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Open maps and weak trace equivalence
for timed event structures

N. Gribovskaya

Abstract. A timed extension of weak trace equivalence is developed for a model
of timed event structures. Moreover, a category-theoretic characterization of this
equivalence based on a span of open maps is specified. Finally, the problem of
decidability of weak trace equivalence is solved in the setting of finite timed event
structures.

1. Introduction

The notion of equivalence plays the central role in the theory of concurrency.
It allows one to compare systems taking into account particular aspects of
their behavior. Now there exists a wide variety of equivalences, represented
in literature [9]. Trace equivalences are the most popular among them [14].
This approach is the most simple and natural since such equivalences are
defined in terms of the coincidence of languages.

Recently, category-theoretical approaches are actively used in order to
describe and investigate different concurrent systems and processes. As a
response to some of the numerous models for concurrency proposed in the
literature, Winskel and Nielsen have used the category theory as an attempt
to understand the relationships between models like event structures, Petri
nets, trace languages and asynchronous transition systems [26]. From the
algebraic point of view, many operators of CCS like process algebras have
been recasted using category-theoretic concepts, such as products and co-
products. However, a similar convincing category-theoretic way of adjoining
abstract equivalences to the category of models had been missing until Joyal,
Nielsen and Winskel proposed the notion of span of open maps [17]. They
show how spans of open maps can capture Park and Milner’s strong bisim-
ulation and identify a new bisimulation, strong history-preserving bisimu-
lation, on models with independence like event structures and Petri nets.
Later in the work [6], Nielsen and Cheng show that spans of open maps can
capture not only Park and Milner’s strong bisimulation, but a representative
selection of well-known bisimulations, such as, e.g., Milner and Sangiorgi’s
barbed bisimulation and Larsen and Skou’s probabilistic bisimulation.

In recent years, great efforts have been made to develop formal methods
for real-time and other timing-based systems, i.e. systems whose correctness
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depends crucially upon real-time considerations. As a result, timed exten-
sions of different equivalences have been defined. The category-theoretic
approach came in use for investigations of such equivalences. So in the
work [15], Hune and Hielsen got the category-theoretic characterization for
a timed interleaving bisimulation in the setting of timed transition systems
and proved that this bisimulation is decidable. Moreover, other types of
timed equivalences are also characterized on the category for a timed vari-
ant of interleaving models, for example, in work [10] a timed variant of
Milner and Sangiorgi’s barbed bisimulation are investigated for timed tran-
sition systems. Later the category-theoretic approach has been applied to
analysis of different timed equivalences based on a partial order in the frame
of true concurrency models [24].

This work is dedicated to the timed variant of weak trace equivalence
defined in the setting of timed event structures — models with a true con-
currency semantics. Weak equivalences differ from normal equivalences in at
least two aspects. First, a special “invisible” action, usually denoted by τ ,
is required to be a member of the set of actions. Second, a “visible” action
in one model is not required to be simulated exactly by the same action in
the other model. It may be preceded and succeeded by several τ actions.
Furthermore, a τ action need not be simulated by any actions at all.

The contribution of the paper is to show the applicability of the general
categorical framework of open maps to the timed variant of weak trace
equivalence in the setting of timed extensions of partial order models and
to proof the decidability of this equivalences for a subclass of finite models.

The rest of the paper is organized as follows. The basic notions and
notations concerning timed event structures are introduced in Section 2. In
the next section, a category of timed event structures and a subcategory
are defined, and some properties of the categories are established. More-
over, this section contains a definition of open maps. In Section 4, abstract
bisimulation is studied and it is shown that it coincides with the timed vari-
ant of weak trace equivalence. Further, in Section 5 we provide a proof of
decidability of this equivalence based on the Alur’s technique of regions [1].
Section 6 contains conclusions and remarks on future works.

2. Timed event structures

In this section, we introduce some basic notions and notations concerning
timed event structures. First, we recall a notion of event structures [25]
which constitute a major branch of partial order models. The main idea
behind event structures is to view distributed computations as action occur-
rences, called events, together with a notion of causality dependency between
events (which is reasonably characterized via a partial order). Moreover, in
order to model nondeterminism, there is a notion of conflicting (mutually
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incompatible) events. A labelling function records actions which correspond
to events. Let Lτ be a finite set of actions with a special “invisible” action τ .
Further we shall use L = Lτ \ {τ} to denote the set of all “visible” actions.

