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Partial SSA form: compact representation for
programs with indirect memory operations

D. S. Gurchenkov, P. E. Pavlov, E.M. Baskakov

Abstract. The paper presents an improvement over traditional SSA form, called
partial SSA that features only partial translation of a program into the single-
assignment state. Partial SSA is more compact than the traditionally used full
SSA while it suits well most program optimization algorithms. The paper intro-
duces formal quality criteria for this kind of internal representation and presents a
translation algorithm (based on the code motion principles) that produces the in-
ternal representation satisfying these criteria. Proofs of correctness and optimality
are also given.

1. CFG-based program representation

We use an internal represetntaion of a compiled program (IR) in the form of
a control flow graph (CFG), which is a directed graph representing a single
procedure (many papers treat “program” and “procedure” as synonyms).
The basic entity is a statement v = op(a1, . . . aN ), where v is a variable
name, op stands for an operation symbol, ai stands for either variables or
constants. A set of all program statements is denoted as Stms.

For a statement s of the form v = op(a1, . . . aN ) we say that s is a
definition of v (there may be more than one definition for a given v), and s
is the use of each of a1, . . . aN .

The control flow is represented as the function succ : Stms → 2Stms. It
is assumed that a procedure has exactly one starting node, denoted as start,
such that ∀s ∈ Stms, start 6∈ succ(s) and one terminating node, denoted
as end, such that succ(end) = ∅.

More complex program representations are built on top of CFG, and the
most notable one is SSA form.

2. SSA form

Static Single Assignment form (SSA form [6]) is a de-facto standard IR used
nowadays by absolute majority of optimizing compilers [23, 19, 20, 9, 25, 26,
1]. This kind of program representation is popular because it represents ex-
plicitly both control and data flow in a quite compact and easy-to-maintain
form. To date, most optimization algorithms have been reimplemented to
operate on SSA form [29, 18, 4, 10, 28]. SSA-based implementations of op-
timization algorithms typically perform faster and have better computation
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complexity as compared to the traditional implementations based on bit
vectors. Better performance a is natural consequence of the sparse nature
of SSA form [4].

In SSA form, each definition of a variable1 is given a unique version, and
different versions of the same variable can be regarded as different program
variables. Each use of a variable version can only refer to a single reaching
definition. When several definitions of a variable v, e.g. v1, v2, . . . vm, reach a
confluence node in the control flow graph, a φ-function vn = φ(v1, v2, . . . vm)
is inserted to merge them into the definition of a new variable version vm.
The φ-function acts as an intelligent assignment, producing as a result one
of its arguments depending on what incoming edge the control flow arrived.

Translation to SSA form is described in the works of Cytron, Zadeck et.
al. [6], a very good overview of alternative algorithms is given in [3]. The
translation process comprises two steps: at the first step, φ-functions like
v = φ(v, . . . v) are added at the merge points; at the second step, variables
are versioned.

3. Implicit arguments and results

In most programming languages, a statement may implicitly depend on a
variable even if the variable is not a syntactical part of the statement body.
A trivial example is a call to an external function, which may (but not must)
modify any global variable.

There is an obvious request to find and explicate such implicit depen-
dencies, this is why side effects analysis is an important part of modern
compilers. Explication of the dependencies requires a more complicated no-
tion of statements: instead of a simple a = op(b, c), a statement must be
encoded like 〈a, u, v, . . .m〉 = op(b, c, k, . . . l), where additional variables in
the left and right parts denote implicit results and arguments, respectively.

Note the difference in how the compiler treats explicit and implicit ar-
guments. If a variable v is implicitly used by a statement s, the compiler
has to store the actual value of v into the memory location associated with
v’s symbolic name, because s accesses the value from memory. In contrast,
an explicit use of v gives the compiler freedom to place the variable to a
register and generate the appropriate CPU instruction for s. So we can say
that an implicit argument is a use of an addressed variable (location), while
an explicit argument is a use of a non-addressed variable (register).

1Each statement that alters value of a variable v is regarded as its definition.
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4. Terms

We use the following formal terms:
Program (procedure): Prog = 〈V ars, Stms, succ〉, where V ars is

a set of variables, Stms is a set of statements, and succ : Stms → 2Stms

defines the control flow.
Statement: s = 〈r, op, args〉 ∈ Stms, r ∈ V ars, args = 〈a0, . . . aN 〉,

ai ∈ V ars2, op ∈ Ops (the nature of the Ops set is not important).
CFG is defined by a pair of functions pred, succ : Stms → 2Stms, where

succ is a part of Prog, while pred is defined as s ∈ pred(p) ⇔ p ∈ succ(s).
Let start and end denote the unique start node and end node of the CFG.

Predicates on statements. There are four predicates that are im-
portant for the further account: ddef, idef, iuse, duse : Stms ∗ V ars →
{0, 1}, where: ddef(〈r, op, args〉, v)

def≡ (r = v) denotes explicit results,

duse(〈r, op, args〉, v)
def≡ (v ∈ args) denotes explicit arguments, and idef ,

iuse denote implicit results and arguments that are already computed by
side-effects analysis. For simplicity, we assume that a statement cannot
define a variable both explicitly and implicitly:

∀ v ∈ V ars, {s|s ∈ Stms, ddef(s, v) ∧ idef(s, v)} = ∅.
Execution paths. Define Paths as a set of all (finite) paths over the

CFG, including the cyclic ones: Paths = {p = 〈p1, . . . pN 〉 | ∀ 1≤ i≤
N, pi+1 ∈ succ(pi)}. The i-th element of p is denoted as pi and the length of
p is denoted as λ(p). For simplicity, we reduce pλ(p) to pλ where appropriate.
Then, define Paths[s1, s2] as a set of all finite paths starting with s1 and
ending in s2: Paths[s1, s2] = {p|p ∈ Paths, p1 = s1, pλ = s2}. A path q is
said to be a subpath of p, in signs q v p, if there is an index 1≤i≤λp such
that i + λq − 1 ≤ λp and qj = pi+j−1 for all 1≤j≤λq. In particular, for
any path p and indices i, j ≤ λp we denote subpath induced by a sequence
of nodes from pi to pj by [pi, pj ]. Moreover, if pi or pj is excluded from
this subpath, we will write ]pi, pj ] or [pi, pj [, respectively. Adjoined paths
are concatenated in a natural way: for paths p and q, if pλ = q1, then
p⊕ q = [p1, . . . pλ, q2, . . . qλ].

