objects are the behavior categories generated by causal trees over L,

• morphisms are functors λ : Beh(C) → Beh(C′) (i.e. mappings that

(i) associate to each object r of Beh(C) an object λ(r) of Beh(C′),

(ii) associate to each morphism µ : r → r′ of Beh(C) a morphism
λ(µ) : λ(r) → λ(r′) of Beh(C′) and preserve identity morphisms
and the composition of morphisms)

such that for all objects r of Beh(C) with cas(r) = K1 . . .Kn, α(λ(r)) =
α(r) and cas(λ(r)) = K ′

1 . . .K
′
n with K ′

i ⊆ Ki (1 ≤ i ≤ n),

• composition is given by functor composition,

define a semantic category CT of causal trees over L.

3. Relating the categories CT and CT

In this section, we will obtain a natural connection between a category whose
objects are behavior categories and a category whose objects are causal trees.
First, let us establish the following useful fact.

Lemma 4. Given a morphism f : C → C′ of CT, there is a functor f̄ :
Beh(C) → Beh(C′) which takes an object r = sin

σ1→
K1

s1 . . . sn−1
σn→
Kn

sn of

Beh(C) to the object f̄(r) = f(sin)
σ1→
K′

1

f(s1) . . . f(sn−1)
σn→
K′

n

f(sn) of Beh(C′)

with K ′
i = {j | 1 ≤ j < i, (f(sj−1), σj , f(sj)) <C′ (f(si−1), σi, f(si))}

(1 ≤ i ≤ n), and a morphism m : r → r′ of Beh(C) to the unique morphism
f̄(m) : f̄(r) → f̄(r′) of Beh(C′). Moreover, f̄ is a morphism of CT.
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Proof. W.l.o.g. assume C = (S, sin, L, T,<), C′ = (S′, s′in, L, T
′, <′), and

f : C → C′ is a morphism of CT. Take an arbitrary object r of Beh(C) with
cas(r) = K1 . . .Kn. Clearly, f̄(r) is an object of Beh(C′) with α(f̄(r)) =
α(r) and cas(f̄(r)) = K ′

1 . . .K
′
n, where

K ′
i = {j | 1 ≤ j < i, (f(sj−1), σj , f(sj)) <

′ (f(si−1), σi, f(si))}(1 ≤ i ≤ n),

because f is a morphism of CT. Next, sinceKi = {j | 1 ≤ j < i, (sj−1, σj , sj)
< (si−1, σi, si)}(1 ≤ i ≤ n) and f is a morphism of CT, we may conclude
that K ′

i ⊆ Ki (1 ≤ i ≤ n).
Moreover, since in a behavior category there is at most one morphism

between any two objects, we have that for each morphism µ : r → r′ of
Beh(C) there is a unique morphism f̄(µ) : f̄(r) → f̄(r′) ofBeh(C′), f̄(idr) =
idf̄(r), and f̄(µ2 ◦ µ1) = f̄(µ2) ◦ f̄(µ1) for all morphisms µ1 : r1 → r2 and

µ2 : r2 → r3 of Beh(C). Thus, f̄ : Beh(C) → Beh(C′) is indeed a morphism
of CT.

The result enables us to define a functor between CT and CT.

Definition 3. Let C and C′ be causal trees and f : C → C′ be a morphism
of CT between them. Define a functor ct2beh, which takes a causal tree C to
its behavior category Beh(C) and a morphism f to the functor f̄ .

Theorem 1. ct2beh is a fully faithful and essentially surjective functor.

Proof. First, it is clear that ct2beh is indeed a functor by Lemma 4.
Second, we need to show that ct2beh is a fully faithful functor. Take an

arbitrary pair of objects C and C′ of CT. Define the function

FC,C′ : HomCT(C, C′) → HomCT(Beh(C),Beh(C′))

as follows: FC,C′(µ) = ct2beh(µ) = µ̄ for all morphisms µ : C → C′ of CT.
Clearly, FC,C′ is indeed a function, because ct2beh is a functor. Check that
FC,C′ is bijective.

Take an arbitrary morphism g : Beh(C) → Beh(C′) of CT. Define a
mapping f : S → S′ as follows: for all s ∈ S, f(s) = last(g(rs)), where rs
is run of C such that last(rs) = s. Since C is a causal tree, we have that
for all s ∈ S there is the only run rs such that last(rs) = s. This implies
that f : S → S′ is a function. It is routine to check that f is a morphism of
CT from C to C′. Moreover, FC,C′(f) = ct2beh(f) = f̄ = g. Hence, FC,C′ is
surjective, i.e. ct2beh is a full functor.

