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Program package for 3D boundary-value
elliptic problem®

Y.L. Gurieva, V.P. II'in

The main topic of the paper is to present a program package to solve 3D BVP
for the Helmholtz-type equation. Numerical algorithms concerning data structures,
approximations, and solving are described. Structure of the input data file and the
usage examples are presented. Some useful recommendations for users are given.

The purpose of the described program is to solve a mixed boundary value
problem (BVP) for the Helmholtz type equation with the piece-wise smooth
coefficients in composed of parallelepipeds computational domain using fast
incomplete factorization solvers on the basis of 7-, 19-, or 27-point finite-
volume schemes on a non-uniform or uniform grid.

1. The BVP statement

Let u(z,y, z) be a solution of the partial differential equation (PDE)

-2 (M) - 2 (Mewa)g) - 5 (Mewa) +
u(z,y,2)u = f(z,9,2), (2,9,2)€N= U Qi (1)
k=1

in a bounded domain £ composed of m rectangular subdomains €2, where
the given function X is the positive constant or the function and functions
1 >0, f are smooth in each Q.

On the surfaces I'; of possible of discontinuity of A (on common sides of
different 0, or “internal boundaries”) the conjugate conditions hold:

du Ou
= , A=—| =A_z=| 2
v, =vlro Mgl =GRk @
where signs “+” and “—” mean one-sided values of the function and its

normal derivative on the different sides of I'. _
On the external boundary I" = I’y UT}, of Q the following Dirichlet (first
kind) or Neumann (Newton if 2 # 0) conditions are given:
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du
up, =9, @ut p T (3)

where g, a, v are given functions and 7 is an outerward normal to the
boundary I

The external and internal boundaries of €2 are considered to be multi-
connected, all their parts being parallel to the coordinate axis.

2. Algorithms
The domain (2 is discretized by non-uniform parallelepipedoidal grid

Tip1 =z +hf, yir=yi+hi, zky =z +hE,
i=0,...,L—1, j=0,....M—1, k=0,...,N—1,

and supposed to be embedded in parallelepiped ¢ < = < z1, yo < ¥ < Y,
29 < z < zpn, so that the boundary crosses the grid lines in the nodes only.

Along each coordinate, the grid consists of the finite number of mesh
zones in which mesh steps are defined as a constant (so-called “u-zone” or
“u-type” zone) or by a geometric progression (“g-zone”) or by an arithmetic
one (“a-zone”).

Let the values n;, n,, n, mean the numbers of zones in z-, y- and 2-
direction, and

Xp) p=0’1:“-1n21 }’q’ q=0,1,--—,"y, Zrt 1‘=0,1,...,ﬂz,
be the boundaries of such zones with the following properties
Xﬂ = o, Xp > X, -1 Xn. =L,

o= Yo, lfq > 1,q—l, Yny =YM,
Zy =20, 2y > Zp, Zn, = 2ZN-.

The numbers of mesh steps in the zones are defined as l,, m,, and n, and
total numbers of nodes in each direction are given as

ne ny Nz
L+1=Y1l,, M+1=) mg N+1=) n,.
p=1 q=1 r=1

If the mesh zone is the zone of u-type, then the constant steps are defined
as follows:

B P
hZ = hg)=u’—_—l, i=Lp1+1,...,Ly, Ly=) 1,

lp s=1
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Woap@=Yo ety m M—zq:
3T Ty T y ] = g1 1oy Mgy g= My,

mg s=1
Ly — Zp_ -
hz = hy)=rn—r1’ k=N,_1+1,...,N,, N"=Zn"'
- s=1

The mesh steps in g-type zones can be found using the formulas

R = hPop "0, =Ly +1,...,Ly,
B = K@M = My +1,..., M,
B = hOykMeo1 k= Nog 41,00, N,

Here ap, By, 7r are the denominators of geometrical progressions in the

corresponding zones and P, h®, B are initial mesh steps defined by the
relations

an —1
hg’)=(xp"'xp-l)£ y ap#1l, 1<p<n,,
RO = (Y, - ¥,_y) Do 1
o = (Yp— —1)m, Be#1, 1<g<mn,

q
) = (2 7 1
z —(r_zr—l)ms ¥ #1, 1<r<n,.