A (labelled) event structure over Lτ is a tuple S = (E,≤,#, l), where E is
a set of events; ≤ ⊆ E×E is a partial order (the causality relation), satisfying
the principle of finite causes: ∀e ∈ E ¦ {e′ ∈ E | e′ ≤ e} is finite; # ⊆ E×E
is a symmetric and irreflexive relation (the conflict relation), satisfying the
principle of conflict heredity: ∀e, e′, e′′ ∈ E ¦ e # e′ ≤ e′′ ⇒ e #e′′;
l : E −→ Lτ is a labelling function.

We shall use O to denote the empty event structure (∅, ∅, ∅, ∅).
For C ⊆ E the restriction of S to C (denoted SdC) is defined as

(C,≤ ∩(C × C), # ∩ (C × C), l |C). Moreover, for C ⊆ E we define a
subset of visible events V is(C) as follows: {e ∈ C | l(e) 6= τ}.

For an event structure S = (E,≤, #, l) we define ^ = (E × E)\
(≤ ∪ ≤−1 ∪ #) (the concurrency relation). Let C ⊆ E. Then C is left-
closed iff ∀e, e′ ∈ E ¦ e ∈ C ∧ e′ ≤ e ⇒ e′ ∈ C; C is conflict-free iff
∀e, e′ ∈ C ¦ ¬(e # e′); C is a configuration of S iff C is left-closed and
conflict-free. Let C(S) denote the set of all finite configurations of S.

We next present a dense time extension of event structures, called timed
event structures, because it is well recognized that the dense time approach
seems to be more suitable to model realistic systems (see [2] for more ex-
planation). In our model, we add time constraints to event structures by
associating their events with the earliest and latest times, w.r.t. a global
clock, at which the events can occur. Following [18, 19], the occurrence of an
enabled event itself takes no time but it can be suspended for a certain time
(between its earliest and latest times) from the start of the system. The
reason for not using what is often referred to as local clocks (i.e., each event
has its delay timer attached and the timer is set when the event becomes
enabled and reset when the event is disabled or started to be executed) is
that the operational semantics of timed models is more simple in case of
avoiding local clocks (see [18] among others).

Before introducing the concept of a timed event structure, we need to
define some auxiliary notations. Let N be the set of natural numbers, and
R be the set of nonnegative real numbers.

Definition 1. A (labelled) timed event structure over Lτ is a triple
TS = (S, Eot, Lot), where S = (E,≤,#, l) is a (labelled) event struc-
ture over Lτ ; Eot, Lot : E → R are functions of the earliest and latest
occurrence times of events satisfying Eot(e) ≤ Lot(e) for all e ∈ E.

A timed event structure is said to have a valid timing, if e′ ≤S e ⇒
Eot(e′) ≤ Eot(e) and Lot(e′) ≤ Lot(e) for all e, e′ ∈ E. In the following,
we will consider only timed event structures having a valid timing and call
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them simply timed event structures. Let T O denote the empty timed event
structure (O, ∅, ∅).

For depicting timed event structures, we use the following conventions.
The action labels and timing constraints associated with events are drawn
near the events. If no confusion arises, we will often use action labels rather
than event identities to denote events. The <-relation is depicted by arcs
(omitting those derivable by transitivity), and conflicts are also drawn (omit-
ting those derivable by conflict heredity).

Example 1. A trivial example of a timed event structure, labelled over Lτ ,
is shown in Fig. 1.

