Bull. Nov. Comp. Center, Comp. Science, 9 (1998), 31-43
© 1998 NCC Publisher

3D mixed boundary value problems:
numerical algorithms, data structures
and technologies of implementation*

Yana L. Gurieva and Valery P. II'in

Technological aspects of the numerical solution to multi-dimensional boundary
value problems (BVP) for partial differential equations (PDEs) using the finite dif-
ference, the finite element or the finite volume methods are described. Among them,
the mathematical formulation of the problem, definitions of objects under consid-
eration, algorithms of approximation with different accuracy orders, description of
the code FVSDE3 and estimates of parallelization speedup.

Introduction

Numerical solution to multi-dimensional boundary value problems (BVP) for par-
tial differential equations (PDEs) using the finite difference, the finite element or the
finite volume methods (FDM, FEM or FVM) includes the following computational
stages:

¢ input and preliminary processing of the data describing the original mathe-
matical formulation of the BVP which includes an information about the geometry
of the computational domain, the boundary conditions, the types of PDE’s and
values of their coefficients in different subdomains and possible instructions for the
algorithm applied and for visualization of the numerical results;

e discretisation of the BVP that means an automatic generation and construct-
ing the grid subdomains with their cells, edges and nodes providing connection
between the grid objects or/and the functional data;

e approximation of the original BVP which can be efficiently implemented on
the basis of element-by-element data processing, computing the local matrices and
assembling the global matrix of an algebraic system of the grid equations;

e numerical solution to the algebraic system, for example, by efficient iterative
incomplete factorization methods with the conjugate gradient acceleration provid-
ing a fast convergence rate and usage of reasonable CPU resources;

¢ analysis of the computational results with visualization of numerical data and
possible solution to the optimal control problem by the run of various variants of
BVPs and the search for the optimal parameters in the formulation in the sense of
minimization of the given functionals under some restrictions.

*Suppeorted by the Russian Foundation for Basic Research under Grant 96-01-01770
and INTAS-RFBR under Grant 95-98.

32 Yana L. Gurieva and Valery P. Ilin

Undoubtedly, a subject of considerable interest is the efficiency of parallel com-
puting on the multi-processor systems with distributed or shared memory.

In the present paper, the questions of mathematical and software technologies
are considered on the example of the 3D mixed BVP for the diffusion equation

—divAigradu+ pu = f, (1)

in the bounded computational domain = | J, €% with the piecewise smooth func-
tions A > 0, g > 0, f in different subdomains ;. On different parts of the domain
outer boundary T° = TP YUY, % = (J, 12, IV = U, Ty the Dirichlet or the
Neumann (Newton) conditions are satisfied

Ou
“|F:? =g mut 5 — (2)

here 3@5 means the external normal derivative and g,, &,, 7, are given constants
or functions.

The second equation in (2) is called the Newton condition in the general case
and the Neumann condition if 22, = 0. On the surfaces I'' of possible discontinuity
of A (on common sides of different Q, or the “inner boundaries”) the conjugate
conditions hold:

du du
Ujri = U A -—:| = -—_l . 3
IF+ IP—’ *onlr Onlri’ (3)
where the signs “4”, “~” mean one-sided values of the function and its normal

derivative on different sides of I,

We suppose that the subdomains 2 are parallelepipeds whose faces (which form
the external and the internal boundaries) are parallel to the coordinate planes.

The approximations used is a set of various finite volume approximations of
order O(h), O(h?), O(h®) at 7-, 19- or 27-point stencils on the regular non-uniform
grids, see [1].

The efficient explicit iterative incomplete factorization procedure EXIFA is used
to obtain a numerical solution of large algebraic systems of equations [2].

The above mentioned algorithms are implemented in the program FVSDE3
which is a generalization of the similar 2D code FVSDE2 [3].

The above-mentioned stages of the solution process and the problems arising
during their implementation were considered by many authors mostly for the FEM
technologies. The construction of the FEM approximations and their theoretical
and technological grounds can be found in the papers and books by many authors
(see [4-6], for example). The problems of grid generation and the corresponding
algorithms are presented in the recent review [7]. Some algorithmic problems of
the FEM and the FVM combination were considered in [8].