Take two arbitrary morphisms µ : C → C′ and µ′ : C → C′ such that
FC,C′(µ) = FC,C′(µ′). This implies that µ̄ = µ̄′. Check that µ(s) = µ′(s) for
all s ∈ S. Take an arbitrary s ∈ S with a run rs such that last(rs) = s.
Since µ̄ = µ̄′, we have that last(µ̄(rs)) = last(µ̄′(rs)). Clearly, last(µ̄(rs))
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= µ(s) and last(µ̄′(rs)) = µ′(s). Furthermore, µ(s) = µ′(s). Hence, FC,C′ is
injective, i.e. ct2beh is a faithful functor.

Third, we should prove that ct2beh is an essentially surjective functor.
By the definition of functor ct2beh, it is easy to see that each object Beh(C)
of CT is equal to an object of the form ct2beh(C) for some object C of CT.
Hence, ct2beh is essentially surjective.

Corollary 1. The functor ct2beh yields an equivalence of categories CT and
CT.

Corollary 2. The functor ct2beh has a fully faithful right and left adjoint
functor G, which maps each behavior category Beh(C) to the causal tree Cbeh
of the form:

(Objects(Beh(C)), r0, L, Tran,<beh),

where Objects(Beh(C)) is a set of objects of Beh(C) (or runs of C), r0 is
the initial object of Beh(C) (or the initial run of C), (rn−1, an, rn) ∈ Tran if
and only if there is a morphism m : rn−1 → rn with α(rn) = α(rn−1)an, and
(rn−1, an, rn) <beh (rm−1, am, rm) if and only if n < m, there is a morphism
m : rn → rm−1, cas(rm) = K1 . . .Km and n ∈ Km;
and each morphism λ : Beh(C) → Beh(C′) of CT to the morphism λ :
Cbeh → C′

beh of CT.
Moreover, the unit η and the counit ε of the adjunction are (natural)

isomorphisms.

Thus, we established that the categories CT and CT are equivalent.

4. Timed causal trees

A time object ℑ is a tuple (T,≤+, 0,
⊕

), where (T,≤+, 0) is a partially order
set with bottom element 0, and (T,

⊕
, 0) is a commutative monoid such

that
⊕

is monotone in each argument with respect to ≤+, and x ≤+ x
⊕

y,
x =+ x

⊕
x and if x ≤+ y then x

⊕
y =+ y, for all x, y ∈ T.

ℑ shall also denote the underlying category (T,≤+) of the time object.

Example 3. The following are examples of time objects:

• T is a set of natural (N) or real (R+) numbers with the usual ordering,
and

⊕
is max.

• T is a set of intervals of real numbers (Int(R+)) with the following
ordering: [a, b] ≤ [c, d] ⇐⇒ a ≤ c and b ≤ d; and [a, b]

⊕
[c, d] :=

[max{a, c},max{b, d}].

Definition 4. Let ℑ = (T,≤+, 0,
⊕

) be a time object. A T-timed causal
tree over L is a pair (C, τ), where C is a causal tree over L and τ : T → T
is a timed function such that if (s, σ, s′) < (s′′, σ′, s′′′) then τ((s, σ, s′)) ≤+

τ((s′′, σ′, s′′′)).
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Informally, a timed function assigns to each transition of a tree the ear-
liest time moment of running in the case when T is a set of natural or real
numbers, and the time interval of running in the case when T is a set of
intervals.

Example 4. Consider the causal tree C1 in Figure 1 and the following two
maps τ1, τ2 : T1 → R+, which map transitions to the time moments of run-
ning: τ1((s0, a, s1)) = 1, τ1((s1, c, s2)) = 1, τ1((s3, a, s4)) = 1, τ1((s0, b, s3))
= 3, τ1((s4, c, s5)) = 4; and τ2((s0, a, s1)) = 5, τ2((s1, c, s2)) = 4, τ2((s0, b, s3))
= 3, τ2((s3, a, s4)) = 1, τ2((s4, c, s5)) = 2. It is clear, that the pair (C1, τ1) is
a T-timed causal tree, but the pair (C1, τ2) is not, because τ2((s1, c, s2)) = 4
≤+ τ2((s0, a, s1)) = 5 despite the fact that (s0, a, s1) < (s1, c, s2).