Predicates on paths. Let a be some predicate on statements, e.g.
a : Stms → {0, 1}, and let p ∈ Paths. We use the following compact
notation that was introduced in [14]:

∀ s ∈ p, a(s) ⇔ a∀(p)
∃ s ∈ p, a(s) ⇔ a∃(p)
The same notation can be applied for predicates over edges, if b : Stms∗

Stms → {0, 1}:
∀ 1≤i≤λ(p), b(pi, pi+1) ⇔ b∀(p)

2For simplicity, we represent constants as variables.
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∃ 1≤i≤λ(p), b(pi, pi+1) ⇔ b∃(p)
In order to minimize the amount of parentheses, we assume these predi-

cates have higher priority than any other operations:

¬c∀(p) ⇔ ¬(∀ s ∈ p, c(s)) (¬c)∀(p) ⇔ ¬c∃(p)
(¬c)∀(p) ⇔ ∀ s ∈ p, ¬c(s) (¬c)∃(p) ⇔ ¬c∀(p).

Notation of data flow equations. All data flow equations in this pa-
per keep attributes on statements, with two distinct sets for before-statement
and after-statement attributes. As an example, consider the following simple
data flow equation:





A in(t) =





false if t = start,∧
p∈pred(t)

A out(p) \A−arc(p, t) ∨A+
arc(p, t) otherwise,

A out(t) = A in(t) \A−nd(t) ∨A+
nd(t).

(1)

Attribute A in(s) specifies the value of A before the execution of s, while
A out(s) stands for the value of A after s. Single-argument predicates A−nd(t)
and A+

nd(t) contribute to the node transition function, while two-argument
predicates A−arc(p, t) and A+

arc(p, t) form the edge transition function. These
equations, as well as all that follow, operate on the two-element boolean
lattice and use the distributive flow functions, so the meet over all paths
solution (MOP) coincides with the maximal fixed point solution (MFP) [13].
Further on we simply say “a solution of a flow equation” assuming the MFP-
solution.

5. Partial SSA form

A program with implicit results and arguments can be directly translated
to full SSA by applying versioning to all variables, rewriting all implicit and
explicit definitions and uses, as it was suggested in [6]. Figure 2a shows the
full SSA form for the source program in Figure 1. However, there are several
disadvantages inherent to this approach:

• Full representation is not compact, because the number of variable
versions and corresponding IR objects that keep the def-use relation
is huge, it can be roughly estimated as |Stms| ∗ |V ars|. So, the IR
becomes quadratic of the size of a program, and suppose we have a
quadratic algorithm operating on this IR. . .

In Section 14 below we show some figures for the size of full SSA for
typical Java programs.
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v = 10;
if(..) {

foo();
bar();

else {
baz();
}

v = v + 1;
c = v;

Figure 1. A program example
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a) Full SSA form b) Partial SSA form

Figure 2. Examples of full and partial SSA form
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• Register allocation now has to take into account all implicit uses and
definitions. In some cases, it may be preferable to put a variable to
a register, but if the variable is indirectly used, it must be put to
memory.

• We loose one-by-one correspondence between statements and SSA vari-
ables, because each statement defines more than one variable. While
this is not a problem in theory, it really complicates the optimizer
code.

• Addressed (indirectly used) and non-addressed (directly used) vari-
ables are different kinds of entities, and they have different optimiza-
tion rules. It is sufficient to note that assignment propagation is not
applicable to addressed variables (two SSA versions of an addressed
variable cannot be alive at the same time). So, separation of these
kinds of entities may lead to easier design of the optimizer.

We noted that full SSA is redundant for the optimization purposes, be-
cause an explicit def-use link between implicit def and implicit use does not
contribute any information to the optimizer [5]. It looks advantageous to
translate into SSA only those variables whose def-use links are of any use
for the optimizer. Generally, we come to the following translation process:

1. Each source program variable v dissipates into a pair of variables: an
addressable vm and a non-addressable vr.

2. Each program statement is rewritten: each explicit assignment to a
source variable v is converted into an assignment to the correspond-
ing non-addressable vr. Each implicit definition is interpreted as an
assignment to vm. Uses are interpreted correspondingly.

3. Additional assignment statements are added to the program. These
statements copy the values from vm to vr and back, thus preserving
program correctness.

4. Only non-addressable variables (vr) are translated to SSA form with
the use of the standard algorithm [6].

The steps above effectively build an internal representation which we call
partial SSA form, or pSSA. Figure 2b demonstrates pSSA for the program
on Figure 1.

6. Assignment placement

Of the four steps described above, steps (1) and (2) are trivial, and step
(4) is performed by the standard algorithm. So, the only nontrivial action
in converting a program to pSSA is step (3) which inserts assignments that
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copy the values between addressed (memory) and non-addressed (register)
variables. This task can be viewed as a computation of a pair of predicates
over the Cartesian product of edges and variables:

InsertL, InsertS : Stms ∗ Stms ∗ V ars ⇒ {0, 1}.
If InsertL(s, p, v) = 1, then an assignment vr = vm is inserted between

s and its immediate successor p, where vr and vm are non-addressable and
addressable variables corresponding to v that were created at step (1). If
InsertS(s, p, v) = 1, then an assignment vm = vr is inserted.

We call the pair 〈InsertL, InsertS〉 a placement function [14], an as-
signment vr = vm a load statement, and an assignment vm = vr a store
statement [12]. From now on, we annotate predicates related to a place-

ment function P by adding the function name as the lower index: P
def≡

〈InsertLP , InsertSP 〉.
Further on we skip the program symbol Prog and variable symbols v,

vr and vm
3. In other words, we assume that all argumentation is applied

to an arbitrary (but fixed at this moment) program Prog and an arbitrary
(but fixed) variable v. This does not impose any restrictions, because all
our reasoning can be performed independently for each variable.

7. Correctness criterion

Obviously, not any placement function produces a correct pSSA form for a
given program. In this section, we formulate the criterion that selects correct
placement functions among the others. In fact, the criterion is simple: on
a path from a definition to a use, the inserted copy statements (loads and
stores) must correlate to the nature of definition and use statements, so that
the use statement receives the value produced by the definition, even if the
value was produced in memory and used in a register or vice versa.

Let us formulate the standard data flow problem of “available variables”
[22, Chapter 8] independently for addressed and non-addressed variables.





AvailReg in(t) =





false if t = start,∧
p∈pred(t)

(AvailReg out(p) ∨ InsertL(p, t)) otherwise,

AvailReg out(t) = (AvailReg in(t) ∨ ddef(t)) \ idef(t);

(2)





AvailMem in(t) =





true if t = start,∧
p∈pred(t)

(AvailMem out(p) ∨ InsertS(p, t)) otherwise,

AvailMem out(t) = (AvailMem in(t) ∨ idef(t)) \ ddef(t).