In Section 1, we describe the basic definitions of the mathematical formulation
and the approaches used in the following considerations. Section 2 is devoted to
the description of algorithms and data structures. In Section 3, special software
technologies in the code FVSDE3 are considered. Some aspects of parallel imple-
mentation of the above-mentioned algorithms are reviewed in Section 4.

3D mized boundary value problems . . . 33

1. Mathematical formulation and approaches

In this section, the basic functional, geometric and computational objects will be
defined. They form the basis for specifications of the algorithms and the data rep-
resentation used in designing the code to solve the problem. Similar considerations
of some objects and data structures were presented in [9] without peculiarities of
their implementation.

Mathematical formulation of any BVP is defined by a set of differential equa-
tions, computational domain, boundary conditions and specifications of the algo-
rithms applied.

Computational domain © (CD) is an open bounded set in R" (n = 3 in our
case). Its closure is @ = QUT®, where I'* € B"~! is the outer boundary of Q. In
the general case, I'° is multi-connected. ’ ' '

Subdomain). is an open bounded subset of 0. Subdomains do not intersect,
i.e. 4 N = B. From the practical point of view, a subdomain differs from
other subdomains in its specific geometry and in values of the coefficients of the
PDE. Any domain can be presented as a union of its subdomains: = Uf;l Qe
where N, is the number of subdomains. In our consideration, each subdomain is a
parallelepiped 0 = {a:ik) <z < z(zk), yik) <y< ygk), zgk) <z< zgkl} which has
its own coefficients for the differential equation and whose faces are parallel to the
coordinate planes.

For each subdomain Q, there is defined its boundary T and its closure Qr =
Qk UT,. The subdomain boundary T'; can be considered consisting of two parts:
outer boundary part I'} = I'y NT and inner boundary part T} =Tk \T}. As well as
the boundary T’ of any subdomain, the domain boundary I'consists of two parts —
inner and outer boundaries: ' = T* UT®. Inner boundary is the part of I' formed
by the mutual boundary parts of pairs of subdomains: I'¥ = Uk, Ty = T N Ty,
k#1

From the practical point of view, it is important to distinguish the inner and
the outer parts of the boundary because they concern different mathematical con-
ditions: boundary conditions (2) and conjugate conditions (3) respectively. Strictly
speaking, the latter is a direct consequence of the jump of coefficient) in (1), and,
formally, the approximations are constructed without using the conjugate condi-
tions. According to both types of boundary conditions in the problem formulation,
the Dirichlet and the Neumann (the Newton) conditions, we can assume I' (and,
also, every I'}) consisting of two parts I'* = '’ UT'V which correspond to Dirichlet
and Neumann (Newton) conditions respectively. As a data processing for these
types is different, it is important to have a possibility to separately process the
corresponding types of conditions, i.e., to traverse the corresponding boundary
parts. .

Differential equation (DE) of the form of (1) as a computational object is a
triple of coefficients (A, g, f). As the domain consists of its subdomains, this triple
is determined for each subdomain : DE) = (Ak, ptx,), where in our case of the
problem formulation A is a constant, p is either zero or non-negative constant or
a given function and fi is, also, either a constant or a given function. Let us note
that the main value for the subdomain to distinguish it from the other subdomains
is its number £, i.e., it is assumed that having this number, one can easily get the
necessary values for DE),.

34 Yana L. Gurieva and Valery P. I’in

Discretization of BVP in the domain £ is based on construction of some grid
in the domain and considered as calculation of the coordinates of the grid nodes,
defining the grid edges, faces and elements, and some other grid objects. These
grid objects depend on the method of approximation used and the type of the grid.
Usually, two types of the grids are distinguished: irregular and regular. Their main
difference is in the topology of the adjacent grid nodes. For a given grid node, a
set of other nodes connected with it by the grid edges is called grid stencil. For the
regular grid, the grid stencils of all the grid nodes P € Q are the same. We will
consider regular rectangular grids. Rectengular grid G is a tensor product of the
three non-uniform one-dimensional grids G*, G¥, G* (z-, y-, and z-grid):

G* . Tig1 :.l!,-{-hf, GY TYi1 =yJ+h_!;l G*: Zk41 :zg+h;,
i=0,...,L, j=0,..., M, k=0,..., K.