To make our examples easier to understand, we will sometimes give for
them algebraic expressions (see [4]) over actions with the time intervals
of the corresponding events. The algebraic syntax includes the primitive
constructs: sequential composition (;), parallel composition (‖), and sum
(+). The operation ; (‖, +, respectively) may be easily “interpreted” by
indicating that all events in one component are in the <-relation (^-relation,
#-relation, respectively) with all events in the other.

c : e4

a : e1

[0, 1]

[0, 3]

b : e2

[0, 2]
τ : e3

[0, 6]
TS1 : - -

#

Figure 1. The timed event structure TS1 over Lτ

Timed event structures TS and TS′ are isomorphic (denoted
TS ' TS′), if there exists a bijection ϕ : V is(ETS) −→ V is(ETS′) such that
e ≤TS e′ ↔ ϕ(e) ≤TS′ ϕ(e′), e #TS e′ ↔ ϕ(e) #TS′ ϕ(e′),
lTS(e) = lTS′(ϕ(e)), and EotTS(e) = EotTS′(ϕ(e)), LotTS(e) = LotTS′(ϕ(e)),
for all e, e′ ∈ V is(ETS).

An execution of a timed event structure is a timed configuration which
consists of a configuration and a timing function, recording global time mo-
ments at which events occur, and satisfies some additional requirements.

Definition 2. Let TS = (S,Eot, Lot) be a timed event structure, C ∈ C(S),
and T : C −→ R. Then TC = (C, T ) is a timed configuration of TS iff the
following conditions hold:

(i) ∀ e ∈ C ¦ Eot(e) ≤ T (e) ≤ Lot(e),

(ii) ∀ e, e′ ∈ C ¦ e ≤TS e′ ⇒ T (e) ≤ T (e′).
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Informally speaking, the condition (i) expresses that an event can occur
at a time when its timing constraints are met; the condition (ii) says that
for any two occurred events e and e′ if e causally precedes e′ then e should
temporally precede e′.

The initial timed configuration of TS is TCTS = (∅, ∅). We use T C(TS)
to denote the set of timed configurations of TS.

Example 2. To illustrate the concept, consider the set of possible timed
configurations of the timed event structure TS1 shown in Figure 1:
T C(TS1) = {(∅, ∅), ({e1}, T1), ({e4}, T2), ({e1, e2}, T3), ({e1, e4}, T4),
({e1, e2, e3}, T5) | T1(e1) ∈ [0, 1]; T2(e4) ∈ [0, 3]; T3(e1) ∈ [0, 1], T3(e2) ∈
[0, 2], T3(e1) ≤ T3(e2); T4(e1) ∈ [0, 1], T4(e4) ∈ [0, 3]; T5(e1) ∈ [0, 1],
T5(e2) ∈ [0, 2], T5(e3) ∈ [0, 6], T5(e1) ≤ T5(e2) ≤ T5(e3)}.

The semantics of timed event structures is defined by means of timed
pomsets. First, we define a timed partial order set as a timed event structure
TP = (STP = (ETP ,≤TP ,#TP , lTP ), EotTP , LotTP ) over Lτ with #TP = ∅
and EotTP (e) = LotTP (e) for all e ∈ ETP . Isomorphic classes of timed
partial order sets are called timed pomsets.

The empty pomset (denoted as TPO) is an isomorphic class of (O, ∅, ∅).
We use T PomLτ (or T PomL) to indicate the set of finite timed pomsets
labelled over Lτ (or L).

Let TS be a timed event structure and

TC = (C, T ), TC ′ = (C ′, T ′) ∈ T C(TS).

Then the restriction of TS to TC, denoted as TSdTC, is defined as an
isomorphic class of (SdC, T ).

The set Lwtp(TS) = {TP ∈ T PomL | TP ' TSdTC for some
TC ∈ T C(TS)} is the weak timed pomset language of TS (wtp-language).

Example 3. To illustrate the concept, consider the wtp-language for TS1

shown in Figure 1: Lwtp(TS1) = {TPO, (a : T1), (c : T2), (a : T3; b : T4),
(a : T5 ‖ c : T6) | T1 ∈ [0, 1], T2 ∈ [0, 3], T3 ∈ [0, 1], T4 ∈ [0, 2], T5 ∈
[0, 1], T6 ∈ [0, 3]}.