(3)

Consider the first equation. The explicit definition (ddef) contributes
true to the solution, while implicit definition (idef) resets the solution to

3e.g. we replace idef(s, v) by idef(s).
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false. So, AvailReg in(s) is true iff the non-addressed variable vr contains
the actual value of v on each incoming path to s. So, the system really
specifies the “available variables” problem with explicit definitions treated as
defs and implicit definitions treated as kills. Similarly, the second equation
computes availability of the actual value in the addressed variable vm.

Using the equations above, the correctness criterion may be formulated
in a very short form. Really, a pSSA form of a program is correct, if (1)
before execution of a statement s that uses the variable v explicitly, vr is
available, and (2) before execution of a statement s that uses the variable
implicitly, vm is available4:

∀s ∈ Stms

{
duse(s) ≤ AvailReg in(s),
iuse(s) ≤ AvailMem in(s);

(4)

∀s1 ∈ Stms,∀s2 ∈ succ(s1)

{
InsertS(s1, s2) ≤ AvailReg out(s1),
InsertL(s1, s2) ≤ AvailMem out(s1).

Definition 1 Correctness. A pair 〈InsertL, InsertS〉 is correct if and only
if it specifies a solution of systems (2) and (3) that satisfies (4).

For a program Prog, we denote a set of all correct placement functions
as CORRECT (Prog).

8. Optimality criteria

Obviously, there is more than one correct placement function for a given
program Prog. Moreover, there is not the “best” placement function for a
program. This is because the load/store statements are abstract, i.e., they
exist in the program representation until optimization is finished, and then
each one is translated either into assignments or into nothing, depending on
the results of register allocation. This is why these statements have no fixed
execution cost, so one cannot say, for instance, that adding a load statement
makes a program slower.

So, the optimality criteria are somewhat abstract, they aim at making
more comfort for the optimizer while minimizing the memory usage. The
basic idea is this: the best placement function makes optimization no harder
as compared to the full SSA and generates IR as compact as possible. This
idea is complemented by several auxiliary criteria that help to choose the
best placement function in the case of ambiguity. The following optimality
criteria are considered.

4load and store statements do use addressed and non-addressed variables, correspond-
ingly.
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Figure 3. An example of def-use complete placement function

8.1. Completeness of def-use chains

The pSSA representation of a program must contain all def–use links be-
tween explicit definitions and explicit uses for each variable. In other word,
if there is a path p, and a variable v is explicitly defined by p1, explicitly
used by pλ, and not redefined along p, there must be no load statements
(like vr = vm) on p as well. Let us denote the set of all placement functions
satisfying this criterion as T1:

A ∈ T1
def≡ ∀p ∈ Paths

ddef(p1) ∧ ¬(ddef ∨ idef)∃( ]p[ ) ∧ duse(pλ)

⇒ ¬InsertL∃A( ]p[ ). (5)

Examples of the def-use complete and not-complete representations of
the same source program are given on Figure 3. Simply speaking, every
pSSA form satisfying this criterion gives the optimization algorithms every-
thing they need, making no difference whether full SSA or pSSA is used.

8.2. Absence of redundant load statements

Consider a program fragment in Figure 4. Both placement functions are
correct, and both satisfy the T1 criterion. In order to resolve the ambiguity,
we state that the first function (Π) is better because it does not contain
redundant load statements, despite it increases the register pressure.

Denote the set of all placement functions satisfying this criterion as T2:
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Figure 4. A placement function with redundant loads

A ∈ T2
def≡ A ∈ T1 ∧ ∀p ∈ Paths

InsertLA(p1, p2) ∧ InsertLA(pλ−1, pλ) ⇒ idef∃( ]p[ ). (6)

8.3. Full anticipation of store statements

As the previous one, this criterion helps to select a better placement function
in the case of ambiguity. Consider the example on Figure 3. The placement
function A does store a value from register to memory on a path ddef–duse,
where the memory is not read. We state that Π is better, because it does
not store the value into memory on a path where the value is not used.

Denote the set of all placement functions satisfying this criterion as T3:

A ∈ T3
def≡ A ∈ T2 ∧
∀s1, s2 ∈ Stms, InsertSA(s1, s2) ⇒
∀p ∈ Paths(s2, end), ∃j<λ(p),

¬idef∃( [p1, pj [ ) ∧ ¬InsertS∃A( [p1, pj ] ) ∧ iuse(pj). (7)

8.4. Computational optimality

Assuming that a program is already translated to pSSA, consider an “ideal”
register allocation scheme, i.e., each non-addressed variable is assigned to
a register. In this case, each load/store statement performs a register ↔
memory copy, so it has a fixed execution cost. So, we can say that a place-
ment function A is better than B if it places the lesser number of load/store
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statements on each execution path. Consider an example in Figure 5. The
placement function Π inserts load and store out of the loop, while the place-
ment function A moves them into the loop. So, Π is computationally better.

ddef
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InsertSΠ −→
²²

iuse
idef

InsertLΠ −→
²²

ÄÄ

duse

²²

ddef
²²

²²
InsertSA −→

iuse
idef

InsertLA −→

²²

ÄÄ

duse

²²

Π ∈ CMP OPT A /∈ CMP OPT

Figure 5. An example of a computationally optimal placement function

Let us count all load/store statements that are added to a path by a
placement function. Let p ∈ Paths, A ∈ T3:

count loadsA(p)
def≡ |{ i | 1≤i≤λ(p), InsertLA(pi, pi+1)}|,

count storesA(p)
def≡ |{ i | 1≤i≤λ(p), InsertSA(pi, pi+1)}|.

Then we can define a partial order on the set T3:

A ≤L B
def≡ ∀p ∈ Paths[start, end] count loadsA(p) ≤ count loadsB(p),

A ≤S B
def≡ ∀p ∈ Paths[start, end] count storesA(p) ≤ count storesB(p),

A ≤comp B
def≡ (A ≤L B) ∧ (A ≤S B).

The relationship ≤comp generates a partial order on T3. Denote the set
of minimal elements as CMP OPT :

CMP OPT
def≡ {A | A ∈ T3, ∀ B ∈ T3, A ≤comp B}. (8)

Further on we prove that CMP OPT is not empty.
Note that all placement functions that belong to CMP OPT generate the

optimal code not only for “ideal” register allocation, but for any “sensible”
register allocation that spills all addressed variables to memory.
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8.5. Lifetime minimization

Among two placement function that are both computationally optimal, one
function is better than the other if it generates shorter lifetimes for non-
addressed variables. This criterion is an important one, because it minimizes
the register pressure and helps back-end to generate a better code.

A non-addressable variable vr is “alive” at an edge 〈s1, s2〉 if there is a
path (also called lifetime range) that contains the edge and has the following
properties:

• vr is defined at the path beginning (either explicitly or by load),

• vr is used at the path end (either explicitly or by store),

• vr is not redefined along the path.