The constructed rectangular grid is consistent with the geometry of the domain
in the sense that, firstly, each side of any subdomain is placed on the coordinate
planes defined by some of the coordinates of G®, G¥ or G*. We suppose that
the computational domain is embedded in the parallelepiped 2 = {zo < z < 21,
yo < ¥ < ym, Zc < z < zy} and that the domain boundaries (outer and inner) cross
the grid lines in the nodes only. For example, if a subdomain has a side z = =,
Uin <Y < Yja» %k, < 2 < 2k, the grid should have coordinate z; in its z-grid,
and the coordinates yj,, ¥j, and zk,, 2k, in its y- and 2-grids, respectively. The
boundary vertices and edges should be grid nodes and grid edges. For a convenient
description of the computational domain, we also need to define external subdomains
Q¢ = Q\ Q = UgQ§ which can be represented formally as subdomains with zero
diffusion coefficient A of equation (1) (in fact, no equation will be solved in Q3).

To approximate equation (1), the finite volume method is applied (for details
see [1]). It is based on an approximation of the conservative law relation

—w[/\g%ds—(l—w)/)\—S—Eds:w/(f—yu)dv—f—(l—w) f(f—;m)dv, (4)
§ Viik ‘7-',,',*

Si 5.k Siik

which is equivalent to the original problem (1)-(3) and is combined over small and
big elementary volumes V; jk, Vi j x with surfaces S; jk, Sijx:

2 i T , . . ,
Vigu = {SEE cp g BEIE WYL ¢y BT,
2K +22k—1 <z< 2k +2Zk+1 },

Ve,j,k = {o'c.'-l <z<Tig1, Y-1 <Y< Yisl, %-1525 Zk+1},

with a weight parameter w. The resulting grid equations are, in general, of the
27-point type:

0 3 4 6 .
P k%igk = PijkWit1,ik — Pijetij+ik — Pijetigk+l —

3 4 . 6 - -
Pio1jkMi-14k — Pij—1kWij-1k = Pijk-1ijk-1

3D mized boundary value problems . .. 35

T .8 9 o
Py k%i-1541k = Pij k%it1i410k = Piol jk-1%i-1,j,k—=1 —
10 11 12
Pijetig+1,k41 = PijkUi—1,5,k+1 = Pij k%ij=1k+1 —
7 S s _ 8 L 9
Pig1,j-1,hWi+1,j-1k = Pioy j-1kti-1,j=1k = Pio1 j-1k-1%i-1,jk=1 —
10) 11 o 13 .
Pij-1k—1W%ij-1,k=1 7 Pi}1 jk—1%i+1,5,k—=1 = Pij g%i-1,j-1,k+1 —
14 15 . . 16 .
Pij kWit i+1 k41 = Pijpti=1j+1k+1 = Py kWitl,j-1,k41 —
13 s _ pld L
Pitl,j+1,k—1%i+1,j+,k—1 — Py i1 k-1%i-1,j-1 k=1
15 X X _ 16 R . —_ . 5
Pit1j-1h=1%i415-1 k-1 = Pil1 j41 k-1%i-1,541k-1 = fijk, (5)

where the symmetry of the coefficients is taken into account, and coefficients p? ik
are computed via the values of mesh steps and the parameters A, p, z of the orlgmal
BVP, see [1] for details.

For the weight parameter w = 32/31, this equation turns into the 19-point

equation with zero coefficients p'®,...,p!® and for w = 16/15 it turns into the
7-point scheme with zero coefficients p”, ..., p'®
The final system of linear algebraic equations has the following form:
Au = f, (6)

in which the equation for the grid node with the grid indexes (i, j, k) is given by
(5). The approximations of relation (4) used to obtain system (6) bring about the
symmetric matrix A.

The order of approximation accuracy is different for different values w a.nd grld
types:

e O(h) for w = 16/15 and a general non-uniform grid,

e O(h?) for w = 16/17 and a general non-uniform grid or for any 0 < w < 1
and a piecewise uniform grid (the finite number of grid zones with constant
grid steps in each one),

e O(h%) for w = 32/31, the uniform grid, the Dirichlet boundary conditions
and the constant coefficients A, p.