A

The mesh steps in a-zones are defined as

B = B 4 (- Lp)d®), i=Lpoa+1,.., Ly,
h}”) - hg‘” +( - Mq-1)d§q), i=My_1+1,..., M,
B = B0 4 (k= N, k=N 41,0, N

where d¥, a9, d{") are the differences of arithmetical progressions

X, — X, 2
dg’) = (-Pl—f’l_hgp))_l, 1<p<ng,

R I, -
Y, - Y,
(@) — (297 %9=1 _ 1(q)
dy ._( . hy) 1 1< qg<ny,

Zy — Zn_ 2
r) — (Zr T 4r=1  pir)
d.(z —( h’z )n,.—l’ 1<r<n,,

satisfjing the conditions of positiveness of the initial mesh steps
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X, — X, l, —
X,— X, > =22 2e1 gl 1o
L 2
Y;;—-Yq_l mq—l
%_Yé—1>h§q)=T—d§q)T>0!
Ze ny—1

zZ. —
Z,- - Z,-_l > hg) = Trel
Ny

The finite-volume schemes for the problem are based on an approxima-
tion of the conservative law relation

ou ou
—w f /\%ds —(1 —w)_f )\£ds

gk Sijik

—w [(f-pdo+(-w) [ (-pude, (@)

Viik Viik

_1 (1’)
—d) — .
43 2 >0

which is equivalent to the original problem (1)-(3) and is combined over

small and big elementary finite volumes V; ;,V; j x with the surfaces S; ; x
and Sj j
Vijk = {(xi +2i1)/2 <z < (25 + 2i41)/2,
(Wi +¥j-1)/2 <y < (y; + yj+1)/2
(2 + 26-1)/2 < 2 < (2 + 2641)/2},
Vijk ={zi-1 <z < mig1, yj-1 <y <yjn, z2e-1 <z < 2k

with a weight parameter w.

The resulting grid equations depend on the approximations of the in-
tegrals and the derivatives in equation (4) and are, in general, of 27-point
type:

P?,j,kui,j,k _Pg,j,k"iJrl,j,k - P?,j,kui,jﬂ,k - P?,j,kui,j,k-{—l -
Pf—1,j,kui—1,j,k - Pf,j—1,kui,j—1,k - p?,j,k—lui,j,k—l -

Pz,j,kuifl,j+1,k - P?,j,kui+1,j+1,k - P?_l,j,k_lui—1,j,k-1 -
Pt}g,k“i,ﬂl,kﬂ - p}:f,kui—l,j,k+1 - P%,";,k"i,j—l,k+1 -
P3+1,j-1,k“i+1,j—1,k _p?—l,j—l,kuiul,jfl,k - p?—l,j—l,k—lui—la.‘fak—l -
p'}gkl,kflui,jﬂ,k_l "'Pi‘l-}-l,j,k—lu‘i-kl,j,k—l _P%ji,kui—l,j—l,k—i-l -
P:j,kui+1,j+1,k+1 _pz?g',kui—l,j+1,k+1 - P}E—,kﬂi+1,j_1,k+1 —
p}il,j+1,k—1ui+1,j+1,k—1 - Pﬁl,j—Lk-lui—l,j—l‘k_l -

15 16
Pit1,j -1,k 1%i+1,j-1k=1 — Pi 1 j41,k—1%i—1,5+1,k—1
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hZhYRZ [ w

31
(1 - 3—2w) (fisr,ik + fijrre + fivrk+1 + fi,j+l,k+1)] +
h_ hh% rw
'—14_1_" [‘ig(:;f"-"k + fi_lajrk + f"}j+1,k + fi,j,k-}-]) +
31
(1 - ﬁw) (ficrjk + fimrk+1 + fig+ik + f:',j+1.k+1)] +

e R RE
= i = [E(&fi’j'k + fi“l’j’k + fivj_lak + fi.j,k+1) +

31
(1 - ﬁw) (fivj-l,k + fi,j—].,k+1 =+ fi'—l,j,k -+ fi—l,j,k+l)] +

w [%(Sfidsk + fij—1k + firrik + fijk+1) +

(1 - 2‘12'“’) (fig-1 + fij-1hs1 + firrp + fi+1,j,k+1)] +
% [ityéw igk + figg—1 + firrgn + fijrin) +