Let us denote the set of all lifetime ranges generated by a placement
function A as LtRg:

LtRgA
def≡ {p | p ∈ Paths,

( ddef(p1) ∨ InsertLA(p1, p2) ) ∧
( duse(pλ) ∨ InsertSA(pλ−1, pλ) ) ∧
¬ddef∃( ]p[ ) ∧ ¬InsertL∃A( ]p] )

}. (9)

For a full path p we denote a set of all edges that (1) belong to the path
and (2) the variable is alive at them:

LiveArcsA(p ∈ Paths[start, end])
def≡ {〈a, b〉 | ∃ q ∈ LtRgA, q v p,

∃ i, a = qi, b = qi+1}. (10)

Now we can define the best placement function as the function that
minimizes the lifetime of non-addressable variables:

A ≤LT B
def≡ ∀ p ∈ Paths[start, end], LiveArcsA(p) ⊆ LiveArcsB(p),

LT OPT
def≡ { A |A ∈ CMP OPT ∧ (∀ B ∈ CMP OPT A ≤LT B) }.

Further we build the placement function Π that belongs to LT OPT ,
thus proving that the set is not empty.

Definition 2 Optimality. The problem of creation of an optimal pSSA
form for a program Prog can be solved by computing a placement function
that belongs to LT OPT.
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9. Code motion

To build the optimal placement function, we use a program optimization
method generally known as code motion [14, 21]. The method is based on
solving a system of data flow equations and using the solution to optimally
move program statements over the CFG. In this section, we briefly describe
the basics of busy code motion as it was formulated in [14].

Input Data. Optimization is applied to one syntactically identified
expression E at a time, that is, data flow equations are built and solved for
one expression, then the program is modified and the process repeats for
the next expression5. Syntactically identified expression here means a set of
statements whose right parts are identical, e.g. a op b, where a, b are some
variables or constants, op is an operation symbol.

Two predicates Comp and Transp are defined over Stms. By definition,
s ∈ Comp iff its right part coincides with the active expression (E), that is,
if s computes E. A statement belongs to Transp if no one argument of the
expression is altered by execution of the statement, that is, if the statement
is transparent for the expression.

In order to keep things simple, we assume that all statements belonging
to Comp have the same left part, that is, each statement c = a op b is
converted into a pair tE = a op b; c = tE , where tE is a new variable.

The optimization purpose is removal of as many redundant expres-
sions as possible. In other words, the optimized program will have as few
computations of E on each path as possible. The task is complicated by
the request for safety: if a path contained no computation of E before the
optimization, it must still be free from E after it.

The optimization result is computed as a pair of predicates: Insert
contains all edges where a new statement tE = a op b must be inserted,
and Replace contains statements that become fully redundant and may be
removed from the program.

The busy code motion (BCM) solution is computed by solving a
pair of flow equations, namely UpSafe and DownSafe. UpSafe in(s) holds
iff there is an occurrence of the expression E on each path from start to s.
Simply put, UpSafe holds right before the statement s if the value of E is
computed before execution of s on any execution path that includes s:

UpSafe in(s) ⇔∀p ∈ Paths[start, s]

∃i<λp,Comp(pi) ∧ Transp∀([pi, pλ[).

Similarly, DownSafe out(s) holds iff there is a computation of E on each
path from s to end:

5Effective implementation runs many systems in parallel using the bit vector-based
approach.
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DownSafe out(s) ⇔∀p ∈ Paths[s, end]

∃i<λp,Comp(pi) ∧ Transp∀(]p1, pi[).

Then, the Safe predicate is computed as a sum of UpSafe and DownSafe.
A statement s is safe if each path going through it contains an occurence of
E (either before or after s) with the same values of arguments as they would
have at s. Then, the Insert predicate is computed as the upper bound of
Safe: it contains all edges 〈a, b〉 such that a 6∈ Safe ∧ b ∈ Safe. Finally,
Replace = Comp.





UpSafe in(t) =





false if t = start,∧
p∈pred(t)

UpSafe out(p) otherwise,

UpSafe out(t) = (UpSafe in(t) ∨ Comp(t)) ∧ Transp(t);

(11)





DownSafe in(t) = (DownSafe out(t) ∧ Transp(t)) ∨ Comp(t),

DownSafe out(t) =





false if t = end,∧
p∈succ(t)

DownSafe in(p) otherwise;
(12)

Safe in(t) = UpSafe in(t) ∨DownSafe in(t),
Safe out(t) = UpSafe out(t) ∨DownSafe out(t);

InsertBCM (p, q) = p ∈ pred(q)∧
(¬Safe out(p) ∨ ¬Transp(p)) ∧ Safe in(q),

ReplaceBCM (p) = Comp(p).

Theoretical results. Code motion has a well-developed theoretical
background. The following theorems, proven in [14], are important for us:

Theorem 1. Program transformation implied by the pair InsertBCM and
ReplaceBCM is safe, it does not add a computation of E on a path where
such a computation did not exist previously.

Theorem 2. Program transformation implied by the pair InsertBCM and
ReplaceBCM is computationally optimal, it minimizes the number of com-
putations of E on each execution path (as compared to any other safe trans-
formation).

Theorem 3. Program transformation implied by the pair InsertBCM and
ReplaceBCM maximizes the lifetime of the auxiliary variable tE as compared
to any other computationally optimal code motion transformation.
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10. The solution

As we formulated above (Definition 2), to find the optimal pSSA form for
a program, it is sufficient to compute a placement function that belongs to
LT OPT. We compute the function by solving a system of flow equations
that are similar to the equations used by code motion.

In fact, code motion computes the optimal placement for a set of state-
ments that compute identical values, with an accent on computational and
lifetime optimality, that is very close to our criteria. It moves the compu-
tation statements within the bounds imposed by a pair of predicates, one
of them (Transp) essentially encodes where arguments of the expression are
defined, and the other one (Comp) encodes the uses of the expression. In
our case, there are four predicates instead of two, because we have the ex-
plicit definition (ddef), implicit definition (idef), explicit use (duse) and
implicit use (iuse). Also, a placement function must comply with our cor-
rectness and (desirably) optimality criteria, which are more complex than
the restrictions imposed on the code motion transformation.

However, below we show the flow equations for optimal placement func-
tion, and these equations are derived from the equations employed by the
code motion. Two equations define anticipability, i.e. whether a value is
used below on some (for partial anticipability) or on all (for full anticipa-
bility) execution paths. Other two equations compute full availability, i.e.,
whether a value is computed in advance on all execution paths.

System (13) computes full anticipabilty for the addressed variable, i.e.,
the presence of uses of the addressed variable on each outgoing path:

FAntMem out(t ∈ Stms) ⇔ ∀p ∈ Paths[t, end]

∃i>1, iuse(pi) ∧ ¬(ddef ∨ idef)∃( [p1, pi[ ).

