Bull. Nov. Comp. Center, Comp. Science, 9(1998), 23-30
© 1998 NCC Publisher

Object-oriented approach
in approximation
of the boundary value problems

Yana L. Gurieva

Several classes of objects for the object-oriented approach in programming the
approximation stage of solving the boundary value problems are proposed. They
are the classes for a computationa! cell, for boundary conditions and coefficients of
the linear system of equations.

Introduction

The idea of the modern technology of programming is many-sided. One of its
components is the the object-oriented (OO) programming (OOP). OOP, as well as
the object-oriented methodology in general, has some distinctive features (see, e.g.,
(1, p. 411)). :

To simulate a problem using OOP, one must indentify objects and classes of
objects which differ in their data and functions. If the classes share common prop-
erties, a base class is introduced from which to derive them. Inheritance is the tool
for reusability in OOP. Virtual functions provide a way to tackle a class-specific
behavior of the objects. Virtual functions provide polymorphism, i. e. different sub-
classes perform the same operation differently. A famous programming language
which has all these features is C++.

There are several stages in numerical modelling of the problems of mathematical
physics. They are: input/preprocessing of all necessary information about the
problem, mesh generation, approximation, solving the system of linear equations
and output/postprocessing. Each of them is a nontrivial numerical and algorithmic
problem as well as their programming and especially their QOO implementation.
The main problem here is to define suitable numeric objects and the corresponding
classes in such a way that they can be used in several applications.

The works connected with QOP can be found for three stages of the solution
process. Two of them are input and output. Usually they are connected with
some user graphic interface and their OO implementation is based on the classes
of graphic objects to present input and output of the boundary value problem on
a display screen (see, e.g., [2]).

The third stage is the mesh generation and, in particular, the adaptive mesh
refinement. In paper [3], to program the adaptive mesh refinement algorithm for
the 3D calculations in gas dynamics, the authors introduced the classes to han-
dle the geometric rectangular mesh regions and a special class which is “... C++
implementation of a Fortran array”. The latter is very typical of computational

24 Yana L. Gurieva

applications which “... act upon regular arrays of numbers” and perform integra-
tion, interpolation, etc., because for such operations Fortran is “an excellent choice
of language”.

In the present paper the OO approach is applied via using C++ to the ap-
proximation stage of the solution process and introducing several classes of objects.
Some remarks on reusing the proposed classes will be given.

1. The linear system coefficients

Let the approximation of the 2D boundary value problem for the Helmholtz equa-
tion be the box approximation [4] on a rectangular nonuniform mesh and the com-
putational region be a rectangle.

The approximation process can be considered consisting of two parts: approxi-
mation of the equation itself and taking into account the boundary conditions via
the corresponding approximation. The result of the approximation is the linear
system of equations

Au = f)

where the matrix A is a sparse (N x N)-matrix, i.e. it has only m (m < N) non-
zero entries in each row. Than each row corresponding to the node (i,j) has the

following form:
m-—1

Potto — Z pruk = fo, (%)

k=1

where m is 5 or 9 according to the difference pattern used and 0 is the local numiber
in this mesh pattern for the node. The matrix A .can be presented as a set of m
arrays of the coefficients px, each being (N x N)-matrix. It should be mentioned
that this representation is very convenient for the approximation process namely
(for the system solution, the famous universal storage scheme is the sparse row-wise
format and its modifications [5]). Let us assume that there is defined a matrix class,
say, Matrix, performing all necessary operations to handle any rectangular matrix
(we will need here only the constructor. of this class; let it be the constructor which
has only one argument — the name of the matrix). Than it is natural to introduce
the following special class for the coefficients (i. e. for the matrix A):

class Coef
{
private:
void CheckSize(int xdim, int ydim) const
{
if(Cols !'= 0) assert(xdim == Cols);
if(Rows '= 0) assert(ydim == Rows);
}
protected:
int Cols, Rows;
public:
Matrix<real> p0, p3, p4, p7, P8, pl, P2, p5, p6, £, u;