Now, we define a category with objects T-timed causal trees over L and
morphisms that preserve the structure of T-timed causal trees and are ”faster
than” mappings.

Lemma 5. The following data:

• objects are T-timed causal trees over L,

• morphisms from an object (C, τ) to an object (C′, τ ′) are morphisms
f : C → C′ such that τ ′((f(s), σ, f(s′))) ≤+ τ((s, σ, s′)),

• composition is given by function composition,

define a structural category TCT of T-timed causal trees over L.

Thus, causal trees are intuitively those T-timed causal trees without
a timed function. Formally, the two models are related by a reflection.
Consider an evident forgetful functor U from TCT to CT mapping an object
(C, τ) of TCT to the object C of CT and a morphism f : (C, τ) → (C′, τ ′) of
TCT to the morphism f : C → C′ of CT. Now we show that U has a right
adjoint.

Theorem 2. The forgetful functor U : TCT → CT has a right adjoint
T : CT → TCT. Moreover, the adjunction is a reflection, i.e. the counit is
a (natural) isomorphism.

Proof. Let C and C′ be causal trees and f : C → C′ be a morphism of CT.
We define T(C) = (C, τ0), where τ0 is the constant 0 function, and T(f) = f .
It is routine to verify that T is a functor.

Next, we have that U(T(C)) = C. Clearly, idC : U(T(C)) = C → C is a
(iso)morphism of CT.

Now we should prove that (T(C), idC) is a coreflection of C along U,
i.e. whenever (C′, τ ′) is a T-timed causal tree and f : U((C′, τ ′)) → C is a
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morphism of CT, there exists a unique morphism g : (C′, τ ′) → T(C) such
that idC ◦U(g) = f . Since U(g) = g, we may conclude that g must be equal
to f . The condition that τ0 ◦ g((s, a, s′)) ≤+ τ ′((s, a, s′)) for all (s, a, s′) is
satisfied trivially.

Since idC′ ◦U(T(f)) = f ◦ idC for all morphism f : C → C′, it holds that
T is the right adjoint to U.

Finally, we may conclude that the counit ε is a natural isomorphism,
since it associates each causal tree C with the isomorphism idC .

Hence, CT embeds fully and faithfully into TCT and is equivalent to the
full subcategory of TCT consisting of those T-timed causal trees (C, τ) that
are isomorphic to (C, τ0).

We make a natural assumption that assigning a time to each transition
of a causal tree determines a certain time of every run of the tree. The
following lemma shows that we can use the behavior category to express
this translating of times from transitions to runs.

Lemma 6. Let (C, τ) be a T-timed causal tree over L. Then τ extends

uniquely to a functor τ : Beh(C) → ℑ such that τ(r) =
n⊕

i=1
τ((si−1, σi, si)),

for all object r := sin = s0
σ1→ s1 . . . sn−1

σn→ sn of Beh(C). We shall call

such a functor τ a T-timing of Beh(C).

Example 5. Take the T-timed causal tree (C1, τ1) from Example 4. It is
easy to see, that the functor τ1, defined as follows: τ1(rs0) = 0, τ1(rs1) = 1,
τ1(rs2) = 1, τ1(rs3) = 3, τ1(rs4) = 3, and τ1(rs5) = 4 (where rsi is the
unique run ending in si (0 ≤ i ≤ 5)), is a T-timing of Beh(C1).

Now we are ready to define a semantic category of timed causal trees.

Lemma 7. The following data:

• objects are pairs (Beh(C), τ), where Beh(C) is the behavior category
of a causal tree C over L and τ is a T-timing of Beh(C),

• morphisms from (Beh(C), τ) to (Beh(C′), τ ′) are morphisms λ :
Beh(C) → Beh(C′) such that τ ′ ◦ λ(r) ≤+ τ(r), for all objects r of
Beh(C),

• composition is given by functor composition,

define a semantic category TCT of timed causal trees over L.

Informally, in TCT a run r with the time t simulates another run r′

with the time t′ if r simulates r′ in our original sense and furthermore t ≤ t′.
Thus, a timed specification is a specification of desired runs together with a
limit on the execution time of each run.