The next system (14) computes full availability for the addressed vari-
able, i.e., whether every path coming to a statement has either an explicit
definition or a copy from register to memory:

FAvlMem in(t ∈ Stms) ⇔ ∀p ∈ Paths[start, t]∃i,
(iuse(pi) ∨ idef (pi)) ∧ ¬(ddef ∨ idef )∃( ]pi, t[ );





FAntMem in(t) = FAntMem out(t) \ ddef(t) \ idef(t) ∨ iuse(t),

FAntMem out(t) =





false if t = end,∧
p∈succ(t)

FAntMem in(p) otherwise;

(13)
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



FAvlMem in(t) =





true if t = start,∧
p∈pred(t)

FAvlMem out(p) otherwise,

FAvlMem out(t) = (FAvlMem in(t) ∨ idef (t) ∨ iuse(t)) \ ddef (t).

(14)

The set of points where FAntMem(s) ∨ FAvlMem(s) is true defines the
set of “safe” store placements. Selecting a placement that puts stores at
the upper bound of the safe set, we obtain the optimal solution.

SafeS in(t ∈ Stms)
def≡ FAntMem in(t) ∨ FAvlMem in(t),

SafeS out(t ∈ Stms)
def≡ FAntMem out(t) ∨ FAvlMem out(t),

InsertSΠ(p, s ∈ Stms)
def≡ s ∈ succ(p) ∧ (¬SafeS out(p) ∨ ddef(p))
∧ SafeS in(s)). (15)

System (16) computes partial anticipability of non-addressed variable,
i.e. whether there is at least one use of vr downwards.

System (17) is similar to (14), but it misses one item, so

∀s ∈ Stms FAvlMemOnly in(s) ≤ FAvlMem in(s).

Let us see the difference beween the systems: FAvlMemOnly in(s) is true
only if the actual value of the variable at the point s is available in memory
only, while FAvlMem in(s) is true if the actual value is available in memory
only, or if it is available in memory and register at the same time.





PAntReg in(t) = PAntReg out(t) \ ddef(t) \ idef(t) ∨ duse(t),

PAntReg out(t) =





false if t = end,∨
p∈succ(t)

(PAntReg in(p) ∨ InsertSΠ(t, p)) otherwise;
(16)





FAvlMemOnly in(t) =





true if t = start,∧
p∈pred(t)

FAvlMemOnly out(p) otherwise,

FAvlMemOnly out(t) = (FAvlMemOnly in(t) ∨ idef(t)) \ (ddef(t) ∨ duse(t));

(17)

InsertLΠ(p, s ∈ Stms)
def≡ s ∈ succ(p) ∧ FAvlMemOnly out(p)∧

((PAntReg in(s) ∧ ¬FAvlMemOnly in(s)) ∨ duse(s)).
(18)

From now on we denote the placement function 〈InsertLΠ , InsertSΠ〉 as
Π.

It is easy to observe that flow equations computing store placements are
just the same as in the busy code motion, the only difference is substitution
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of predicates: ¬Transp is replaced by (ddef ∨ idef), Comp is replaced by
iuse ∨ idef . However, the equations for the load placement are different,
because one of them employs ∨ as a merge function, so it computes “par-
tial” but not “full” anticipability. Finally, the order of equation systems is
important, systems (16) and (17) depend on the previous ones.

11. Auxiliary theorems

The following theorems help us to switch from the language of data flow
equations to the standard notation of “for each path there is a statement
with the given properties” and back.

Let us consider an abstract system of data flow equations:




A in(t) =





false if t = start,∧
p∈pred(t)

A out(p) \A−arc(p, t) ∨A+
arc(p, t) otherwise,

A out(t) = A in(t) \A−nd(t) ∨A+
nd(t).

(19)

Theorem 4. For a statement s the following assertions are equivalent:

• A in(t) is true;

• ∀p ∈ Paths[start, t] ∃i,
(A+

nd(pi) ∨A+
arc(pi−1, pi)) ∧ ¬A−nd

∃( [pi, pλ[ ) ∧ ¬A−arc
∃( [pi, pλ] ).

Theorem 5. For a statement s the following assertions are equivalent:

• A in(t) is false;

• ∃p ∈ Paths, such that pλ = t,

((A−nd(p1) ∨A−arc(p1, p2)) ∧ ¬A+
nd
∃( [p[ ) ∧ ¬A+

arc
∃(p).

Also we need a version of theorem (4) formulated for a backward system.
Consider an abstract backward system of flow equations:





B in(t) = B out(t) \B−
nd(t) ∨B+

nd(t),

B out(t) =





false if t = end,∧
p∈succ(t)

B in(p) \B−
arc(p, t) ∨B+

arc(p, t) otherwise.
(20)

Theorem 6. For a statement s the following assertions are equivalent:

• B in(t) is true;

• ∀p ∈ Paths[t, end] ∃i ≤ λ(p),
¬B−

nd
∃( [p1, pi[ ) ∧ ¬B−

arc
∃( [p1, pi] ) ∧ (B+

nd(pi) ∨B+
arc(pi−1, pi)).
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We omit proofs of the theorems here. An interested reader can either
consult [14], or prove them himself by applying the standard algorithm for
computing the meet-over-all-paths solution (MOP) [13].

12. Proof of correctness

Theorem 7. The placement function Π = 〈InsertLΠ , InsertSΠ〉, which is
the solution of (18, 15), satisfies the correctness criterion stated in Definition
(1).

Proof. Assume the contrary. System (4) contains 4 inequalities. Let us
consider a negation of each of them:

• Assume ∃s1, s2 ∈ Stms, InsertSΠ(s1, s2) ∧ ¬AvailReg out(s1).

1. InsertS (s1, s2) ⇒ ¬SafeS out(s1) ∨ ddef(s1) ⇒
¬FAvlMem out(s1) ⇒ ∃q ∈ Paths, ddef (q1) ∧ (qλ = s1) ∧
¬(idef ∨ iuse)∃(q).

2. ¬AvailReg out(s1) ⇒ ∃p ∈ Paths, idef (p1) ∧ (pλ = s1) ∧
¬(ddef ∨ InsertLΠ)∃(p).

3. Let pi be the first common statement of the paths q and p. From
(1) and (2) ⇒ ¬FAvlMemOnly in(pi).

4. InsertSΠ(s1, s2)! ⇒PAntReg in(s1 = pλ)
from (2)−−−−−→PAntReg out(p1).

5. (2) ⇒ FAvlMemOnly out(p1).
6. (2) ⇒ PAntReg∀(p).
7. According to (3), (5) and (6) the path [p1, pi] contains an edge

where FAvlMemOnly changes its value, and PAntReg remains
true. So, InsertLΠ is true on the edge, which contradicts (2).