(1 - %w) (fizrgk + figere + fitr,k—1 + _f,',jﬂ,k_l)] +
@aﬁfﬂ [;v_ﬁ(af"j"‘ + i1k + fijk—1 + fijarn) +

(l - %w) (fi-1,gk + fic1 k-1 + fig+re + fi,j+l,k—1)] +
M};li}' [% (3fisk + fimrgp + fij-1 + fijh—1) +

(1 B %w) (fig-1k + fij-1k-1+ fic1jk + fi—l,j,k—l)] +

hZh¥_ h:_ . Tw
%—k—i [E(M,j,k + fig-1k + fige—1+ firnk) +

37

31
(1 - -é-iw) (fij—1,e + fij-1k—1 + firr5k + fi+1,j,k—1)]- (5)

For the weight w = 32/31, this equation turns into 19-point one with the
zero coefficients p'® = p'* = p!® = p'® = 0, and for w = 16/15 the scheme
is 7-point one with the zero coefficients p”, p?,...,p'®, see [1-3] for details.

The order of accuracy differs for different values of w and mesh types:
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O(h) for w = 16/15 and general non-uniform grid,

O(h?) for w = 16/17 and general non-uniform grid or for any 0 < w < 1
and piece-wise uniform grid (finite number of grid zones with constant
mesh steps in each one),

O(h*) for w = 32/31, uniform grid, Dirichlet boundary conditions and con-
stant coefficient A, u.

We should make several important remarks on the mentioned accuracy.

Remark 1. For general non-uniform grid with any mesh-size ratio the men-
tioned result is guaranteed for w = 16/15 only (7-point scheme);

Remark 2. The accuracy O(h*) for w = 32/31, u = const, A = const,

and uniform grid is guaranteed for the Dirichlet BVP only and under the
condition ) 52 R
h? h

<4, v <4, ——Ei_

h2 + h2 hZ + h? hZ + h2

<4.

Remark 3. For w = 16/17, the accuracy O(h?) on non-uniform grid is
guaranteed under the conditions

1 1 ,, 1 1
a< hkhk—l(h? + h—?)’ hk(hihi—l + hjhj-l) <8,
1 1 ., 1 1
@< hihi_l(_};?; + h—f)’ hi(hkhk—l + hjhj—l) <h, (6)
a<hhii(m+ ), R(a—t—L )<p
=R T Rz h Nhihioy | hghgy’ =07
_32-31p _32-23p
=32 P39

The latter inequalities are sufficient for existence and convergence of grid
solution, as well as for applicability of iterative processes.

Remark 4. The above mentioned accuracy is valid for A > 0, u > 0,
2 > 0 and smooth enough functions u(z,y, z), f(z,y,2), u(z,y,2) in each
subdomain £, see [1] for more details.

The solution of algebraic system (5) is computed on the basis of itera-
tive incomplete factorization methods accelerated by the conjugate gradient
algorithm. Namely, the Eisenstadt modification of generalized symmetric
successive over relaxation (SSOR) algorithm with the compensation prin-
ciple (row sum criteria, see [4]) is used. This method includes iterative
compensation parameter 0 < § < 1 and relaxation parameter 0 < w < 1 for
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possibility to minimize the number of iterations. For the Stiltjes matrices,
the values @ = w = 1 are recommended. The iterative process stops when
one of the following conditions holds:

[l

— <eg, n<ngax (7

)< &

Here ||r"|| = (X 2 2 (r%; k)z)ll 2 is the Euclidian norm of the residual vector
i k7

r™ = f — Au™, n is the number of iterations, u® and r? are the initial solution
and residual, € and 7imax are prescribed small and large values.

Let us note that the termination of iterations does not guarantee the
accuracy of solution d, = max; j x{|uijr — u}‘,j,kl} < € (usually 4§, =~ 10¢).
To understand the real error, the reasonable analysis of 4™ is recommended
for different € and n.

3. Program and data

The presented algorithms are the basis for the program package to solve
the problem under consideration. The programming language of the code
is Fortran-77. The package consists of several subroutines which read the
input data, construct the internal data structures and solves iteratively the
resulting linear system of grid equations.