100 N. S. Gribovskaya

Again, there is an evident forgetful functor UBeh from TCT to CT
mapping an object (Beh(C), τ) of TCT to the object Beh(C) of CT and
a morphism λ : (Beh(C), τ) → (Beh(C′), τ ′) of TCT to the morphism
λ : Beh(C) → Beh(C′) of CT. Moreover, it is clear that the mapping TBeh
which takes the behavior category Beh(C) to the pair (Beh(E), τ0) and the
morphism λ : Beh(E) → Beh(E ′) to λ is a functor.

Theorem 3. The forgetful functor UBeh : TCT → CT has a right adjoint
TBeh : CT → TCT. Moreover, the adjunction is a reflection, i.e. the
counit is a (natural) isomorphism.

Proof. The proof is similar to the proof of Theorem 2.
Thus, CT embeds fully and faithfully into TCT and is equivalent to the

full subcategory of TCT consisting of the objects (Beh(C), τ) isomorphic
to (Beh(C), τ0).

5. Relating the categories TCT and TCT

In this section, we consider the relations between the timed extensions of the
two equivalent categories CT and CT. First, we define a functor tct2beh :
TCT → TCT.

Definition 5. Let (C, τ) and (C′, τ ′) be T-timed causal trees and µ : (C, τ) →
(C′, τ ′) be a morphism of TCT between them. Define a functor tct2beh which
takes a T-timed causal tree (C, τ) to the pair (Beh(C), τ) and a morphism µ
to the functor µ̄.

Theorem 4. tct2beh is a faithful and essentially surjective functor.

Proof. Using Theorem 1, it is routine to check that tct2beh is a functor.
Take an arbitrary pair of objects (C, τ) and (C′, τ ′) of TCT. Define a

function

F : HomTCT((C, τ), (C′, τ ′)) → HomTCT((Beh(C), τ), (Beh(C′), τ ′))

such that F (µ) = tct2beh(µ) = ct2beh(µ) for all morphisms µ : (C, τ) →
(C′, τ ′) of TCT. Clearly, F is indeed a function, because tct2beh is a functor.
Next, take two arbitrary morphisms µ, µ′ : (C, τ) → (C′, τ ′) such that F (µ) =
F (µ′). This implies that ct2beh(µ) = ct2beh(µ′). Since ct2beh is a faithful
functor, we may conclude that µ = µ′. Hence, F is injective, i.e. tct2beh is
a faithful functor.

Finally, it holds that each object (Beh(C), τ) of TCT is equal to an
object of the form tct2beh(C, τ) for some object (C, τ) of TCT. Thus, tct2beh
is essentially surjective.

Theorem 5. tct2beh is not a full functor.
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Proof. Contemplate the causal tree C2 with the empty causal dependency
relation:

s0
a→ s1

b→ s2,

and two timed functions τ, τ ′ : T2 → T such that τ(s0, a, s1) = 4, τ ′(s0, a, s1)
= 4, τ(s1, b, s2) = 1 and τ ′(s1, b, s2) = 3. Since τ(s1, b, s2) < τ ′(s1, b, s2), we
may conclude that HomTCT((C2, τ), (C2, τ ′)) = ∅. On the other hand, it is
clear that τ = τ ′ and the identity functor belongs to the set of morphisms
HomTCT((Beh(C2), τ), (Beh(C2), τ ′)). This implies that the last set is not
empty. Hence, we get that any function H from HomTCT((C2, τ), (C2, τ ′)) to
HomTCT((Beh(C2), τ), (Beh(C2), τ ′)) cannot be injective. Hence, tct2beh
is not full.

Corollary 3. The categories TCT and TCT are not equivalent.

Now we need to establish relationships between TCT and TCT. To
do that we show that tct2beh has a left adjoint. First, specify a functor
beh2tct : TCT → TCT.

Definition 6. Let (Beh(C), τ) and (Beh(C′), τ ′) be the objects of TCT
and λ be a morphism of TCT between them. Define beh2tct((Beh(C), τ)) =
(G(Beh(C)), τ∗), where G is a left adjoint functor to ct2beh from Corollary 2
and τ∗(r, a, r′) = τ(r′), and beh2tct(λ) = λ.

Note that beh2tct is indeed a functor, because G is a functor and τ(r) ≤+

τ(r′) for all runs r and r′ such that there is a morphismm : r → r′ inBeh(C).

Theorem 6. The functor beh2tct is a left adjoint to tct2beh. The adjunction
is a coreflection, i.e. the unit is a (natural) isomorphism.