• Assume ∃s1, s2 ∈ Stms, InsertLΠ(s1, s2) ∧ ¬AvailMem out(s1).

1. InsertLΠ(s1, s2) ⇒ FAvlMemOnly out(s1).
2. Comparing the equations for FAvlMemOnly and AvailMem, we

have ∀s ∈ Stms,FAvlMemOnly out(s) ⇒ AvailMem out(s).
3. InsertLΠ(s1, s2) ⇒ AvailMem out(s1), which contradicts the as-

sumption above.

• Assume ∃s ∈ Stms, duse(s) ∧ ¬AvailReg in(s).

1. Applying the auxiliary theorem (5) to the definition of AvailReg ,
we have ∃p ∈ Paths, idef(p1), pλ = s1,¬(ddef ∨ InsertLΠ)∃(p).

2. (1) and duse(s) ⇒ PAntReg∀(p).
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3. idef(p1) ⇒ FAvlMemOnly out(p1).
4. (2), (3) and ¬InsertL∃Π(p) ⇒ FAvlMemOnly∀(p).
5. From (4) and definition of InsertLΠ ⇒ InsertLΠ(pλ−1, pλ), which

contradicts the definition of the path p.

• Assume ∃s ∈ Stms, iuse(s) ∧ ¬AvailMem in(s).

1. iuse(s) ⇒ FAntMem in(s) ⇒ SafeS in(s).
2. Applying the auxiliary theorem (5) to the definition of AvailMem,

we have ∃p ∈ Paths, ddef(p1)∧(pλ = s)∧¬(idef∨InsertSΠ)∃(p).

3. ¬InsertS∃Π(p)
from (1)−−−−−→ SafeS in∀( ]p] ).

4. ddef(p1) ∧ SafeS in(p2) ⇒ InsertSΠ(p1, p2), which contradicts
(2).

13. Proofs of optimality

Theorem 8. The placement function Π belongs to T1.

Proof. Assume the contrary: ∃p ∈ Paths, ddef(p1), duse(pλ),¬idef∃(p)
and ∃pi, pi+1 such that InsertLΠ(pi, pi+1) is true. Then

InsertL(pi, pi+1) ⇒ FAvlMemOnly out(pi).

Applying the auxiliary Theorem 4 to the last statement, we have
∀q ∈ Paths[start, pi] ∃qj , idef(qj), ¬ddef∃([qj , qλ[). Applying the last
statement to the path p: ∃k<i such that idef(pk) is true, which contradicts
the definition of p.

Theorem 9. The placement function Π belongs to T2.

Proof. Assume the contrary: ∃p ∈ Paths such that InsertLΠ(p1, p2) ∧
InsertLΠ(pλ−1, pλ) ∧ ¬idef∃( ]p[ ). Using the first item of the conjunc-
tion, we have InsertL(p1, p2) ⇒ ¬FAvlMemOnly in(p1) ∨ duse(p2) ⇒
¬FAvlMemOnly in(p2). The third item of the conjunction means that the
predicate FAvlMemOnly cannot change its value on the path [p2, pλ−1], so
FAvlMemOnly out(pλ−1) is false. This contradicts the second item of the
conjunction.

Theorem 10. The placement function Π belongs to T3.

Proof. This statement follows from the structure of equations (14):
InsertS(s1, s2) ⇒ SafeS in(s1) ∧ ¬SafeS out(s2) ⇒ FAntMem in(s2).
Using the auxiliary Theorem 6 to the last statement, we come to the defini-
tion of T3.
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Lemma 1. Any placement function that belongs to CMP OPT places load
statements only on those edges where PAntReg is true: ∀P ∈ CMP OPT,
∀s1, s2 ∈ Stms, InsertLP (s1, s2) ⇒ PAntReg in(s2) ∧ PAntReg out(s1).

Proof. If there are P, s1, s2 contradictory to the statement above, then
we can built P ′: InsertLP ′ = InsertLP \ {(s1, s2)}. The correctness of P ′ is
natural consequence of ¬PAntReg out(s1), because the edge (s1, s2) does not
belong to any idef–duse path. Obviously, P ′ is computationally better than
P , so P 6∈ CMP OPT . Finally, PAntReg out(s1) is an obvious consequence
of PAntReg in(s2).

Theorem 11. The placement function Π belongs to CMP OPT (8).

Proof. We prove separately that Π places the minimal amount of (1) loads
and (2) stores.
Case 1:
∀Q ∈ T3, ∀p ∈ Paths[start, end], count loadsQ(p) ≥ count loadsΠ(p).
Let us assume the contrary, that there are a placement function Q and a
path p such that the inequality above is not true. Select a minimal subpath
of p which is bounded by definitions and does not satisfy the inequality
above:
(t v p) ∧ (t1) = start ∨ idef(t1) ∨ ddef(t1)) ∧ (tλ = end ∨ idef(tλ) ∨
ddef(tλ)) ∧ count loadsQ(t) < count loadsΠ(t).

Lemma 2. count loadsΠ(t) ≤ 1.

Proof. Let us assume the contrary:

∃i, j, i<j ∧ InsertLΠ(ti, ti+1) ∧ InsertLΠ(tj , tj+1).

Then
InsertLΠ(ti, ti+1) ⇒ ¬FAvlMemOnly in(ti+1) ∨ duse(ti+1) ⇒
¬FAvlMemOnly out(ti+1) ⇒ ¬FAvlMemOnly in(tj)
that contradicts InsertLΠ(tj , tj+1).

From Lemma 2 we have count loadsQ(t) = 0 and count loadsΠ(t) = 1,
that is, InsertL∃Π(t) and ¬InsertL∃Q(t). Assume the placement function Π
inserts load between ti and ti+1. Then:

1) ¬InsertLQ)∃(t) Q∈CORRECT−−−−−−−−−−−→ ¬duse(ti+1) ⇒
PAntReg in(ti+1) ∧ ¬FAvlMemOnly in(ti+1) ∧ FAvlMemOnlyout(ti);

2) from (13)⇒ ¬FAvlMemOnly in(ti+1) ⇒ ∃q ∈ Paths, ddef(q1)∧(qλ =
ti+1) ∧ ¬(ddef ∨ InsertLΠ)∃(q);
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3) from (13)⇒ PAntReg in(ti+1) ⇒ ∃s ∈ Paths, (s1 = ti+1)∧(duse(sλ)∨
InsertSΠ(sλ−1, sλ)) ∧ ¬(ddef ∨ InsertLΠ)∃(s);

4) consider a compound path m = [t1, . . . , ti+1 = s1, . . . , sλ]. From (13)

⇒ FAvlMemOnly out(ti) ⇒ ¬ddef(t1) ⇒ idef(t1)
by definition of s−−−−−−−−−−→

InsertL∃Q(m) . By the initial assumption, ¬InsertL∃Q(t) ⇒ InsertL∃Q(p);

5) consider a compound path n = [q1, . . . , qi+1 = s1, . . . , sλ]. The path
connects an explicit definition to an explicit use, and InsertL∃Q(n). It
means that Q ∈ T1 is false, which contradicts the initial assumption.

