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Multivariant partial solution of linear
systems of 5-point equations
by the diagonal transfer method*

Ya.L. Gurieva, V.P. I'in

Using the diagonal transfer method, a partial solution of a linear system of equa-
tions is found. The description of corresponding algorithm is given. Computational
costs of the algorithm are discussed.

1. Introduction

The simulation of a certain field on the basis of the classical equivalent
circuit transformations in electrotechnics was introduced in [1]. Later, this
algorithm was algebraically elaborated and investigated in [2-4]. Such a
direct method is used to solve systems of the 5-point grid equations by
special matrix graph transformations of systems similar to the “triangle-
star” and the “star-triangle” transformations of the electrical circuits. The
method provides intermediate subsystems of the same matrix density and
has the arithmetical cost O(L®) for the two-dimensional L x L grid systems
similar to the well-known nested dissections algorithm [5].

In this paper, the method is applied to a multivariant partial solution
of the grid boundary value problems (BVPs). This means that for the new
variant of the problem only the right-hand side of equations for one grid line,
where the solution is looked for, is changed. Such a problem corresponds to
the Neumann to Dirichlet map (the current to voltage map) in geophysics
and arises in modelling the electromagnetic logging [6] when the field sources
and receivers are placed near the axis of a well.

A partial solution to the linear algebraic systems was considered in [7]
for the problems with separable variables.

The algorithm being presented is formally applicable to any symmetriz-
able 5-point grid systems of the positive type [8]. Its number of arithmetical
operations for the solution of N variants is P = 7L® + 4L%N.
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2. Mathematical statement

Let u(z,y) be the solution to the equation
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o (eng) - 5 (eng) =0 @vee=Un

in the bounded domain § composed of m rectangular subdomains €, where
) is a given positive piece-wise constant and a = 0, 1 for the Cartesian
and cylindrical coordinates, respectively. On the surfaces T'; of possible
of discontinuity of A (on the common sides of different £2;) the conjugate
conditions hold.

The multivariant partial mixed BVP is defined as follows. Let the com-
putational domain be a rectangle 2 = {a < z < b, ¢ <y < d} with the
boundary I' = [ UT, Ty = {z = @, c <y < d}, Ty =TqUly. On different
parts of I', boundary conditions of different types are given

6uk
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Here ux(z,y), k = 1,...,N > 1 are the solutions to the partial BVP (1),
(2), where [ is a linear operator of the boundary conditions at I'y. The end
goal is to find the functions vx(y) = ug(a,y) on 'y and vi(y) = Gug/On on
T

To obtain the solution to the problem, the domain (2 is discretized by
a non-uniform (L + 1) x (M + 1) rectangular mesh with the property that
the boundary crosses the grid lines in the nodes only. The finite volume
approach is used for the approximation of the BVP. The resulting 5-point
grid equations (for the k—th problem)

POOUi,j — P03Ui+1,j — Poatij+1 — Po1%i-1,j — Po2Uij-1 = figr (3)
i=1...L+1, j=1,...,M+1, fi;=0, i>1

are symmetrizable, positive definite and monotone. For the sake of brevity,
the indices (i,7) of the coefficients are omitted here, and the stencil nodes
G,7), G—1,7), (6,5 - 1), G+1,5), (4,5 + 1) will be referred to later as
0, 1, 2, 3, 4, respectively.

The boundary conditions in system (3) are supposed to be already taken
into account.

3. Diagonal transfer method

The direct method of the diagonal bond transfer [3] consists of three main
steps:
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- L. Transformation of the original 2D system (3) into the auxiliary 1D
subsystems for the left grid column

B'Uk : gk (4)

where B is a tridiagonal matrix of order M + 1 and

v = Ruy, ukz{u(lf}, i=1...,M+1}, (5)
o = St fi={f, i=1,... . M+1) (6)

are intermediate unknowns and the right-hand side vectors. The matrices
R and § are the triangular ones whose entries are defined via the original
coefficients in (3).

II. Solving (4) by the usual sweeping method, i.e., factorization of the
matrix B into the product B = LU of the two-diagonal triangular matrices
and solution of the auxiliary systems

Lz, = gy, Uty = Zi, k=1,...,N. (7)
ITI. Reconstruction of the original solution on the line z = a:
ug =R, k=1,...,N. (8)
Briefly, the algorithm can be described as a sequence of the diagonal
sweeps (in detail, see [2-4]). If we refer to the diagonal sweep by its first

(bottom right) node, a sequence of sweeps can be represented by the se-
quence of index pairs

(L,1), ..., (LM +1),
(L-11), ... (L—1,M+1),
2,1), ... (2,M+1).