Proof. We show that there is a natural bijection

HomTCT(beh2tct(Beh(C), τ), (C′, τ ′)) ∼= HomTCT((Beh(C), τ), (Beh(C′), τ ′)).

Suppose f : beh2tct(Beh(C), τ) → (C′, τ ′) is a morphism in TCT. This
means that f : G(Beh(C)) → C′ is a morphism of CT and τ ′(f(r), a, f(r′)) ≤+

τ(r′) for all transitions (r, a, r′) in G(Beh(C)). Since G is a left adjoint to
ct2beh, there is a morphism λ : Beh(C) → Beh(C′) inCT. Moreover, λ(r) =
rf(r) for all objects r in Beh(C). To see that λ : (Beh(C), τ) → (Beh(C′), τ ′)
is a morphism in TCT, we simply check that λ satisfies the property that
τ ′ ◦ λ(r) ≤+ τ(r) for all objects r in Beh(C). Take an arbitrary run rn in
C. Assume that ri (i = 1, . . . , n) is a prefix of rn such that the length of

ri is equal to i. Then, τ ′ ◦ λ(rn) = τ ′(rf(rn)) =
n⊕

i=1
τ ′(f(ri−1), ai, f(ri)) ≤+

n⊕
i=1

τ∗(ri−1, ai, ri) =
n⊕

i=1
τ(ri) = τ(rn).
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Conversely, suppose that µ : (Beh(C), τ) → (Beh(C′), τ ′) is a morphism
in TCT. Hence, µ : Beh(C) → Beh(C′) is a morphism in CT and τ ′ ◦ µ(r)
≤+ τ(r) for all objects r in Beh(C). Due to the fact that G is a left adjoint
to ct2beh, we can find a morphism g : G(Beh(C)) → C′ in CT such that
g(rn) = last(µ(rn)). We only need to show that τ ′(g(r), a, g(r′)) ≤+ τ(r′) for
all transitions (r, a, r′) in G(Beh(C)). Take an arbitrary run rn in Beh(C).
Define ri (i = 1, . . . , n) as a prefix of rn such that the length of ri is equal
to i. Note that τ ′(g(rn−1), a, g(rn)) = τ ′(last(µ(rn−1)), a, last(µ(rn−1))) ≤+

τ ′(µ(rn)) ≤+ τ(rn).
These two constructions undoubtedly delineate the needed natural bi-

jection.
By Corollary 2, the unit η : Beh(C) → ct2beh(G(Beh(C))) is a isomor-

phism ofCT, and η(r) = rr. Note that τ∗◦η(r) = τ∗(rr) =
⊕

(r,a,r′)∈rr
τ∗(r, a, r′)

=
⊕

(r,a,r′)∈rr
τ(r′) =

⊕
(r,a,r′)∈rr

⊕
(s,b,s′)∈r

τ(s, b, s′) =
⊕

(s,b,s′)∈r
τ(s, b, s′) = τ(r).

Hence, η is a (natural) isomorphism in TCT.
Thus, TCT embeds fully and faithfully into TCT and is equivalent to the

full subcategory of TCT consisting of those objects (C, τ) that are isomorphic
to the object beh2tct(tct2beh(C, τ)). The coreflection mentioned above shows
that there exists a morphism from (C, τ) to (C′, τ ′) in TCT only when every
run of (C, τ) with time t can be simulated by a run of (C′, τ ′) with time
t′ such that t′ ≤+ t. This gives us a precise correspondence between the
morphisms of timed causal trees which consider only their static structures
and morphisms on their dynamic behaviors.

6. Conclusion

In this paper, we have established an exact connection between the two
distinct ways of the category theory application to the study of causal trees
and timed causal trees. The first approach proposes that the models under
investigation are represented as structural categories in which the morphisms
consider only the static structure of trees. According to the other approach,
semantic categories are defined for models; the objects of these categories
are behavior categories (which present all possible behaviors of the models)
and morphisms consider purely dynamic behavior of models. For causal
trees, we have proved that the connection is equivalence. In other words, we
have established that the syntactic and semantic categories of causal trees
are equivalent. On the other hand, in the case of timed causal trees, this
connection is a coreflection between a semantic category whose objects are
behavior categories with timings and the structural category of timed causal
trees. This means that for timed causal trees the semantic category embeds
fully and faithfully into the structural category and is equivalent to some
full subcategory of the structural category.
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In the future, we plan to extend the obtained results to other classes of
models (e.g. timed event structures, networks of timed automata, etc.).
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