Case 2: ∀Q ∈ T3,∀p ∈ FullPaths, count storesQ(p) ≥ count storesΠ(p).
Let us assume the contrary, that there is a placement function Q and a path
p such that the inequality above is not true. Select a minimal subpath of p
which is bounded by implicit uses and does not satisfy the inequality above:
(t v p) ∧ (iuse(t1) ∨ t1 = start) ∧ (iuse(tλ) ∨ tλ = end) ∧
¬iuse∃( ]t1, tλ[ ) ∧ count storesQ(t) < count storesΠ(t).

Lemma 3. count storesΠ(t) ≤ 1.

Proof. Assume the contrary:
∃i, j, i<j ∧ InsertSΠ(ti, ti+1) ∧ InsertSΠ(tj , tj+1).
Then
InsertSΠ(tj , qj+1) ⇒ ¬FAntMem in(qj)∨ duse(qj) ⇒ ¬FAntMem in(qj) ⇒
¬FAntMem in(qi+1),
which contradicts InsertSΠ(qi, qi+1).

From Lemma 3 we have ¬InsertS∃Q(t) and ∃!i, InsertSΠ(ti, ti+1).
Further on:

1) InsertSΠ(ti, ti+1) ⇒ FAntMem in(ti+1) ⇒ iuse(tλ);

2) InsertSΠ(ti, ti+1) ⇒ ¬SafeS out(ti) ∨ ddef(ti). If ddef(ti) is true,
then Q 6∈ CORRECT , because Q does not add store on the path
[ti, tλ]. So, SafeS out(ti) is false;

3) ¬SafeS out(ti) ⇒ ¬FAvlMem out(ti)
by Theorem 5−−−−−−−−→ ∃u ∈ Paths,

ddef(u1) ∧ (uλ = ti) ∧ ¬(ddef ∨ idef)∃( [u1, uλ−1] );

4) On the path ddef–iuse, each correct placement must put a store, so
InsertS∃Q(u⊕ [ti, tλ]). By the initial assumption, ¬InsertS∃Q(t), this is
why InsertS∃Q(u);

5) From (13) ⇒ ¬SafeS out(ti) ⇒ ¬FAntMem out(ti) ⇒ ∃v ∈ Paths,
(v1 = ti) ∧ (ddef(vλ) ∨ idef(vλ) ∨ succ(vλ) = ∅) ∧ ¬iuse∃(v);

6) Now consider a composite path u ⊕ v. On the path, the placement
function Q adds a store that is not used below. So, Q 6∈ T3.
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Theorem 12. The placement function Π belongs to LT OPT .

Proof. Assume the contrary, ∃A ∈ CMP OPT , ∃p ∈ FullPaths, ∃i such
that (〈pi, pi+1〉 6∈ LiveArcsA(p)) ∧ (〈pi, pi+1〉 ∈ LiveArcsΠ(p)). Let us select
a maximal subpath q = [pα, pβ], such that q ∈ LtRgΠ and pi, pi+1 ∈ q. By
the nature of the path p, we have four cases:

1) ddef (q1) ∧ duse(qλ);

2) ddef (q1) ∧ InsertSΠ(qλ−1, qλ);

3) InsertLΠ(q1, q2) ∧ duse(qλ);

4) InsertLΠ(q1, q2) ∧ InsertSΠ(qλ−1, qλ).

Now we consider each case and prove that such A and p do not exist:

1) ddef(q1) ∧ duse(qλ). It is obvious that q ∈ LtRgA, so the initial
assumption is incorrect (〈pi, pi+1〉 ∈ LiveArcsA(p));

2) ddef(q1) ∧ InsertSΠ(qλ−1, qλ). There are three conclusions from
InsertSΠ(qλ−1, qλ):

(a) ∃u ∈ Paths such that (u1 = qλ−1) ∧ ¬iuse∃( ]u[ ) ∧ (idef(uλ) ∨
ddef(uλ) ∨ (uλ = end)),

(b) ∃z v p, (z1 = qλ) ∧ iuse(zλ) ∧ ¬(ddef ∨ idef)∃( [z[ ),
(c) ∃w ∈ Paths, ddef(w1) ∧ ¬(idef ∨ iuse)∃( ]w] ) ∧ (wλ = qλ−1).

Since the placement function A is correct, we have InsertS∃A(w ⊕ z).
Since A ∈ T3, we have ¬InsertS∃A(w ⊕ u). Combining the previous
statements, we have ∃j, InsertSA(zj , zj+1). Now consider a path q⊕z.
From the statements above, we conclude that the variable vr is alive
on the edge 〈zj , zj+1〉. Then A ∈ T1 ⇒ ¬InsertL∃A( q⊕ [z1, zj ] ), so vr

is alive on the whole path q, which contradicts the initial assumption.

3) InsertLΠ(q1, q2) ∧ duse(qλ). By the initial assumption, 〈pi, pi+1〉 6∈
LiveArcsA(p). This can happen only if ∃i≤j≤β, InsertLA(pj , pj+1).
There are two conclusions from InsertLΠ(q1, q2):

(a) ∃k<α, idef(pk) ∧ ¬(ddef ∨ duse)∃( ]pk, pα] ),
(b) ¬FAvlMemOnly in(q2) ∨ duse(q2).

Suppose duse(q2) is true. Consider the path [pk, q2] that connects an
implicit definition with an explicit use, so InsertL∃A( [pk, q2] ). This is
why there is a load added by A on the path [pk, qλ]. As a result, we
come to A 6∈ T2, which contradicts the initial assumption.

Suppose the inverse: ¬duse(q2). Then ¬FAvlMemOnly in(q2) →
∃u ∈ Paths, (duse(u1) ∨ ddef(u1)) ∧ (uλ = q2) ∧ ¬ddef∃(p).
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If ddef(u1) is true, then A does not insert load on the path [u1, qλ]
(because A ∈ T1). In other words, the truth of InsertLA(pj , pj+1)
contradicts A ∈ T1.