The program runs in the manner when regardless some error in the data
it will end presenting some information describing the emergency cause. The
usage of the code is the following:

call FVSDE3(fname, u, x, y, z, nmax, 1, m, n, rh, dfun,
userk, userg, cfun, ido)

Here the arguments are

fname — name of the input file (input);

u - array of size Imn for the solution values at the grid points (output);
x — array of size [ containing the z-coordinates of the grid nodes (output);
y -~ array of size m containing the y-coordinates of the grid nodes (output);
z — array of size n containing the z-coordinates of the grid nodes (output);

nmax — maximum admissible number of iterations (input) and real number
of iterations (output);

1, m, n — number of mesh-points in z-, y- and z- direction (output);

rh - user-supplied function for the right-hand side of the PDE. The form
is rh(isr, x, y, z), where
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x — z-coordinate value (input),

y — y-coordinate value (input),

z — z-coordinate value (input),

isr — number of subregion which contains the point (z,y, z) (input),
rh - value of right-hand side at the point (z,y, z) (output);

dfun - user-supplied function for the right side function g in the Dirichlet
boundary condition (3). The form is dfun(nbcond, x, y, z), where

nbcond — number of boundary condition (input),

x - z-coordinate value (input),

y - y-coordinate value (input),

z - z-coordinate value (input),

dfun - the value of the function g at the point (z,y, z) (output);

cfun - user-supplied function to evaluate the Helmholtz coefficient u in the
PDE (1). The form is cfun(isr, x, y, z), where input parameters
are the same as in rh(isr, x, y, 2); cfun returns the value of the
function p at the point (z,y, z) (output);

‘userk - user-supplied function for the coefficient & in Newton boundary
condition (3). The form is userk(nbcond, x, y, z), where input
parameters are the same as in dfun; userk returns the value of the
coefficient z at the point (z,y, z) (output);

userg - user-supplied function for the right side of Newton condition (3).
The form is userg(nbcond, x, y, z), where input parameters are
the same as in dfun; userg returns the value of the function v in (3)
at the point (z,¥, z) (output);

ido - flag indicating the state of computations (input/output); non-zero
value of the flag indicates some error in the data or error arising during
the iterative solution.

We will now give some details of geometric modeling for the problem
under consideration to understand then the input data on geometry of the
computational domain.

The computational region is constructed from rectangular parallelepipeds
in accordance with the following rules:

e each parallelepiped is described by two corner points: bottom-left-
front (minimal coordinates) and top-right-back (maximal coordinates);

e firstly, a user should define the largest parallelepiped which includes
the computational domain with holes, subdomains, etc.;

~ o then define smaller embedded parallelepipeds with different media
(a hole is a subregion with zero medium coefficient);
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e computational domain is conjunction and/or embedding of its subre-
gions;

e only simple embedding is admissible (any subregion in a subregion
being already embedded into another one is prohibited);

e conjunction and embedding of subregions is given by the incidence
matrix (see comments on it after description of the input file structure);

e the boundaries of mesh zones in each dimension must be the value
from the set formed from all different projections of all faces of all
subdomains onto corresponding direction.

The data for the program are given in the input file with the fixed format,
and, in several user functions, describing some coefficients of equation (1).
The data file includes the input data on the geometry of the computational
domain, the differential statement of the BVP, and computational parame-
ters of the algorithm. File consists of the following integer and real values
given in the fixed order:

ncub — number of parallelepipeds;

x1, yi1, z1 - real arrays of size ncub containing coordinates of first corner
point of parallelepipeds, with minimal coordinates;

x2, y2, z2 - real arrays of size ncub containing coordinates of second cor-
ner point of parallelepipeds, with maximal coordinates;

incid - incidence matrix to determine the topology of the region;

valmed — real array of size ncub containing the values of the diffusion co-
efficients A > 0 from equation (1) in each subregion;

helm - real array of size ncub containing the values of the Helmholtz coef-
ficient p(z,y) > 0 from equation (1) in each subregion; helm(k) > 0
(real value of p) means the constant value of y in k-th subregion and
helm(k) < 0 means that u is defined by user-supplied function cfun;