For TC ∈ T C(TS)} we define a visible part of a timed configuration
(denoted by V is(TC)) as a pair (V is(C), T |V is(C)). The set of all visible
parts of timed configurations for TS we denote as VIST C(TS). Then the
restriction of TS to V is(TC), denoted as TSdV is(TC), is defined as an
isomorphic class of (SdV is(C), T |V is(C)).
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3. The category of timed event structures CT ESweak

In this section, we define and study a category of timed event structures
CT ESweak. The morphisms of our model categories will be the simulation
morphisms, following the approach of [16].

We start with introducing the notion of a morphism.

Definition 3. Let TS = (E, ≤, #, l, Eot, Lot) and TS′ = (E′, ≤′, #′,
l′, Eot′, Lot′) be timed event structures over Lτ . The map µ : TS → TS′ is
called a morphism, if µ : V is(E) → V is(E′) is a function such that l′ ◦µ = l
and for all V is(TC) ∈ VIST C(TS) it holds:

• µ V is(TC) ∈ VIST C(TS′), where
µ V is(TC) = (µ V is(C), T ′) with T ′ ◦ µ = T |V is(C);

• ∀e, e′ ∈ V is(C) ¦ µ(e) = µ(e′) ⇒ e = e′;

• ∀e, e′ ∈ V is(C) ¦ µ(e) < µ(e′) ⇔ e < e′.

Example 4. As an illustration, consider the morphism µ from the timed
event structure TS2, shown in Figure 2, to the timed event structure TS1,
shown in Figure 1, mapping events in the following way: µ(e′1) = e1,
µ(e′2) = e2 and µ(e′3) = e4. It is easy to check that the constraints of
Definition 3 are satisfied.

a : e′1 b : e′2

[0, 1] [0, 2]

τ : e′4
[0, 8]

c : e′3
[0, 1]

-
##

TS2 :

r r

rr

Figure 2. The timed event structure TS2

Let us consider a simulation property of a morphism defined above.

Proposition 1. Let µ : TS −→ TS′ be a morphism and TC ∈ T C(TS).
Then TSdTC ' TS′dTC ′ where V is(TC ′) = µ V is(TC).

Now we define the category CT ESweak of timed event structures.

Definition 4. Timed event structures (labelled over Lτ ) with morphisms
between them form a category of timed event structures, CT ESweak, in which
the composition of two morphisms µ1 : TS0 −→ TS1 and µ2 : TS1 −→ TS2

is (µ2◦µ1) : TS0 −→ TS2 and the identity morphism is the identity function.
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Following the standards of timed event structures and the paper [16], we
would like to choose “observation objects” with morphisms between them
so as to form subcategories of the categories of timed event structures over
Lτ .

Definition 5. With respect to a set of actions Lτ , let T PLτ denote the
full subcategory of the category CT ESweak with objects from T PomLτ and
morphisms, which are the identities and the morphisms with the empty timed
pomset as domain.

Now we define a T PLτ -open maps relative to the subcategory T PLτ

defined above.

Definition 6. Let TS and TS′ be timed event structures. A morphism
µ : TS → TS′ in CT ESweak is called T PLτ -open iff for any pomset TP over
Lτ and any morphism µ′ : TP → TS′ there exists a morphism
µ′′ : TP → TS such that µ ◦ µ′′ = µ′.

Our next aim is to characterize T PLτ -openness of morphisms defined
prior to that.

Theorem 1. Let TS and TS′ be timed event structures. Then a morphism
µ : TS → TS′ in CT ESweak is T PLτ -open iff whenever TC ′ is a timed
configuration in TS′, there exists a timed configuration TC in TS such that
µ V is(TC) = V is(TC ′).

Proof Sketch: Follows from the definition of a T PLτ -open map and
Proposition 1. ¥

Now we produce the following useful property of a span of T PLτ -open
maps.

Theorem 2. Let µ1 : TS1 → TS and µ2 : TS2 → TS be T PLτ -open
maps. Then there exists a span of T PLτ -open maps µ′1 : TSx → TS1,
µ′2 : TSx → TS2 with a vertex TSx and such that µ1 ◦ µ′1 = µ2 ◦ µ′2.

Proof Sketch: Without loss of generality, let TSi = (Ei, ≤i, #i, li, Eoti,
Loti) for i ∈ {1, 2}.