The matrix A of the final system (6) is calculated via the element-by-element
approach which is well-known in the FEM. It means that the main elementary
calculation object is not a grid node but a grid cell. The calculations made in each
cell use the “local” information, i.e., the information about the current cell only:
its grid steps, grid indexes of the cell vertexes and the value A in the cell. The
calculations in one grid cell result in the entries of the local matrix. Matrix A of
the final system (or the global matrix) is a sum of extended local matrices of all
the grid cells.

To apply the element-by element technique for the computation of local balance
and assembling global balance matrix of the final system of grid equations, we intro-
duce some grid objects. Computational cell (or a grid cell) is a volume restricted by
six grid planes (or six coordinates): {2; <z < Ziy1, ¥j <Y < Yjt1s 2k < 2 < zj41}
and we will refer to it as (i, j, k)-cell later. The grid nodes are the vertices of the
grid cells. Each grid cell belongs only to one subdomain and so has its own value

36 . Yana L. Gurieva and Valery P. Il'in

of parameters of the PDE, i.e. the cells differ in the numbers of the subdomains
to which they belong. There is no cell containing the inner boundary - the plane
dividing the subdomains with different A. The computational domain is a union of
all the grid cells. And, finally, the faces of a grid cell (grid faces) are eihter parts
of the domain boundary T or the inner faces formed by the grid. In the first case,
the faces have the same boundary condition as the part of T' to which they belong.

2. Algorithms and data structures

The first step of solution of the original problem, which requires some calculations,
is the construction of a grid. The coordinates of a non-uniform parallelepipedoidal
grid are calculated as follows. Along each coordinate, the grid consists of the finite
number of grid zones in which the grid steps are defined as constants (u-zone) or by
a geometric progression (g-zone) or by an arithmetic progression (a-zone, or a-type
zone).
Let the values n,, ny, z; mean the numbers of zones in z-, y- and z-directions
and
Xp, p=0,1,...,n,, Yo, ¢=0,1,...,ny, Ze, v=0,1,...,n,,

are the boundaries of the zones with the properties

X0=27[], XP>X—11 Xn,=3L+ls

Yo = yo, Yy > Y, Ya, = ym+1,

4y = 2o, Zr > Ze_y, Zn, = ZK41.

The numbers of grid steps I,, mg, and n, in each z-, y-, and z-zones are defined so
that

= Ny ®
L+l=nle, M-{—'l:qu, K+l=“2nr.

p=1 g=1 r=1

The constant grid steps in the u-zones are defined as

p
hf:h,(;’)zﬁ-_lxi‘-, i=Lpy,...,Lp—1, Ly=) 1,
P s=1
Yy — Y1 ' g
W =h = 100 =My, My-1, M=) m,,
Mq a=1
Zy = Z,_ a
b = h{" = k=N N1, No=)om,

The grid steps in the g-type zones are sought for by the formulas
hf = h{Plad=Le-1, i=Lp_1,...,L,—1,
B = RO =Mt =My, M, -1,
hi = h{"yf=Ne-2 o g =N,_{,...,N, - 1.

3D mized boundary value problems . .. 37

Here ay, f, 7 are denominators of the geometrical progressions, and A", h{
hg') are the initial grid steps in respective zones defined by the relations

-1 i

h;(;p)z(xp-xp—l)a‘p i) Q’p#l, lfpgnm
af —1

(@) = By -1

hy "(YP_YP—I) Mg) ﬁq?l'-ls 15‘15”9,
ﬁq -1

W) =(Z - Z) B2, oy #1 1<r<n.
=1 . -

The grid steps in a-zones are defined as
r® =hP) 4 (i = Lp_y)dP, i=Lpo1y. 0 Lp—1,
h;_y) = h!(f) +(- Mq..l)d!(f"). i=My_q,... . Mg—1,
B = b 4+ (k= N,_), k=N,_y,..., N, —1,

where d;p), d,(f), df,” are differences of the arithmetical progressions,

Xo— Xp1 2
dlP) = (22" 2p=1 _ pip) 1<p<
x (Ip h;r lp_ll _p_na?'l
Y, - Y, 2
(@) — {297 T9=1 _ 1(q)
dy (mq hy)mq_lj 15‘1S”y1
dr) = (Eti'_’_hgr)) 2 , 1<r<n,,
n, n. —1 - -
satisfying the positiveness conditions of the initial grid steps
X, — X, -1
Xp=Xpoy > W)= 2= femt g =1
I, 2
Yq - Yq_1 my — 1
Yy—-Ye1 > h‘,(f) = — d!(f) 7 > 0,
Z—Zpy > b =Bz yme =1
z n,)