Object-oriented approach in approzimation of the boundary value problems 25

public:
Coef() : p0("p0"), p3("p3"), p4a("pa"), p7("p7"), p8("ps"),
p1("p1"), p2("p2"), ps("ps"), p6("pé"),
£("£"), u("u"), Cols(0), Rows(0) {}
int GetCols() const { return Cols; }
int GetRows() const { return Rows; }
void create034(int xdim, int ydim);
void create126678(int xdim, int ydim);
¥ void create(int idimx, int idimy);

*;

Here and later we omit the functions dealing with input and output of the class
components. We use and will use only the default constructors because our interest
is in the class data and class functions which perform some computations. So, the
class handles a set of rectangular matrices of the size ColsxRows. Three functions
create034, create125678 and create are necessary to create different subsets of
coefficients: if the matrix A is symmetric and m = 4 than only three coefficients
Po, P3, p4 are sufficient to represent it; otherwise, all nine coefficients including p,,
P2, Ps, Ps, P7, ps should be created. The latter function from the class Jjust calls the
first two functions. The main goal of these functions is to allocate memory for the
corresponding coefficients. This class is “dummy” in the sense that the only useful
thing in creating it is to have the arrays of coefficients of the same size. However,
this class is reusable or can be made reusable by adding several new coefficients
because the number of non-zero coefficients of the matrix does not depend on a
specific way or a method of approximation. It depends only on the approximation
pattern and the incidence of the mesh nodes.

2. Mesh and computational cell

In papers [6, 7], the matrix A was proposed to be built in a cell-by-cell travers-
ing of mesh cells. In doing so, the local (4 x 4)-matrix was introduced, and all
necessary calculations for the approximation were done locally using the mesh cell
information. This information consists of the coordinates of the four corner nodes
of a rectangular cell, the medium coefficient in the cell and the four numbers of the
boundary edges on which lie the cell edges. The medium coefficient and coordinates
are necessary to approximate the equation, and numbers of boundary edges - to
take into account the boundary conditions if any. We assume that the boundary
conditions are given on the boundary edges of the computational region. Let us as-
sume that the mesh is given by the two global arrays of z- and y-mesh coordinates.
Then having the mesh indexes (i, j) of the point, its coordinates are available at
any place of the program. They are used to calculate the local balance matrix. So,
the class corresponding to the mesh cell can be introduced as follows:

class Cell

{

public:
float med;

26 Yana L. Gurieva

int left, down, right, up;
public: :

Cell() : med(-1), left(-1), down(-1), right(-1), up(-1) {}
};

This class is “dummy” in the sense that the matrix of the cells is just a union of
five Fortran arrays. The computational domain can be presented as matrix of the
computational cells.

3. Boundary conditions

The boundary conditions which are necessary to be taken into account consist of
two types of conditions. The first are the Neumann and the Newton conditions.
They require integration over the cell. The second type is Dirichlet condition when
the given value is put into the right-hand side of the equation (#) for the point
on the boundary edge with this boundary condition, and actually there are no
additional calculations.

The following classes to perform all types of the boundary conditions are pro-
posed. Let the boundary conditions for the problem under consideration include
the constant Dirichlet conditions, the linear Dirichlet conditions, the Dirichlet con-
ditions given by a user function and the Neumann conditions. At first, the enu-
meration type is introduced. It has all different types (which require different
calculations) of the boundary conditions for the considered boundary value prob-
lem.

enum EFType
{

BF_CONST, BF_LIN_DIR, BF_NEI, BF_USER, BF_LAST
};

Then we introduce the base class BoundCond of the boundary conditions as
follows, assuming that there exists a special class, say, IArray, to handle the arrays
of the integer values:

class BoundCond
{
protected:
IArray edges;
public:
BoundCond() : edges("edges") {}
virtual “BoundCond() {}
virtual real Func(real &x, real &y) const = 0;
virtual EFType GetType() comnst = 0;
Bool HasRib(int rib_number) const;