rhscon — real array of size ncub containing the value of right side function
f from equation (1) in each subregion; if |ths(k) — 3.1415| < 1075,
it means that in k-th subregion f(z,y) is defined by a user-supplied
function rh, in other cases rhscon(k) is the constant value of the
function f in k-th subregion;

nzx - number of mesh zones (integer) in z-direction;

xz - integer array of size nzx+1 containing z-coordinates of mesh zone
boundaries;

nsx — integer array of size nzx containing the numbers of mesh steps in
Z-zones;
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tx -

nzy -~

yz -
nsy -
ty -

nzz —

nsz —
tz -
ndiri
ndir3
nnei2
nneil3
bd -

bnk -
bng -

nbec -
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real array of size nzx containing the the types of z-zones: tx(k) =1
(or, more precisely, [tx(k) — 1} < 107°) means that k-th zone is of
u-type, i.e., uniform grid in k-th zone; tx(k) < 0 means that k-th
zone is of a-type and —tx(k) is the initial mesh step hZ; otherwise
tx(k) is the mesh ratio of k-th g-type zone; tx(k) = 0 is prohibited;
number of mesh zones (integer) in y-direction;

integer array of size nzy+1 containing y-coordinates of mesh-zone
boundaries;

integer array of size nzy containing the numbers of mesh steps in
y-zones;

real array of size nzy containing the types of zones (with different
values as for z-zones);

number of mesh zones (integer) in z-direction;

integer array of size nzz+1 containing z-coordinates of mesh-zone
boundaries;

integer array of size nzz containing the numbers of mesh steps in
z-zones;

real array of size nzz containing the types of zones (with different
values as for z-zones);

~ number of the standard Dirichlet boundary conditions with differ-
ent constant values;

— number of the Dirichlet boundary conditions with different user
supplied functions dfun;

~ number of different constant Newton boundary conditions (= =
const, y = const);

— number of different Newton conditions defined by user-supplied
functions userk and userg.

real array of size ndir1 containing the values of parameter g for each
standard Dirichlet condition (g = const);

real array of size nnei2 for constant a;
real array of size nnei2 for constant y for Newton conditions;

integer array of size ncub*6 with numbers of boundary conditions
on all faces of the region: first, six numbers for the faces of the
first subregion, then six numbers for the second subregion, etc. The
zero value of nbc(i) means standard Neumann condition or “internal
boundary” (without any condition);

iorder — order of accuracy of finite volume scheme (admissible values are

1,2, 4);
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0, w, &, nmax - values of iterative compensation and relaxation parameter
of incomplete factorization methods (0 < 8 < 1,1 < w < 2), accuracy
¢ of iterative process in (7); maximum number of iterations in (7).

The incidence matrix needs some explanations. As the computational
region is composed of non-intersecting parallelepipedoidal subregions, it is
described by the surfaces of its subregions and defined by their topologi-
cal neighbourhood. So, let the computational region consist of m paral-
lelepipeds such that any face of every parallelepiped cannot intersect any
edge of any other parallelepiped, but the parallelepipeds can touch each
other by the whole faces, or by their parts, or can be located thoroughly one
in another. Then the computational region can be represented by a paral-
lelepiped (let us call it the “maximal” one) in which another parallelepipeds
of smaller size with different physical characteristics are distinguished or
from which another parallelepipeds of smaller volume are “cut out” if any.

Let us define the origin of the Cartesian coordinate system in one of
the corners of the maximal parallelepiped. Then every subregion can be
defined via six real numbers which are the coordinates of two corners - one
with the minimal coordinates and another with the maximal ones. The
order of representation of the subregions defines their numbering. This is
precisely topological adjacency which defines the shape of the computational
region. To set the adjacency for the parallelepipeds, the incidence matrix is
introduced. It is square m x m matrix {m;;} with the integer entries of the
following values:

6 > m;; > 0.— the number of a face of parallelepiped number ¢ touching
from outside parallelepiped number j;

—6 < m;; <0 - the number of a face of the parallelepiped number i touch-
ing from inside parallelepiped number j;

7 — parallelepiped number 7 contains entirely parallelepiped number j;

—T — parallelepiped number i is contained entirely in parallelepiped num-
ber j.