In papers [9-10], the some definitions of grid data structures and algorithms
of their building were described for the considered type of geometry and grid. We
will describe them here in details because these structures as well as the algorithms
of grid building, local and global matrices calculation and solution of the linear
system form the basis for the program code FVSDE3 which will be performed in
the next section.

The grid data structure for the problem under consideration is presented in the
form of several arrays containing a cell-oriented information, i.e. the value of A in
the cell (or some identifier, e.g. number of the subdomain which contains this grid
cell) and some information on grid faces (e. g., boundary conditions if any).

To compute a local balance matrix under the element-by-element approach, one
should have the values of the functions A, , f in every computational cell, therefore

38 Yana L. Gurieva and Valery P. Il'in

a three-dimensional (L +1) x (M +1) x (K +1) array med is introduced, such that
its element med(%, j, k) equals the subdomain number in the grid (4, j, k)-cell (from
the algorithmic point of view, we identify subdomains by their numbers). The array
of the subdomain numbers in the cells is built by the subdomain traversing, taking
into account their mutual topology, see [11] for details.

To calculate the contributions into the local matrices from the Neumnann or the
Newton boundary conditions, it is required to determine on which face of a grid
cell this condition is given. In the initial data, the boundary condition number (we
identify the boundary conditions by their numbers) should be given on every face
of each subdomain. The three-dimensional arrays jface of (L +2)x (M+1)x(K+1)
dimension, jface of (L + 1) x (M +2) x (K 4 1) dimension and kface of (L+1)x
(M +1) x (K +2) dimension are introduced. These arrays contain through numbers
of faces of the subdomains on the perpendicular to the axes X , Y and Z faces of
the grid cells, respectively (dimensions of the arrays coincide with the number of
grid faces in the corresponding direction).

The solution of algebraic system (6) is computed on the basis of the iterative
incomplete factorization methods accelerated by means of the conjugate gradient
algorithm. Namely, Eisenstadt modification of the generalized symmetric successive
over relaxation (SSOR) algorithm with the compensation principle (the row sum
criteria, see [2]) is used. This method includes the iterative compensation parameter
0 < ¢ <1 and the relaxation parameter 0 < w < 1 to minimize the number of
iterations. For Stiltjes matrices, the values # = w = 1 are suitable. The iterative
process stops when one of the following conditions holds:

0 £ l~"ll
“r |i é LMI{, Il'f’U” S S, n S nmax. (7)

Here 2 "
Il = (Z NI)

is the Euclidian norm of the residual vector »* = f — Au", n is the number of
iterations, u® and r are the initial solution and residual, € and n,,,, are prescribed
small and large values. To solve system (6), this approach is implemented in the
above-mentioned subroutine EXIFA.

The matrix A after the approximation stage is presented in the form of arrays
of the coefficients p°,...,p'® from equation (5). They are then transformed into
the form of the sparse row-wise format [12] because the solver needs this matrix
representation as it is universal and independent of the portrait of the matrix A.

