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Use of parallel computation
for estimation of coefficients of heat
equation by Monte Carlo method*

.S.A. Gusev and 0.G. Monakhov

The inverse problem of determination of coefficients of multidimensional heat
equation is considered. The method of statistical modeling of trajectories of cor-
responding systems of stochastic differential equations is applied to the solution of
the direct problem and sensitivity analysis. The application of parallel computers
allows a significant increase of the efficiency of proposed algorithm. The results of
numerical calculations are given.

Introduction

In the paper, the application of parallel processors to the solution of an
inverse heat transfer problem with the help of the Monte Carlo method is
considered. The heat transfer problem consists in definition of heat-transfer
properties of media by thermometry at the given points of an investigated
domain. The inverse heat transfer problems arise in many areas of science
and engineering in which there is a necessity for study and design of objects,
exposed to the influence of thermal loading. Nowadays the resolution of one-
dimensional inverse heat transfer problems is well investigated, and there are
many reliable algorithms and programs for their solution. However, this is
mot the case for higher dimensional problems.

Many problems connected with correctness of statement and solution
algorithms arise in connection with the inverse problems solution. In cal-
culations, it is also necessary to take into account high computer costs of
algorithms. For example, one reason of the high computer costs is the ne-
cessity of solution of a plenty (as a rule) of direct problems when an inverse
problem is solved. Moreover, there are inverse problems (such as multidi-
mensional ones) in which the solution to the direct problem demands high
computer costs.

In the present work, we attempt to solve a direct problem by the Monte
Cado method. First, this approach should create insuperable difficulties,
because the Monte Carlo method is highly labor-consuming. But it is nec-
essary to take into account the fact that when solving the inverse problem,
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the solution to the direct problem is required only at those points, where
the measurements are made. The Monte Carlo method, as opposed to grid
methods, allows us to define a solution to the heat equation only at different
given points of the domain. In addition, algorithms of statistical model-
ing can be easily parallelized, and consequently it is possible to use modern
high-efficiency parallel computing systems for the solution to such problems.
Eventually, we consider a Monte Carlo method not as a one competing with
grid methods, but as a one of possible alternatives.

1. Inverse heat transfer problem

Let us consider the following boundary value problem for the heat conduc-
tion equation

b

ou
; +;f’l(p7w)amii

0%u

o 1<
E - -2- ijzz:l b"](w'.p) 8517;6

te[0,T], ze€aq,

T

u(0, z) = o(z), t=0, z€G,

U(t, :I)) = (P(ta iL‘), S an
(1)

where B(z,p) = (b;j(z,p)) is a positive definite symmetric matrix, G € R™
is a bounded domain with a regular boundary, p = (p1,...,pm) is a vector
of parameters.

It is required to determine the unknown parameters p, when the tem-
perature measurements are given at some internal points of G.

The boundary value problem (1) can be posed in accordance with the
SDE system in the Ito sense (see, for example, [1])

vt.p) =0+ [ fup s+ [osppduts), . (2)

1)

where w(-) is an n-dimensional standard Wiener process, yo € R" is the
value of y(t) at t = to, o(y,p) is the square matrix, such that B(y,p) =
o(y,p)o{y,p)T. Then, according to [1] there exists a probabilistic represen-
tation of the solution to the boundary value problem (1)

u(to, Yo, P) = (po(y(T, p))x(10 > T) + (70, (70, p))x (70 < T)),  (3)

where the angular brackets mean the conditional mathematical expectation
under y(tg,p) = Yo, 7o is the first time moment when the SDE solution (2)
reached the boundary of the domain G, x(A) is an indicator function of the
set A.
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Let uf; be the temperature measurements at the given points z;, i =
1,...,1, of the domain G at the times tjy3 =1,...,k. Then the problem of
an estimation of parameters can be reduced to minimization of the functional

Flp) = 3 (u5; - ultj, zi,p))? | (4)
‘ i
with respect to p. :