Two last lines of this description mean that for the intersection of two par-
allelepipeds, the value of A(z,y, z) is taken from the smaller parallelepiped.
Here we also assume that the faces of every parallelepiped is numbered
1,...,6 in a fixed order, say, left, near, right, far, bottom, and top.

Let us also make some explanations on the boundary conditions and
their posing on the external boundaries of the computational region. Differ-
ent boundary conditions are successfully numbered in the following order:
constant Dirichlet conditions; nonstandard Dirichlet conditions (g is defined
by the user-supplied function dfun), Newton conditions with constant coef-
ficients and, at last, nonstandard Newton conditions (& and + are defined
by user-supplied functions userk and userg).
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Faces of each parallelepiped are given numbers 1,...,6 in the following
order: left, front, right, back, bottom, and top.

Each face is given one number of the boundary condition form the range
0,...,ndir1 + ndir3 + nnei2 + nneil.

Below is the text of the input data file for Example 3:

3 number of cubes;

0. 0. 0. 1. 1. 1. two corner points of 1st cube;

0. 0. 0. .25 .25 .25 two corner points of 2nd cube;
-25 .25 .25 .75 .75 .75 two corner points of 3d cube;
177 1st row of incidence matrix;

=720 2nd row of incidence matrix;

-703 3rd row of incidence matrix;

2. 1. 0. media in subregions;

0. 0. 0. the Helmholtz coefficient in subregions;
3.1415 3.1415 0. right-hand side as function in 1st and 2nd subregions;
3 | number of z-zones;

0. .25 .75 1. boundaries of z-zones;

5105 number of steps in z-zones;

1. 1. 1. step types in z-zones are uniform;

3 number of y-zones;

0. .26 .75 1. boundaries of y-zones;

5105 number of steps in y-zones;

1. 1. 1. step types in y-zones are uniform;

3 number of z-zones;

0. .25 .75 1. boundaries of z-zones;

5105 number of steps in z-zones;

1. 1. 1. step types in z-zones are uniform;

0203 boundary conditions: two user Dirichlet and three user
Newton;

1134152200201 11111 numbers of conditions on all
faces;

1 order of approximation;

1. 1. 1.D-11 90 0, w, € and maximum number of iterations.
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4. Examples of program applications

Example 1. The Laplace equation (1) with A = 1, f = g = 0 is solved
in the unit square with the Dirichlet boundary conditions which correspond
to two kinds of harmonic polynomials: u(z,y,z) = z® — 3zy?, u(z,y,2) =
m4 _ 6x2y2 + ,y4_

The numerical solutions are obtained using different stencils on two sets
of embedded grids: uniform and nonuniform. The uniform grids are cubic
ones with the number of nodes L = 11,21,41 in each coordinate direction.
The second grid set has the same constant mesh steps in z-direction and
hi = hf = hoqg*~!,i=1,...,L with ¢ = 0.95. Tables 1, 2 give the mean
square errors § = |lu — u®||2/L3 of numerical solutions for different weight
parameters, for iterative accuracy & = 10711,

Table 1 presents the errors § for the problem with the exact solution in
the form of the fourth order polynomial for the uniform grid. It is easy to

see that two first approximations

Table 1. The error § on uniform grids have the error O(hz), For this

L 1 21 a test with the Mikeladze param-
w eter w = 32/31 we obtain the
16/15 | 0.00085 | 0.00023 | 0.000062 | ©Xact solution, ie., d ~ e. And
16/17 | 0.00088 | 0.00023 | 0.000060 for the exact solution in the form
32/31 | 2.8-107° [ 1.5-107° | 1.6-107° of the cubic harmonic polynomial

all these schemes provide § = ¢ in
accordance with theoretical estimates. It is interesting to note that in this
example the scheme with the optimal parameter w = 16/17 (in the sense of
the estimate on nonuniform grid) is almost the worst scheme experimentally.
Table 2 presents the similar tests but for the nonuniform grids. The
upper error value in each cell of the table corresponds to the cubic, and the
low value — to the fourth order polynomial. One can make several conclusions
from these data.