If duse(u1) is true, then (assuming that the source program is correct)
there is at least one definition that reaches u1. If the definition is
explicit, we have a path ddef–duse(u1)–InsertLA(pj , pj+1)–duse(qλ)
that contradicts A ∈ T1. If the definition is implicit, we have a path
idef–InsertLA–duse(u1)–InsertLA(pj , pj+1)–duse(qλ), which contra-
dicts A ∈ T2;

4) InsertLΠ(q1, q2) ∧ InsertSΠ(qλ−1, qλ) This case can be proven as a
combination of the previous ones:

Because InsertLΠ(q1, q2) holds, there is a duse reachable downwards
from q2: ∃u ∈ Paths, (u1=q2)∧ duse(uλ)∧¬(idef ∨ ddef)∃( [u1, uλ[ ).
Applying the already proved case (3) to the path u, we have ∃k<α,
InsertLA(pk, pk+1).

Because InsertSΠ(qλ−1, qλ) holds, there is a ddef that reaches qλ−1:
∃w ∈ Paths, ddef(w1) ∧ (wλ = qλ−1) ∧ ¬(idef ∨ iuse)∃( ]w1, uλ] ).
Applying the already proved case (2) to the path w, we have ∃t>β,
InsertSA(pt, pt+1).

Now consider the composite path [pk, pt]. Because A ∈ T2, we have
¬InsertL∃A( ]pk, pt] ), so the path [pk, pt] is a contiguous liveness in-
terval for the placement function A.

14. Experiments

Table 1. Comparison of naive and optimal placement functions

JRE 1.4.2 Java2Demo FOP 0.20.5
naive optimal naive optimal naive optimal

Number
of stores

395087 63927 16065 3513 212210 36090

Number
of loads

319454 273274 9883 8212 106109 89645

Size of
generated
code, KB

14973.04 14951.70 470.00 468.46 5013.32 5010.62

The most important advantage of the partial SSA form over the tradi-
tionally used full SSA is reduction of the IR size, that affects not only the
compiler memory consumption, but also speeds up the compilation process.
This section presents our measurements made using the Excelsior JET JVM
[20].
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The data were collected by running the JVM’s static compiler on a set
of test applications. The original version uses partial SSA with the “naive”
placement function described in [22]. A modified version uses the algorithm
described in this paper. Test applications are:

• JRE1.4.2 07: Java 2 Platform API classes;

• Java2Demo: The Java2Demo sample that comes with the JDK;

• FOP0.20.5: freely distributed XML-to-PDF converter.

Table (1) presents the number of loads and stores inserted by each al-
gorithm, and the size of the generated object code. As can be seen, the
optimized placement function inserts five times less stores, and reduction of
loads count is also noticeable.
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Figure 6. Size of the def-use information

In Figure 6 one can see the size of def-use information (computed as the
number of definitions plus the number of uses of all variables) measured on
the FOP application for all three kinds of IR we have discussed.

15. Related work

Derivations of SSA. The original paper [6] introduces SSA for the pro-
grams with scalar variables and explicit definitions/uses only. However, the
same paper suggests that implicit definitions/uses may be modelled by extra
arguments and results: 〈a, b, c〉 = foo(a, b, c), which are versioned as well.
This is exactly what we mean by the full SSA. The paper does not consider
address-taking operations.
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There are many papers that somehow extend the SSA form, making it
more suitable for sophisticated analysis and optimization, with strong accent
on dealing with concurrent programs [27, 15]. We restrict the overview by
presenting only those papers that extend SSA to cover implicit operations.

One of the later papers by Rod Cytron et. al. [7] models implicit defini-
tions by the function IsAlias: v1 = . . . ; ∗p = 1; v2 = IsAlias(p, &v1),
while implicit uses are not considered. The authors build SSA form incre-
mentally, at each iteration it does contain only a part of program semantics,
so this kind of IR does not allow using the traditional SSA-based optimiza-
tion (they have to be adjusted for the IR).

Another extension of SSA [17] incorporates implicit definitions and uses
while removing all φ-functions, that is, using only variable versions. This
way the authors easily explicate implicit dependencies, and they also make
versions of what is called “indirect variables”, which are versions of heap
locations that are pointed by other variables. One can say that the proposed
solution is not an internal representation, but rather a set of attributes over
variables and statements that keeps the results of the side effects analysis.

The most notable SSA extension towards indirect operations is presented
in the paper of Fred Chow [5]. He adds artificial statements (µ- and χ-
functions) into the program IR that are similar to our loads and stores.
Consider a small example: let a call to foo() reads and wrties a variable v.
Here is the HSSA form for the example: µ(vi); foo(); vj = χ(vi). However,
the µ- and χ-functions are placed right around each call (or other indirect
memory access), so they are quite numerous and generate a huge number
of SSA versions. In our approach, conversely, loads and stores are placed
optimally, so the IR size is kept minimal. Besides, the optimal placement
of loads and stores simplifies our register allocator. A flavour of the HSSA
form that features indirect variables and µ- and χ-functions is used by the
GCC compiler [23].

The idea of separating addressable and non-addressable variables and
translating only non-addressable ones to SSA was originally introduced by
Pavel Zemtsov in [12], the same paper was the first to mention the insertion
of load and store statements as a part of SSA construction. Partial SSA
form was implemented in the Sokrat project [24, 11] and then reused in the
XDS framework [19] and then in Excelsior JET JVM [20].

Loads and stores. The concept of load and store statement that trans-
fers values between registers and memory is not new. Load/store are widely
used in the register allocation and code generation algorithms. The stan-
dard approach for placing loads and stores is described in the Muchnik bible
[22, Section 3.6].

The papers of Lo, Chow et. al [16] and of Cooper and Xu [8] aims at
optimization of initially ineffective load/store placement with the help of
global value numbering and SSA-based code motion (SSAPRE [4]). We
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believe that our approach achieves generally the same results, however we
place loads and stores optimally from the very beginning, incorporating the
algorithm into SSA construction, reducing the memory consumption and
compilation time.

There are works aimed at removal of redundant pointer dereferences
that also use the code motion approach, such as the paper of Bodik et al.
[2]. They also use the terms load and store, but with different semantics,
because the memory address is not fixed so the load statement serves rather
as a heap access operator.

16. Conclusion

The paper presents a new internal representation called partial SSA form
that is an SSA flavor with some (but not all) variables obeying the sin-
gle assignment property. The proposed IR is more compact and simplifies
the design of certain compiler components, while it does not hinder code
optimizations.

We formulated several criteria that help us to select the “best” partial
SSA representation for a given program, attempting to minimize the IR
size and lifetime ranges of non-addressed variables (virtual registers) while
keeping all those def-use chains that are necessary for further optimization.

We presented the algorithm for translation of an arbitrary program to
the partial SSA form and formally proved that the resulting IR satisfies the
optimality criteria.

Experimental results showing reduction of IR size and some improvement
of the code quality are also given.
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