3. FVSDES3 code

The program FVSDES3 is made as one subroutine which solves the mixed boundary
value problem (1)-(3) for the diffusion equation with piece-wise smooth coefficients
in a composed of parallelepipeds computational domain using fast incomplete fac-
torization solvers on the basis of 7-point, 19-point or 27-point finite volume schemes,
on a non-uniform or a uniform grid. The programming language is Fortran-77. The
call of the subroutine is the following: '

3D mized boundary value problems . .. 39

call FVSDE3(fname,u,x,y,z.nmax,l,m,n,rh,dfun,userk,userg,cfun,:i.do)

The arguments here mean the following:

fname

u

nmax

l,m,n

ido

rh

dfun

c¢fun

userk

userg

is a name of the data input file (input);

is an array of size Imn containing the solution values at the grid points
(output);

is an array of size [containing the 2-coordinates of the grid nodes (output);

is an array of size m containing the y-coordinates of the grid nodes (output);

is an array of size n containing the z-coordinates of the grid nodes '(output);
is a maximum allowable number of iterations (input) and the real number
of iterations (output);

are numbers of grid points in -, y- and z-directions (output);

is a flag indicating the current state of computations (input/output); ido #
0 means the abnormal return from the subroutine;

is a user-supplied function for the right-hand side f of (1). Its form is
rh(isr,x,y,z), where

isr is a number of the subdomain which contains the point (z,y, z) (input),
X,¥,Zz are a point coordinate values (input),
rh is the value of the right-hand side at the point (z,y, z) (output);

is an user-supplied function for the right side function g in the Dirichlet
boundary conditions (2). Its form is dfun(nbcond,x,y,z), where

nbcond is a number of boundary condition (input),
X,¥,z are a point coordinate values (input),

dfun is the value of the function at the point (2,9, 2) (output);
is a user-supplied function for the Helmholtz coefficient pin (1). Its form
is cfun(isr,x,y,z), where the input parameters are the same as in rh

function. It returns the value of the function # at the point (z,y, z);

is a user-supplied function for the coefficient z in the Newton boundary con-
dition (2). Its form is userk(nbcond,x,y,z), where the input parameters
are the same as in dfun function. It returns the value of coefficient at the
point with the coordinates (z,y, z);

is a user-supplied function for the coefficient v in the Newton boundary
condition (2). Its form is userg(nbcond, x,y,z) with the same parameters
as in userk function.

The subroutine FVSDE3 consists of several successive standard stages, i.e.,
input of the initial data describing the problem, grid construction, building the
grid data structures, approximation and solution of the linear system.,

The program from which the FVSDES3 is called should have the description of
four arrays: z of length L + 2, y of length M +2, z of length K + 2, and u of the
length N = (L+2) x (M +2) x (K +2). Also, five user functions should be defined.

40 Yana L. Gurieva and Valery P. Il’in

Memory requirements for the subroutine are determined by the approximation
stencil, which is 27-point in the general case (it means that for each grid point there
exist 27 values of coefficients of equation (5)), by the memory requirements of the
solving procedure EXIFA, and by the double precision representation of real values.
Taking into account the symmetry of the matrix {only 14 values of coefficients in
the left side of equation (5) are enough), the total number of arrays of length N for
the program is 16 (14 for the coefficients and 2 for the right-hand side f and for the
vector of unknowns u). Because of the memory requirements of the solver EXIFA,
22N double precision real values are needed in total.

4. The parallelization speedup estimates

There are many publications on parallelization, mainly, on numerical solution of the
algebraic systems of equations, for example, see [2] and cited references. We briefly
consider the parallel general data processing for numerical solution to a BVP.

Formally, the numerical solution to a BVP is a set of data computed using the
following data structures (DS):

Statement (input) DS which consists of geometric, functional and algorithmic
data structures and includes full information about the computational domain,
the original PDE, the boundary conditions and some numerical methods; this DS
contains integer and real values about geometric objects, functional representation
of coefficients and algorithmic parameters; the total volume of such an information
is not large as compared to the rest DS and depends on complexity of the BVP, but
not on the number of mesh points; for the practical problems it can be estimated
by N, < 1000.

Grid data structure consists of information about all grid objects — nodes, edges,
faces and cells as well as their relations with geometric, functional and algorithmic
objects from the statement DS; the purpose of the grid DS is to provide an efficient
implementation of constructing the grid system of equations which approximate
the BVP; this DS consists of integer values which are either numbers or references
to other objects and data; the total volume of this DS is estimated for large L, M,
K by Ng~4LMK.