Table 2. The error é on nonuniform grids The unique scheme of the sec-

ond order on the nonuniform grid
w L 11 21 4 is that corresponding to w =
16/15 | 0.00022 | 0.00012 | 0000061 | 16/17- Firstly, the errors for
0.00020 0.00022 0.00014 the test Wlth the cublc SOlutlon
only in this case give § = e.
1617 | 10" ) 107 10 | o ondly, for harmonic pol
0.00091 | 0.00027 | 0.000092 econdly, lor harmonic polyno-
32/31 0.00011 0.000061 0.000033 mial of the fourth order the er-
0.00044 | 0.00023 0.00012 ror dependence2 on the mesh size
is close to O(h*).

The error dependence on h both for w = 16/15 and w = 32/31 is close
to the linear one. It is interesting to mention that the best scheme on the
uniform grid - the scheme with w = 32/31 — is the worst in this case.
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Example 2. The Helmholtz equation (1) with A = 1 and three variants of
the coefficient 2 and the function f:

a) p=f=0,
b) m= 0, f = u(xay:z))
c) u=1, f=3n?sinmzsinmysinnz,

is solved in the unit square on the uniform grids (L = M = N =11, 21, 41)
with the Dirichlet boundary conditions which provide the exact solution in

the form
sh(mv/2z ) ]
sh(mv/2)

where p=0 for f =0 and p = sinwz for f #0.

Table 3 presents the errors of the test results for 7-point scheme (w =
16/15), 19-point scheme (w = 32/31) and 27-point scheme (w = 16/17).
The upper value in each cell corresponds to the variant “a”, the middle - to
“b” and low- to “c”. There also are the numbers of 1terat10n in the brackets.

u(z,y, z) = sinwzsinmy [

Table 3. The error 4 for Example 2, uniform grids

L

w 10 20 40

16/17 | 0.0045 (13) | 0.0011 (23) | 0.00028  (41)
0.0117 (13) | 0.00288  (23) | 0.000717  (42)
0.00446  (13) | 0.00110  (23) | 0.000275  (41)

16/15 | 0.0044 (13) | 0.0011 (34) | 0.00028  (61)
0.0109 (18) | 0.00280  (34) | 0.00071  (61)

0.00431 (19) | 0.00109  (34) | 0.00275  (60)

32/31 | 5.87-107° (16). | 3.68-107° (29) | 2.32-1077 (50)
1.39-10"* (16) | 8.63-10"° (29) | 5.39-10"7 (50)
5.74-107% (16) | 3.60-107% (29) | 2.26-10"7 (49)

These results confirm the second order accuracy on the uniform grid
for 7- and 27-point schemes (w = 16/15 and w = 16/17), with the same
errors approximately for all variants. The 19-point scheme (w = 32/31) has
considerably higher accuracy and the fourth order accuracy, in accordance
with theoretical estimates.

Example 3. The goal of this experiment is to demonstrate the applicabil-
ity of the algorithms and the program for solution of complicate boundary
problem, described in the figure.

The computational domain is the unit cube @; = {0 < z,y,z < 1}
without the cubic hole 1/4 < z,y, z < 3/4, with two subdomains of different
constant diffusion coefficient A : A = Ay = 1 in the small cube Q; = {0 <
z,y,z < 1/4} and A = A\; = 2 in the rest part of ;.
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Geometry of computational domain in Example 3

The boundary conditions and the right side function f are defined by
selected exact solution

_fu, (z,9,2) €\ Qg
u(z,y, z) - {‘U2, (a:,y,z) € 923

wm=1- (o= )= (- 3) - (- )
E- D)= =12

Ulz=0 = {ﬂz(o,y,z), (0,y,2) € S2,
= u1(0,9,2), (0,y,2) € 51 \ S,

ulyo = {ug(z,O,z), (=,0;2) € Sa,
y=0 u(z, 0, 2), (2,0;2) € S1\ S2,

U|z—p = {“2(3:%0): (%,9,0) € S2
z=0 u(z,y,0), (z,y,0) € S\ Sq,

ou 1 1 1
ozl = “2(z— ) +(v-7)(z- )/
o 1 1
u+ 6—:: - = —2(y—- %) + (m- Z)(Z_ Z)/}\g + uz(z, 1, 2),
u+—z—: . = —2(z—- %) + (:n~— i) (y— i)/}\g + uz(z,y,1).