For the beginning we construct a timed event structure

TSx = +(TSTC1×TC2 | TCi = (Ci, Ti) ∈ T C(TSi)

for all i ∈ {1, 2} and µ1 V is(TC1) = µ2 V is(TC2)), where TSTC1×TC2 =
(ETC1×TC2 , ≤TC1×TC2 , #TC1×TC2 , lTC1×TC2 , EotTC1×TC2 , LotTC1×TC2) is
defined as follows:
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• ETC1×TC2 = {(e1, e2)TC1×TC2 ∈ V is(C1)×V is(C2) | µ1(e1) = µ2(e2)};
• (e1, e2)TC1×TC2 ≤TC1×TC2 (e′1, e

′
2)TC1×TC2 ⇐⇒ ei ≤i e′i for all i ∈

{1, 2};
• #TC1×TC2 = ∅;
• lTC1×TC2((e1, e2)TC1×TC2) = li(ei) for some i ∈ {1, 2};
• EotTC1×TC2((e1, e2)TC1×TC2) = Ti(ei) for some i ∈ {1, 2};
• LotTC1×TC2((e1, e2)TC1×TC2) = Ti(ei) for some i ∈ {1, 2}.
It is easy to check that TSx is really a timed event structure. Then

we define maps µ′i : TSx −→ TSi (i = 1, 2), as the following functions:
µ′i((e1, e2)TC1×TC2) = ei. Obviously, these maps are morphisms. The equa-
tion µ1 ◦ µ′1 = µ2 ◦ µ′2 immediately follows from definitions of TSx and µ′i
(i ∈ {1, 2}).

In order to complete the proof, it is enough to show that µ′i is a T PLτ -
open map (i ∈ {1, 2}). To check this fact, we use Theorem 1. Let TCi be
a timed configuration in TSi. Then, since µi is a morphism, we have that
µi V is(TCi) is a visible part of a timed configuration in TS. This means that
there exists a timed configuration TC ′

i such that V is(TC ′
i) = µi V is(TCi).

From Proposition 1 we have that TSdTC ′
i ' TSidTCi. Next, since µ3−i is

a T PLτ -open morphism, using Theorem 1 we conclude that there exists a
timed configuration TC3−i in TS3−i such that µ1 V is(TC1) = µ2 V is(TC1)
and TSdTC ′

i ' TS3−idTC3−i. Therefore TSTC1×TC2 is a part of TSx. More-
over, we have TSTC1×TC2 ' TSidTCi. Let TCx = (ETC1×TC2 , EotTC1×TC2).
Since TSTC1×TC2 is a timed partial order set, TCx is a timed configuration of
TSx. In addition, we get µ′i V is(TCx) = V is(TCi) from the definition of µ′i.
Thus, according to Theorem 1, µ′i is a T PLτ -open morphism (i ∈ {1, 2}).¥

4. The category-theoretic characterization

First, we introduce a timed extension of a weak trace pomset equivalence
(wtp-equivalence) [6]. This equivalence is the most popular and simplest
equivalence in a subclass of weak pomsets equivalences.

Definition 7. Timed event structures TS and TS′ are called wtp-equivalent
iff Lwtp(TS) = Lwtp(TS′).

Example 5. Considering the timed event structures TS3 and TS4 shown
in Figure 3, we have that they are wtp-equivalent. On the other hand, timed
event structures TS1 and TS2 depicted in Figure 1 and 2, respectively,

are not wtp-equivalent, because, for instance, the timed pomset
[0,0]
a ‖ [0,0]

c
belongs to Lwtp(TS1) but not to Lwtp(TS2).
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[3, 5]
a

#

τ

[0, 2]

b

[4, 5]
-

[3, 5]
a

[3, 5]
a

[0, 8]
τ

[4, 5]
b

#

#
@

@
@@R

TS3 : TS4 :

Figure 3. Two wtp-equivalent timed event structures

Next we define an abstract T PLτ -bisimulation based on a span of
T PLτ -open maps.

Definition 8. Timed event structures TS1 and TS2 are T PLτ -bisimular iff

there exists a span of T PLτ -open maps TS1
µ←− TS

µ′−→ TS2 with a vertex
TS.