Algebraic DS means real values of the matrix entries pk; ; x and right hand side
fijx from the grid system of equations and, also, the integer data to indicate to
numbers of the neighboring stencil points for each grid point (in other words, it
provides numbers of nonzero matrix entries in the sparse row-wise format). The
total volume of the algebraic DS for L, M, K » 1 equals N, = TEM K + N, where
N; < my: LM K /2 is the number of the off-diagonal matrix entries and m,, = 6, 18
or 26 is the number of the neighboring points in the grid stencil for each node
depending on the type of approximation. This DS consists of real values for the
coefficients of the final system and some integer data to use the sparse row-wise
format.

Resulting data structure contains one real array of numerical solution at the
grid nodes and various postprocessing information including the data for tables,
graphics, isolines, etc. -

3D mized boundary value problems . .. 41

The numerical process includes three main stages (we do not consider prepro-

cessing and postprocessing stages which provide a user interface and are mainly
connected not with calculations but with graphics):

(a) formation of the grid DS from the statement DS (discretisation);
{b) transformation of the grid DS to the algebraic DS (approximation);

(c) numerical solution to the algebraic system (the iterative incomplete factor-
ization method implemented in the subroutine EXIFA).

The main approach to solution of the multidimensional BVP is a domain decom-
position (DD). In the case of a parallelization on p processors, it can be formulated
as follows. '

We define the grid subdomains Q*, s = 1,...,p, with a possible overlapping,
which are not connected with the computational subdomains €2 and divide the grid
and the algebraic data structures into substructures which are distributed on the
processors. The ideal domain decomposition, in the sense of the best utilization
of SIMD processors, is the definition of the grid subdomains Q* with the equal
number of nodes (or cells).

The implementation of the stage (a) on p processors can be readily arranged
as follows. The copies of the statement DS are put on all the processors because
of their relatively small volume. The purpose of data processing is to prescribe the
number of its computational domain €, to each grid cell (formally this number
is zero if the cell is outside of the computation domain £2), and to prescribe the
number of boundary segment to each grid face. The latter number allows us to
find the type of the corresponding boundary condition, and it equals to zero if
the grid face is internal, i.e., it is not on the outer boundary I'°. On each s-th
processor, computations are done in loops over the cells and the grid faces which
are in the s-th grid subdomain Q. Really, this stage is implemented without any
communications and redundant arithmetic, i.e., we have an ideal parallelization.

At the stage (b) we have the following data processing:

statement DS + grid DS — algebraic DS.

The computations for s-th grid subdomain are done in the cell-by-cell ordering on
corresponding s-th processor. The resulting algebraic DS is node-oriented (the ma-
trix entries and right-hand side for ¢-th equation correspond to ¢-th grid point) and
is distributed on p processors in accordance with their belonging to the grid subdo-
mains. The parallelization at this stage is not ideal because some communications
between processors are needed when assembling the global matrix from the local
ones: for the grid nodes on the common boundary of two subdomains there are
local matrices computed on different processors according to their correspondence
to the subdomains. The last operation to get the final global matrix is to traverse
the nodes on the mutual boundaries and to sum up their additives from the local
matrices computed in different subdomains. In so doing, the volume of arithmetical
operations is proportional to O(h?) (as compared to O(h®) — the total number of
grid nodes). If N is the total number of grid points and N/p is the number of nodes
in one grid subdomain for an ideal distribution, then the CPU-times T, equal to
the values C3N/p and C,N/p for the stages (a) and (b), respectively. Here C; &~ 10
and C, & 100 are the numbers of arithmetic operations per node for the stages.

42 Yana L. Gurieva and Valery P. Il’in

The third stage has the main computational complexity both for direct and
iterative discrete methods for solution of the BVP systems of equations because
the number of arithmetic operations is a nonlinear function of N. The memory
requirements for the 3D BVP make the iterative algorithms the most efficient tool
on multi-processor systems. Various versions of the algebraic domain decomposition
methods can be implemented in our case, see [2, 13], for example, and we do not
intend to consider this topic in detail.

One of the main approaches here is the double iterative process with commu-
nications between processors on the outer iteration only (the inner iterations deal
with the linear subsystems in the subdomains corresponding to the processors and
the outer iterations make possible to get the final solution to the whole algebraic
system). In this case, the total computational complexity of numerical solution
depends on the way of performing the double iterative procedure, but the speedup
does not depend on the numbers of the inner and outer iterations.