};

The class contains one array “edges” of the integer values which are the numbers of
the boundary edges of the computational region. These edges describe the geome-
try of the region, i.e., the region boundary, differ in their numbers and each edge

Object-oriented approach in approrimation of the boundary value problems 27

has a certain boundary condition. We use here a pure virtual function Func, which
will return the values of the coefficients of different boundary conditions to make
this class abstract. The virtual function GetType is necessary to determine the type
of the boundary condition on the given edge. The function HasRib is necessary to
determine if the edge with the given number has any boundary condition or has
not, i.e. if this edge is in the array “edges” (the boundary edges of the computa-
tional region can have no boundary condition if they divide the subregions with the
different media, i.e. they are the edges of the “inner” boundary). Then we define
the derivative classes with their own definition of the functions func and GetType.

class ConstDir : public BoundCond
{
protected:
real coef;
public:
ConstDir() : coef(0.0) {}
virtual real Func(real &x, real &y) const { return coef; }
virtual EFType GetType() const { return BF_CONST; }
3

class LinDir : public BoundCond
{
pProtected:
real a, b, c;
public:
LinDir() : a(0.0), b(0.0), <(0.0) {}
virtual real Func(real &x, real &y) const { return a*xx+b*y+c; }
virtual EFType GetType() const { return BF_LIN_DIR; }

};
class Nei : public BoundCond
{
protected:
real kappa, g;
public:

Nei() : kappa(0.0), g(0.0) {}

virtual real Func(real &x, real &y) const

{ x = kappa; y = g; return real(0); }

virtual EFType GetType() const { return BF_NEI; }
};

class User : public BoundCond
{
protected:
// any data needed
public:
User() {}
virtual real Func(real &x, real &y) const

28 Yana L. Gurieva

// call here any extern global function that is needed
{ return real(0); }
virtual EFType GetType() const { return BF_USER; }
};

So, the function GetType returns for each class its own value of the type and
the function Func performs necessary calculations for the class where it is defined
and/or returns the values of the coefficients of the boundary condition.

The real boundary conditions (pointers to them) will be stored in a special array
(we assume here the existence of the class for array of pointers, say, ArrayPtr):

class CondArray : public ArrayPtr<BoundCond *>

{

public:
CondArray(const char *name = "") : ArrayPtr<BoundCond *>(name) {};
BoundCond* GetRib{int ri) const;

Y

Function GetRib returns the type of the boundary condition on the boundary
edge with given number ri. Now we can write down a function which performs all
necessary calculations for taking into account the boundary condition on the given
boundary edge with the number rib. Its two ends have the mesh indexes (i, j1)
and (i, j2) and coordinates (z1,1) and (z2,y2):

void bc_on_rib(int rib, int i1, int ji, int i2, int j2,
real x1, real yl, real x2, real y2, real s)
{
BoundCond *p = condArray.GetRib(rib);
switch(p->GetType())
{
case BF_CONST:
case BF_LIN_DIR:
PCoef.u(il,ji)=p->Func(x1,yi);
PCoef.u(i2, j2)=p->Func(x2,y2);
PCoef .p0(il,j1)=-1.;
PCoef.p0(i2,j2)=-1.;
break;
case BF_USER:
// should be the same as BF_CONST, BF_LIN_DIR
break;
case BF_NEI:
real w=area*.b*s;
real kappa,g;
p->Func(kappa,g);
PCoef.f(il,jl)+=g*w;
PCoef.f(i2,j2)+=g*w;
pOO+=kappa*w;
p44+=kappa*w;

Object-oriented approach in approzimation of the boundary value problems 29

break;
default:
exit(1);
}
}

Here PCoef is an object of the introduced type Coef.

In the case of the Dirichlet boundary conditions, the given value, calculated
via the function func (the function is determined by the boundary condition!), is
put into the solution array u and the diagonal coefficient po of equation () is set
to (—1). In the case of the Neumann conditions of the form au + du/dn = g,
some calculations are done to give additions to the diagonal coefficients of the local
matrix and the right-hand sides corresponding to the two points of the boundary
edge.