Application of the gradient type methods for minimization of (4) requires
calculation of derivatives du/dp that can be obtained by differentiation of
(3) with respect to p. Here the derivatives of the kind dy;/8p; appear
which express the sensitivity of the solution of (2) to the variation of the
parameters p. It is shown [2], that with fulfillment of the existence and
uniqueness conditions of the SDE solution and with allowance for the fact
that there exist sufficiently smooth and limited derivatives of f(t, ), o(t, p),
the solution to the SDE system (2) is differentiable with respect to the
parameters p. The parametric derivatives satisfy the system, that can be
obtained from (2) as a result of its differentiation with respect to parameters,
i.e., from the system

bolt,2) = 9p(0) + [ (Fowen + 5 s+ / (Gowls,p + 5 ) dwls), ®

where y, = (0y;/0p;) is a parametric derivatives matrix. Thus, the problem
of determination of coefficients of equation (1) is reduced to minimization of
functional (4). In this case, the calculation of values of functional (4) is done
on the basis of statistical modeling of trajectories of the stochastic process
determined by the SDE system (2). The calculation of values of the deriva-
lives (4) is carried out on the basis of statistical modeling of trajectories of
the stochastic process determined by system (2), (5).

The simulation of trajectories of solutions to the SDE systems (2) and
(2), (5) was done by the generalized Euler method with a constant integra-
tion step

Yn+1 = Yn + hf(tn, yn) + \/—};U(tm yn) Cny (6)

where y, is a value of a trajectory of the stochastic process at the time t¢,,
h is an integration step, ¢, is a sequence of independent among themselves
normal random vectors with independent components, having zero math-
ematical expectation and unit dispersion. In numerical calculations, the
vectors G, are obtained by a random number generator. ' ‘
Solution to equation (1) by the method of statistical modeling is a com-
putationally labor intensive process. However, this approach can be justified
by the following: when the given inverse problem is solved, it is sufficient to
know the solution to the direct probldem only at those points of the domain
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G at which the measurement of temperature is made. The Monte Carlo
method permits to calculate the value of temperature at anyone point of
the domain G without grid. . '

In this paper, we show the capacity of this method by solving a model
three-dimensional problem which has exact solution.

2. Solution to a mode] problem

As a model problem we consider the determination of the factors py, ps, p3
in a thermophysical experiment of a three-dimensional ball cooling, when
the temperature at its center is higher than at any other point. The corre-
sponding heat equation boundary value problem is the following:

du 1/ 8%u O%u o%u

= -|lp— - — t€(0,7), <1
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v0:2) =wo(l-r),  r= (24224422
u(tix) =0, ”:"'”2 =1,

where ug is the initial temperature at the center of the ball, p; > 0,i{=1,2,3.
The inverse problem of determination of P1, P2, p3 satisfies the uniqueness
conditions if the temperature measurements at the center of the ball are
known [3]. In addition, for the purpose of stability of calculations we took
the temperature measurements at other internal points of the ball. .

In the case when p,, P2, p3 fulfil the condition P1 = p2 = p3 = 2p, the
exact solution of the boundary value problem (7) can be written down as
the foliowing expansion: -

‘,‘(t’ z) = iﬁne—nzwzptm, (8)

n=1

where

1
P = 2/uo:v(1 — z) sin{mnz) dz.
0

In the model problem the “measurements” of temperature were calcu-
lated using formula (8) with Pr=pr=pz=1.

A stochastic process corresponding to the boundary value problem (7)
is determined only by the diffusion term. This process is described by the
following system of three stochastic differential equations:

t |
vi(t, p) = 1i(0) +p}/2/dw,-(s), i=1,2,3. (9)
0
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'I'ha mensitivities of solution to the SDE system (9) to parameters varia-
tlans are determined by the SDE system

t
By Ay 1 .
ggf(tv‘p) = %(0) + o172 /dwi(s)a 1=1,2,3. (10)
] . ] 213" >

The measurements of temperature were simula,ted with the use of for-
mula (8) at the following seven points: Z, = (0,0,0), Z, = (0.3,0,0),
#y = (0,0.3,0), z, = (0,0,0.3), zs = (-0.3,0,0), Z¢ = (0,-0.3,0),
8y m (0,0,-0.3).