It is important to note that in this DD approach, the communications and the
total efficiency of parallelization are defined by the way of domain decomposition
in the sense of the shape of subdomains. The corresponding estimates can be
demonstrated on the computer system in the form of the square processor grid of
the size of p'/2 x p'/? with distributed memory (p'/2 is supposed to be an integer).

Let a computational cube grid domain with the total number of nodes
LMK = L3 (L = M = K) be decomposed into p subdomains (we assume that
p < L?) without overlapping so that each subdomain is processed on its own pro-
cessor, and the number of nodes in one subdomain is L3/p. Than the number of
arithmetic operations on one processor will be proportional to L3/p. The number
of communications between processors depends on the way of division. We will
consider two ways of decomposition (the figure): in layers and in columns.

L/vP

L/\/B

N] JL/p

Two ways of decomposition

First, let the domain be divided into p layers. This way can be called the
1D-decomposition as it is made in the direction of only one coordinate. The number
of nodes on the adjacent side of two layers is L2. Than the number of communica-
tions between the neighbouring processors is proportional to the number of nodes
on the two adjacent sides of one layer and in our case is C; = 2L2.

The second way of distributing the nodes is to divide the domain into p columns.
By analogy with the first case, this way of division can be called 2D-decomposition
as the dividing is made along two coordinates. The number of nodes of the adjacent
side of one subdomain is L?/,/p. Than the number of communications between
processors is Cy = 4L%/,/p.

3D mized boundary value problems . .. 43

So, if the relation C»/C) = 2/,/p < 1, i.e., p > 4, then it is better to divide a
region into columns in the sense of decreasing the communications.

References

[1] Y.L. Gurieva and V.P. Il'in, On second order finite-volume approrimations
for 3D mized boundary value problems, Bull. of the Novosibirsk Computing
Center, Series: Numerical Analysis, Issue 7, 1996, 51-70.

(2] V.P. II'in, lterative Inc;rmp!ete Factorization Methods, World Scientific Pub-
lishing Co., Singapore, 1993. ‘

[3] Y. Gurieva and V. IIin, Finite volume approached for 2-D BVPs: algorithms,
data structures, software and ezperiments, Univ. of Nijmegen, 1997, Univ. of
Nijmegen, Dep. of Math. Rep., No. 9715.

[4] G. Fix and G. Strang, Analysis of the Finite Element Method, Prentice-Hall,
Inc., New Jersey, 1973.

(5] O. Axelsson and V.A. Barker, Finite Element Solution of Boundary Value
Problems. Theory and Computations, Academic Press, New York, 1984.

[6] B. Szabo and I. Babuska, Finite Element Analysis, John Wiley & Sons, Inc.,
New York, 1991.

[7] L.V. Krugljakova, A.V. Neledova, B.F. Tishkin, and A.Yu. Filatov, Unstruc-
tured adaptive grids for mathematical physics problems, Math. Modeling, 10,
No. 3, 1998, 93-116 (in Russian). .

[8] E.P. Shurina and T.V. Vojtovich, Analysis of the finite element and finite
volume methods based upon unstructured grids for sloution of the Navier-Stokes
equations, Computational Technologies, Novosibirsk, ICT SD RAS, 2, No. 4,
1997, 84-104 (in Russian).

(9] V.P.IVin, On data structures and algorithms of mathematical physics problems,
Preprint 938, Novosibirsk, Computing Center, 1991 (in Russian).

[10] Y.L. Gurieva, V.P. II'in, and M.R. Larin, Inner data structures of 2D bound-
ary value problems, Preprint 1090, Novosibirsk, Computing Center, 1997
(in Russian).

[11] Y.L. Gurieva, Technological aspects of solving the mized boundary value prob-
lems by the finite volume method, Avtometriya, No. 5, 1997, 100-109 (in Rus-
sian).

[12] A. George and J. Liu, Computer Solution of Large Sparse Positive Definite
Systems Prentice-Hall, Inc., New Jersey, 1981.

[13] V.P.IVin, Parallel Implicit Methods of Alternating Directions, Comput. Math.
& Math. Phys., 37, No. 8, 1997, 871-878.