Due to the property of a span of T PLτ -open maps, proved in Theorem 2,
we conclude that T PLτ -bisimulation defined above is really a relation of
equivalence.

Next, the coincidence of wtp-equivalence with an abstract T PLτ -bisimu-
lation is established.

Theorem 3. Let TS1 and TS2 be timed event structures. Then TS1 and
TS2 are T PLτ -bisimilar iff they are wtp-equivalent.

Proof Sketch:
(⇒) Let TS1

µ1← TS
µ2→ TS2 be a span of T PLτ -open maps. We need

to show that Lwtp(TS1) = Lwtp(TS2). For the beginning we check that
Lwtp(TS1) ⊆ Lwtp(TS2). Let TP be a timed pomset which belongs to
Lwtp(TS1). It means that there exists a timed configuration TC1 in TS1 such
that TS1dTC1 ' TP . From Theorem 1, since µ1 is a T PLτ -open map, there
exists a timed configuration TC in TS such that TSdTC ' TS1dTC1 ' TP
and µ1 V is(TC) = V is(TC1). Next, because µ2 is a morphism, we have that
µ2 V is(TC) is a visible part of a timed configuration of TS2. Hence there
exists a timed configuration TC2 such that V is(TC2) = µ2 V is(TC). Next,
using Proposition 1 we get TS2dTC2 ' TSdTC ' TP . Therefore we have
TP ∈ Lwtp(TS2). Thus Lwtp(TS1) ⊆ Lwtp(TS2). In much the same way we
get that Lwtp(TS2) ⊆ Lwtp(TS1). It means that Lwtp(TS1) = Lwtp(TS2).

(⇐) Let Lwtp(TS1) = Lwtp(TS2). Without loss of generality, we assume
that TSi = (Ei, ≤i, #i, li, Eoti, Loti) for i ∈ {1, 2}.
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We start defining a timed event structure TSx. Let TSx = +(TSTC1×TC2 |
TCi = (Ci, Ti) ∈ T C(TSi) for i ∈ {1, 2}; TS1dTC1 ' TS2dTC2 and φ :
TS1dTC1 −→ TS2dTC2 is an isomorphism), where TSTC1×TC2 = (ETC1×TC2 ,
≤TC1×TC2 , #TC1×TC2 , lTC1×TC2 , EotTC1×TC2 , LotTC1×TC2) defined as fol-
lows:

• ETC1×TC2 = {(e1, e2)TC1×TC2 ∈ V is(C1)× V is(C2) | φ(e1) = e2 };
• (e1, e2)TC1×TC2 ≤TC1×TC2 (e′1, e

′
2)TC1×TC2 ⇐⇒ ei ≤i e′i for all

i ∈ {1, 2};
• #TC1×TC2 = ∅;
• lTC1×TC2((e1, e2)TC1×TC2) = li(ei) for some i ∈ {1, 2};
• EotTC1×TC2((e1, e2)TC1×TC2) = Ti(ei) for some i ∈ {1, 2};
• LotTC1×TC2((e1, e2)TC1×TC2) = Ti(ei) for some i ∈ {1, 2}.
It should be easy to see that TSx is a timed event structure. Let us

define µi : TSx −→ TSi (i = 1, 2) as follows: µi((e1, e2)TC1×TC2) = ei. By
construction of TSx, it is easy to check that µ1 and µ2 are indeed morphisms.
In order to complete the proof, we need to show that µi is a T PLτ -open map
(i ∈ {1, 2}). Let TCi be a timed configuration in TSi and TSidTCi ' TP .
Hence TP ∈ Lwtp(TSi). Since Lwtp(TS1) = Lwtp(TS2), we conclude that
TP ∈ Lwtp(TS3−i). By definition of a wtp-language, there exists a timed
configuration TS3−i in TS3−i such that TS3−idTC3−i ' TP . Thus we
have TS1dTC1 ' TS2dTC2. It is obvious that TSTC1×TC2 is a part of
TSx. Moreover, we get TCx = (ETC1×TC2 , EotTC1×TC2) ∈ T C(TSx) and
TSxdTCx ' TSidTCi ' TP . By definition of µi we have µi V is(TCx) =
V is(TCi). This shows that µi is a T PLτ -open map and completes the proof
of the theorem. ¥

5. Decidability

In this section, we deal only with a special subclass of timed event structures,
i.e. structures with a finite set of events and for which all constants referred
to in the earliest and latest times of occurrence of events are naturally valued.
The subclass of timed event structures is denoted by T ESN.