Let us consider transformation of the equations for one grid 5-point sten-
cil with the central node (%, 7). Initially, all five equations of the stencil are
of the form (3). The sequence of the shifts for one diagonal consists of the
Gauss elimination of the first (bottom right) node (i +1, j — 1) which results
in to the appearance of a new diagonal link 2-3 ((¢,7 —1)-(: +1, 7)) and the
subsequent shifts of this link. The diagonal shift brings about recalculation
of the initial coefficients and the change of the unknown variables in the
equations for the stencil under consideration. The resulting five equations
can be described by the following formulas:
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q — Doz Po3 q q q
= Ty — ——uy — —ug — = U — = —=2
Ampoopos e ,Ypuspm 1 7?03?04144 71?031’0, (9)
o2 _ B z
——=up + (—Puz +p22)u2 = fa, (10)
« s
_Pos 2l — i
L G0t (apos +P33)U3 = fs, (11)
q _ -
—;Powﬂauo + (pas — gpEs)us — gpoapore1 = fa + qpoafo, (12)
q _ -
—;{'Polpos’uo + (p11 — gp31)u1 — gpospo1ua = f1 + gpo1 fo, (13)

qg= (Poo + %poa)“l-

Here f,, is the sum of f,, and the links of the node n with the nodes different
from these with the local numbers 0, 2, 3. Also, the new variable with some
parameters a, 3,y

ug = aug + Bug + yus, (14)

was introduced in the triangle 0-2-3. One can see that the diagonal link 2-3
has moved in these equations to the new link 1-4. The coefficients of the new
equations are symmetric. The cutting-off condition of the link 2-3 results
in the equalities ypo2 = apas or Bpo3 = apss. To obtain the new system of
the positive type to provide the correctness and numerical stability of the
algorithm, the parameter a is taken as follows:

Poz + Pos
Po2Po3

a=1+pa (15)
After one diagonal shift, we move to the stencil with the central node
(i — 1,7 + 1) and repeat the diagonal shift till its vanishing on the left
grid line. Then, the next Gauss elimination for the new diagonal follows,
etc.

Stage II of the algorithm is easily implemented by the back sweep.
Stage III reconstructs the initial unknowns from the following formulas:

_ 03
up = o + Prug + Mo, o1 =4qfo, P =4qpoa; M= %‘ (16)
Here the coefficients ay, 31,71 correspond to the diagonal link (1, 7)—(2, j +1)

exclusion. As the exclusions are multiple for each of such diagonals, the
latter coefficients should be saved for each exclusion.

4. Some details of algorithm

Let us consider certain cases which should be especially processed to make
the code of the algorithm robust.
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The first case arises from the Dirichlet boundary conditions on the left
side grid line. From (15) it follows that for the correct implementation of
the algorithm, the inequalities pps # 0, poz # 0 should be fulfilled. These
conditions are violated if the node (7, 7) is on the boundary with the Dirich-
let condition. To make the diagonal transfer possible, the new unknown
corresponding to the mid point (let us give it the local number (') on the
diagonal link ps3 is introduced:

Uy = ('u.2 + u3)/2. (17)
The equations for nodes 2 and 3 look like

DP22ug — pasus = fa,

(18)
P33u3 — pasuz = f3.

Let us derive u3 and uy from (17) and substitute them into the latter equa-
tions. We arrive at

P2au2 — p23(2uy —uz) = fa, (19)
p3sus — p23(2uy —u3z) = f. (20)

Thus, the new system without the diagonal link consists of equations (19),
(20) and is scaled by the factor 4ps3 for the sake of symmetry of the coeffi-
cients. To reconstruct the solution for such a Dirichlet node, the coefficients
a1, B1, 7 in (16) are set equal to fy (the Dirichlet value), 0, 0, respectively.

The second peculiarity is that the value of the diagonal link decreases
while the algorithm processes the nodes from left to right. At some step
of moving the diagonal, the value can be equal to underflow zero. In this
case, we should save the restoring coefficients a; = 0, 81 = 0, 73 = 1 for
reconstruction (16) and go to the Gauss elimination of the first node on the
next diagonal.

5. Computational complexity

The estimates of the computational complexity of method I-III
for L, M,N > 1 are the following. Let us denote the numbers of arith-
metical operations and memory, in the sense of the double precision real
values, by P and @, respectively.

Transformation of system (3) to subsystem (4) needs

o T(L2M - L[3/3), L<M,
|\ n(oM? - M3/3), L>M,
(ie., Pr < TLM min{L, M}) operations and the memory @Q; = 3LM; no

additional memory is required to store the coefficients of Stage I which
defines the matrix B.
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The number of operations to compute vectors gz, k =1,...,N, is
__{2NM(M—1), M <L,
2= \2N(M - L/2)(L-1), M>L.

The complexity of the sweeping method is negligibly small, namely,
P; = 3M + 5MN, and for the reconstruction step (16), Py = P2 opera-
tions are needed.

So, for M > L, the total volumes of the arithmetical operations and the
mermory are

4
P=Y P <4NLM, Q=3LM+MN.
=1

We can compare these estimates with the computational complexity of
the widespread direct and iterative solvers. For example, for the block
Gauss elimination method, the volume of arithmetical operations equals
P =2M3L/3+ 2M?N [8]. For the fast iterative implicit incomplete factor-
ization method with the conjugate gradients [8] we have P = N, LM NN,
where Nj; is the number of iterations, Ny ~ 30 is the number of arithmetical
operations per node per iteration.

Thus, for N = 500 and L x M = 30 x 500, e.g., the proposed code can
solve the problem more than 100 times faster than both classical direct or
iterative solvers.

The considered approaches provide the robust implementation and high
numerical stability of the proposed algorithm. In a wide set of computer
model experiments for grids of dimensions of up to 400400 and for strongly
variable mesh steps and coefficients of the equation being solved, the accu-
racy of the results is about 10710 despite of a very big conditional number
of the algebraic system.
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