The maximum error § for this solution on the uniform grid 20 x 20 x 20 is
0.00028 (7-point scheme for w = 16/15 was used).
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User supplied functions and main program for Example 3

program head
implicit real*8(a-h,o-z)
integer idimx, idimy, idimz
parameter (idimx=41, idimy=41, idimz=41)
dimension x(idimx), y(idimy), z(idimz),
u(idimx*idimy*idimz)
character*10 fname
external rh, dfun, userk, userg, cfun
real*8 rh, dfun, userk, userg, cfun
fname=’cubex3.dat’
call fvsde3(fname,u,x,y,znmax,l,m,k,ido,rh,dfun,
userk,userg,cfun, ido)
if(ido.ne.0) then
print *,’ Abnormal state: ido = ’,ido
stop
end if
print 100,’ number of iterations =’,nmax
call deferr(l,m,k,u,x,y,z)
100 format (a23,i3)
stop
end

real*8 function rh(isr,x,y,z)
implicit real*8(a-h,o-z)
rh=12.40

if (isr.eq.2) rh=6.d0

return

end

real*8 function dfun(nbcond,x,y,z)
implicit real#*8(a-h,o0-z)

x2=x-.256d0
y2=y-.25d0
z2=z-,25d0

if (nbcon.eq.2) dfun=1.d0+x2%y2%z2-x2%x2-y2*y2-z2*2z2

if (nbcon.eq.1) dfun=1.d0+x2%y2%z2*. 5d0-x2%x2-y2+y2-z2%22
return

end

real*8 function userk(nbcond,x,y,z)
implicit real*8(a-h,o0-z)
userk=1.d0
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if (nbcond.eq.3) userk=0.d0
return
end

real*8 function userg(mbcond,x,y)

implicit real*8(a-h,o-z)

nbs=1

if (nbcond.eq.3) userg=-1.5d0+(y-.26d0)*(z-.25d0)*.5d0
+dfun(nbs,x,y,z)

if (nbcond.eq.4) userg=-1.5d0+(x-.26d0)*(z-.25d0)*.5d0
+dfun(nbs,x,y,z)

if (nbcond.eq.5) userg=-1.5d0+(y-.25d0)#*(x~.256d0)*.5d0
+dfun(nbs,x,y,2)

return

end

real*8 function cfun(isr,x,y,z)
implicit real*8(a-h,0-z)
integer*2 isr

cfun=0.d0

return

end

Output, Example 3

number of iterations = 25
max error is .281E-03 at the point 19 21 21

5. Recommendations for user

e If you are interested in a robust computations mainly and not in some
special optimization of the algorithm, use iterative parameter w = @ =
1 and 7-point scheme (first order of accuracy in general), which is
applicable for any non-uniform grid.

e To obtain a very high accuracy or a very fast solving process for the
usual accuracy for simple problem, use uniform grid and O(h*) scheme
taking into account Remark 2 on the accuracy.

e If you need to solve many variants of the similar problems, try to
experimentally optimize iterative parameter 0, w.

e If you cannot apply uniform grid and use slightly non-uniform one,
try to experimentally optimize the mesh under conditions (6) and use
O(h?) scheme.
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" e If you have non-successfully run (ido # 0), check the input data or
try to change the algorithm parameters (grid, order of approximation,
iterative parameters).

References

[1] Gurieva Y.L., Iin V.P. On the finite volume technology for mixed boundary
value problems // Proceedings of the International Conference AMCA-95. —
Novosibirsk: NCC Publisher, 1995. — P. 650-655.

[2] Gurieva Y.L., I'in V.P. On second order finite volume approximations for 3D
mixed boundary value problems // NCC Bulletin, Series Num. Anal. — Novosi-
birsk: NCC Publisher, 1996. — Issue 7. — P. 51-70.

[3] I’in V.P. Finite Difference and Finite Volume Methods for Elliptic Equations. —
Novosibirsk: ICMMG publ., 2001.

[4] I’in V.P. Iterative Incomplete Factorization Methods. — Singapore: World Sci-
entific Publishing Co., 1992.