Due to the category-theoretic characterization of wtp-equivalence, show-
ing its decidability amounts to deciding whether there exists a span of T PLτ -
open maps between two finite timed event structures. Our approach is, first,
to show that T PLτ -openness of a morphism between two finite timed event
structures is decidable, and, then, to show the upper bound on the size of
the vertex of a span for two equivalent timed event structures.

As for many existing results for timed models, including the results in
verification of real-time systems, our decision procedure heavily relies on the
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idea behind regions (equivalence classes of states) of [2], which essentially
provides a finite description of the state-space of timed event structures.

Next, we develope a notion of regions for timed event structures.

Definition 9. Given a timed event structure TS and timed configurations
TC = (C, T ) and TC ′ = (C, T ′) from T C(TS), a region is an equivalence
class of timing functions such that T ≈ T ′ iff

(i) for each e ∈ C it holds: bT (e)c = bT ′(e)c, and

(ii) for every pair of events e, e′ ∈ C we have

fract(T (e)) ≤ fract(T (e′)) ⇔ fract(T ′(e)) ≤ fract(T ′(e′)),

and fract(T (e)) = 0 ⇔ fract(T ′(e)) = 0.

Here for d ∈ R+
0 we use bdc for the largest integer smaller than or equal to

d and fract(d) for the fractional part of d.
The region to which T belongs is denoted by [T ]. For finite timed event

structures TS, a pair (C, [T ]), where TC = (C, T ) ∈ T C(TS), is called an
extended timed configuration. We consider [TCTS ] = (∅, [∅]) as the initial
extended timed configuration of TS.

For later use we notice the following facts.

Proposition 2. Consider a finite timed event structure TS ∈ T ESN.

(i) For an event e and a region [T ] it holds:
Eot(e) ≤ T (e) ≤ Lot(e) ⇒ ∀T1 ∈ [T ].Eot(e) ≤ T1(e) ≤ Lot(e).

(ii) For an extended timed configuration (C, [T ]), (C, T ′) is a timed con-
figuration for all T ′ ∈ [T ].

We now give a characterization of open maps in terms of extended timed
configurations. Before doing so, we introduce some auxiliary notations. A
visible part of an extended timed configuration [(C, T )] is called a pair
(V is(C), [T ]). Let us denote an extended timed configuration (C, [T ]) as
[(C, T )] = [TC] and its visible part as [V is(TC)]. For [V is(TC)], we shall
write µ [V is(TC)] instead of (µ V is(C), [T ′]), where T ′ ◦ µ = T dV is(C).

Theorem 4. Let TS and TS′ be timed event structures. Then a morphism
µ : TS → TS′ is T P ′Lτ -open iff whenever [TC ′] is an extended timed con-
figuration in TS′, there exists an extended timed configuration [TC] in TS
such that µ [V is(TC)] = [V is(TC ′)].

Proof Sketch: It follows from Theorem 1 and Proposition 2. ¥
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Corollary 1. Given two finite timed event structures TS1 and TS2 from
T ESN and a morphism µ : TS1 → TS2, T PLτ -openness of µ is decidable.

Proof Sketch: It immediately follows from Theorem 4 and Proposition 2,
since the total number of extended timed configurations of TS1 and TS2 is
less than or equal to N · 22N · (C + 1)N , where N = |E1| ∗ |E2| (|Ei| is the
number of events of TSi,(i = 1, 2)), and C is the largest integer referred to
in the earliest and latest times of occurrence for events. ¥

Theorem 5. Given two finite timed event structures TS1 and TS2 from
T ESN, if there exists a span of T PLτ -open maps with a vertex TS such that
TS1

µ1←− TS
µ2−→ TS2, then there exists a span of T PLτ -open maps with a

vertex TS′ such that TS1
µ′1←− TS′

µ′2−→ TS2 and TS′ ∈ T ESN.