At cach of these seven points 40 values of temperature were calculated
using formula (8) with the time interval At = 0.2 starting with to = 0.2. As
the initial values of parameters the vector p° = (1.4,0.6,1.4) was taken.

T'he following estimates of parameters p = (0.95,1.03,1.08) were com-
puted as a result of the minimization of functional (4] with the sample
volume of 20.000.

T'he modeling of trajectories of stochastic processes, deﬁned by the SDE’s
(M) and (10) was carried out using formula (6) with the step h = 0.001.

Fﬂl‘ mlnlmlzatlon of (4) one version of r—a.lgorlthm was used This
of two consecutive gradients [4] and is intended for minimization of rough
- funetlons.

As i8 seen from the description of the soluble problem, the main prob-
lem In calculations is the modeling of trajectories of stochastic processes,
determined by equations (9), (10).

In our calculations, the number of trajectories should be of order
107 10® for the reduction of influence of a statistical error on estimations of
the parameters.

The statistical modeling of each trajectory in calculation of the value
of functional (4) and its derivatives is made independently of any other
tenjoctory. Therefore, this part of the program can be easily parallelized
by splitting the common number of simulated trajectories on the parallel
warking processors.

3. Application of parallel computing machinery

In arder to realize the given program, the parallel computing system
MVS-100 of eight parallel processors Intel 860 was used.

The general structure of the parallel program consists in the following.
'T'ha processor with the number 0 plays a key role in the solution to the prob-
feun, I inputs the initial data, makes minimization of the objective function
and outputs results of calculations. The other processors are connected with
calculation of the objective function and its gradient.



20 ~ S.A. Gusev and O.G. Monakhov

Speed up of computation of objective function and gradient:
a ~ speed up, N, — number of processors '

Processors with numbers 1,2,....7 input the initial data for modeling
the number of trajectories, and each of them outputs the calculated con-
tributions into the objective function and its gradient. As the common
number of simulated trajectories is very high, the greater part of computer
time is spent on modeling the trajectories, while expenses for data transfer
are rather insignificant. Therefore, it is possible to expect that the speed-up
will be close to a linear function of the number of processors with a large
number of trajectories. . .

The figure demonstrates the obtained values of the speed-up for calculat-
ing the objective function and its gradient. The speed-up here is the ratio of
computation time for one processor to computation time for i (i =2,...,8)

processors. _ _
It is seen from the figure that with in-

The values of effectiveness crease of the number of processors the speed

Number up slightly decreases, because the share of ex-
of proc. | %/ 9 panses on exchanges grows. It is required
2 0.877 | 0.906 more expenses of CPU-time for calculation
3 0.869 | 0.898 of the gradient, and the relative share of ex-
4 0.865 [ 0.894 penses on data transfer is less than for the
g g':gg g‘g,;z evaluation of the function. Therefore, the
7 0.847 | 0.871 speed up for the computation of the gradi-
8 0.842 | 0.865 ent is greater than that for the computation

of the objective function.

In the table, the corresponding values of effectiveness of the function oy
and the gradient a, calculations are given. ‘
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4. Conclusion

The method of estimation of coefficients of a multidimensional equation by
statlstical modeling was considered. The evaluation of both the solution to
the dlrect problem and the sensitivity functions is made by solving special
SDE systems, connected with the initial boundary value problem. The nu-
merlcal experiment has shown a good agreement with the exact data. The
considered algorithm can be easily parallelized. The numerical experiments
gonfirm that the speed-up is close to a linear function of the number of
processors with a large number of trajectories.
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