The final function which takes into account the boundary conditions on all the
four edges of the mesh cell with its low-left corner with the mesh indexes (i, j) is
very simple:

void bc_on_edges(int i, int j, const Cell &cell)

{
int iil=i++;
int ji=j++;
be_on_rib(cell.left,i,j,i,j1,x(i),y(j),x(i),y(j1),cell.med);
bc_on_rib(cell.down,i,j,i1,j,x(i),y(j),x(i1),y(j),cell.med);
bc_on_rib(cell.right,il,j,i1,j1,x(i1),y(j),x(i1),y(j1),cell.med);
bc_on_rib(cell.up,i,j1,i1,j1,x(i),y(j1),x(i1),y(j1),cell.med);

} . .

Here we assume that the global arrays of the coordinates are defined before this
function is called. The cell (an object of the Cell class) is used to get its four
mesh edges and the medium valus.

4. Conclusion

One can see from the above constructions that in most cases the computational
classes are trivial because they should deal with the regular arrays of numbers.
The only exception are the introduced classes of the boundary conditions. They
do use the possibility which gives the virtual function. The classes of the bound-
ary conditions do not depend on a specific computational application (e.g., the
approximation approach) and depend only on the boundary value problem, or, to
be precise, on the types and the forms of the boundary conditions, and so they are
reusable.

One of the most important components of the modern technology of program-
ming is the parallel implementation of algorithms for multiprocessor computers.
The parallelization has been already done mostly for solving the linear and non-
linear systems of equations arising in numerical applications (see (8] for example).
Buat similar considerations can be made for the approximation process and the
corresponding programs. For the approximation of the boundary value problems,

30 Yana L. Gurieva

parallelization can be done on different levels. Concerning the OO approach and
the introduced classes, parallelization is naturally implemented for the base classes
handling arrays and matrices. The next level is the parallelization of calculation of
the local balance matrices. Then the celkby-cell traversing mentioned in Section 3
is replaced by the distributing process, when a computational region is divided
into several subregions having approximately the equal number of mesh cells (the
numbsr of arithmetic operations for different cells is one and the same except the
cells near the boundary). Each subregion is supposed to be processed by its own
processor. Another kind of parallelization can be performed, as was mentioned, for
the solution of the resulting system of the linear equations. Careful consideration
of these important possibilities should be the main subject of the future work.

References

[1] P. DiLascia, Windows++: writing reusable Windows code in C++, ISBN
0-201-60891-X, Second printing, 1993.

[2] N.A. Orishich and A.V. Russkov, Interactwe interface for modeliing two-
dimensional boundary-value problems, Proceedings of the Young Scientists Con-
ference, Novosibirsk, 1997, 147-156 (in Russian).

[3] W.Y. Crutchfield and M.L. Welcome, Object-oriented implementation of adap-
tive mesh refinement algorithms, Scientific programming, 2, 1993, 145-156.

[4] V.P.1Vin, Balance difference schemes of high order on nonuniform rectangular
grids, Preprint 1031, Novosibirsk, Computing Center, 1994 (in Russian).

[5] S. Pissanetzky, Sparse Matriz Technology, Academic press Inc., 1984.

{6] Y.L. Gurieva and V.P. Il'in, On the finite-volume technology for the mired
boundary-value problems, Advanced Mathematics: Computations and Appli-
cations. Proceedings of the International Conference AMCA-95, Novosibirsk,
NCC Publisher, 1995, 6560-655.

[7] Y. Gurieva and V. Il'in, Finite volume approaches for 2-D BVPs: algorithms,
data structures, softwarc and experiments, Univ. of Nijmegen, Dep. of math.,
Rep. No. 9715, 1997.

[8] I.N. Molchanov, Introduction to the Algorithms of Parallel Calculations,
Naukova Dumka, Kiev, 1990 (in Russian).