Proof Sketch: Let TS1
µ1← TS

µ2→ TS2 be a span of T PLτ -open maps.
Without loss of generality, we assume that TSi = (Ei, ≤i, #i, li, Eoti, Loti)
for i ∈ {1, 2}. For the beginning, we build a timed event structure
TSx = +(TSC1×C2 | ∃TC ∈ T C(TS) ¦ V is(TCi) = µi V is(TC) for
i ∈ {1, 2}), where TSC1×C2 = (EC1×C2 , ≤C1×C2 , #C1×C2 , lC1×C2 , EotC1×C2 ,
LotC1×C2) is defined as follows:

• EC1×C2 = {(e1, e2)C1×C2 ∈ V is(C1)×V is(C2) | ∃e ∈ V is(C) ¦ µi(e) =
ei(i = 1, 2)};

• (e1, e2)C1×C2 ≤C1×C2 (e′1, e
′
2)C1×C2 ⇐⇒ ei ≤i e′i for all i = 1, 2;

• #C1×C2 = ∅;
• lC1×C2((e1, e2)C1×C2) = li(ei) for some i ∈ {1, 2};
• EotC1×C2((e1, e2)C1×C2) = max{Eot1(e1), Eot2(e2)};
• LotC1×C2((e1, e2)C1×C2) = min{Lot1(e1), Lot2(e2)}.
It is obvious that TSx defined above is really a finite timed event struc-

ture. Note that the set Ex is finite since |Ex| ≤ 2|E1| × 2|E2|.
Next we need to define morphisms µ′i : TSx −→ TSi. Let

µ′i((e1, e2)C1×C2) = ei for all (e1, e2)C1×C2 ∈ Ex(i = 1, 2).

By construction of TSx, we have that µ′1 and µ′2 defined above are morphisms
in the category CT ESweak.

To complete the proof, it is enough to show that µ′i is a T PLτ -open map
(i ∈ {1, 2}). Without loss of generality, let TCi = (Ci, Ti) be a timed config-
uration in TSi. Since µi is a T PLτ -open map, there exists a timed configura-
tion TC in TS such that µi V is(TC) = V is(TCi) and TSdTC ' TSidTCi.
Next, because µ3−i is a morphism, we have µ3−i V is(TC) is a visible part of
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some timed configuration TC3−i and TSdTC ' TS3−idTC3−i. By definition
of TSx, we get that TSC1×C2 is a part of TSx. Thus, for all e ∈ V is(C),
a pair (µ1(e)1, µ2(e))C1×C2 ∈ EC1×C2 . Now we define Cx and Tx as follows:
Cx = {(µ1(e)1, µ2(e))C1×C2 | e ∈ Ĉ} and Tx((µ1(e)1, µ2(e))C1×C2) = T (e).
Since TSdTC ' TS1dTC1 ' TS2dTC2, by definition of TSx we have that
TCx = (Cx, Tx) is a timed configuration and TSxdTCx ' TSidTCi for all
i = 1, 2. Moreover, it is easy to check that µ′i V is(TCx) = V is(TCi) for all
i = 1, 2.

By Theorem 1 we conclude that µ′i is indeed a T PLτ -open map (i ∈
{1, 2}). ¥

Corollary 2. For timed event structures from T ESN, wtp-equivalence is
decidable.

Proof Sketch: It follows from Corollary 1 and Theorems 3 and 5. ¥

6. Concluding remarks

In this paper, we tried to investigate in practice the applicability of the
theory of open maps by Joyal, Nielsen, and Winskel [16] to the study of a
timed variant of a weak trace equivalence based on a partial order in the
frame of timed event structures.

In particular, we characterized the mentioned above equivalence on the
category and established its decidability for finite timed event structures
using the idea behind regions (equivalence classes of states) of [2] which
provided a finite description of the state-space.

In our future work, based on the paper [8], we hope to extend the results
here obtained to timed generalizations of other weak equivalences, combining
the open maps and presheaf approaches.
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