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On one model of solute transport in
poroelastic shale∗

Ilhom Haydarov, Bunyod Imomnazarov

Abstract. A chemically inert deformable rock is considered, taking into account
only changes in stress and pore pressure: the chemistry of a porous fluid has no
direct effect on deformation. Accounting the chemical effects leads to changes in
the pore pressure and in the strain of rocks. This theory is applied to mathematical
modeling of the transfer of solvent and solute through a semi-permeable shale.
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1. Introduction

Cations may exchange in a shale between the clay surfaces and the pore
fluid involved. Other solutes can also be adsorbed or desorbed at the pore
walls. These effects can be neglected [1]. The resulting transfer analysis
is valid only for the molecules that are not inclined to adsorb, or for the
molecules whose amount is already sufficient in the pores, so that the balance
between the rock and the pore fluid is not disturbed. An example is the
transfer of sodium through clay, which contains only sodium counterions.
Neglecting adsorption/desorption and direct chemical effects in the theory
of poroelasticity, the stress-strain, simplifies the basic equations.

For simplicity, let us consider a porous liquid following [1], that consists
of one uncharged solute with a molar fraction xs in a solvent (water) with
a molar fraction xw = 1− xs. In this case, the solution is considered to be
ideal. The chemical potentials of the solute µs and the solvent µw are the
following:

µs = pVs +RT lnxs, µw = pVw +RT lnxw,

where p is the pressure, R is the gas constant, T is the temperature and Vs,
Vw are the partial molar volumes of solute and solvent, respectively. The
molar volume of the solution (at the atmosphere pressure) is

Vsoln = (1− xs)Vw + xsVs.

Assume, just like [1], that the bulk modulus K of the solution does not
depend on xs, and we confine ourselves to the isothermal case with the
constant T .
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2. Transport across a membrane

Consider two solutions separated by a membrane. We denote the pressure
on sides 1 and 2 of the membrane as p1 and p2; the mole fractions are xs1,
xs2 [1]. The equations of transport for the fluxes fw and fs of water and
solute, respectively, from side 1 to side 2 per unit area of the membrane can
be written down as [2]:

fw = Lww∆µw + Lws∆µ
s, fs = Lsw∆µw + Lss∆µ

s,

where ∆µ = µ1 − µ2 means the jumps of the chemical potential and Lsw =
Lws by Onsager’s principle. Consequently, these fluxes can be written down
as follows:

fw = (VwLww + VsLws)∆p+RT (Lww∆ lnxw + Lws∆ lnxs),

fs = (VwLsw + VsLss)∆p+RT (Lsw∆ lnxw + Lss∆ lnxs).

Assume that the jump in the mole fraction xs across the membrane is small,
then we can set

∆ lnxs =
∆xs

xs0
, ∆ lnxw =

∆xs

1− xs0
,

where xs0 is some mean mole fraction.
There are three independent transport coefficients, Lww, Lss, and Lsw =

Lws. Instead, we will use the three transfer coefficients k, D, and γ. The
fluxes fw and fs have the following form:

fw = (1− xs0)k∆p− V −1w [(1− γ)RTk + γVsD]∆xs,

fs = γxs0k∆p+ γD∆xs.

Here γ is the transmission coefficient. The flux of salt due to changes in
concentration is controlled by the diffusion coefficient D and is also modified
by γ.

If γ = 1, then the flux of water and solute due to the pressure difference
in ∆p is controlled by the coefficient of the hydraulic resistance k, and the
flux of each type is proportional to the mole fraction of this type. In the
limit γ = 0, the following relations are valid:

fw = V −1w (1− xs0)k∆µw, fs = 0,

and the flux of water depends solely on the jump ∆µw in the chemical
potential of water.

Let us now consider a system in which the volume of the reservoir V2 on
side 2 of the membrane is kept fixed, so that any transfer to this reservoir
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will result in an increase in the pressure p2. Suppose that the pressure p1 is
kept constant and the volume V1 is sufficiently large, so that any change in
the concentration of the solute xs1 is negligible.

As is shown in [1], the rate of a change in pressure and molar fraction
satisfy the one-dimensional system of diffusion equations

∂p

∂t
= A

∂2p

∂x2
+H

∂2xs

∂x2
,

∂xs

∂t
= C

∂2p

∂x2
+ E

∂2xs

∂x2
, (1)

where

A =
Kek[(1− xs0)Vw + γxs0Vs]S

φ0
, C = −x

s
0(1− xs0)(1− γ)Vsolnk

φ0
,

H = −Kek(1− γ)RT

φ0
, E =

[xs0RTk(1− γ) +DγVsoln]Vsoln
φ0Vw

,

φ0 is a certain mean porosity, S is the membrane area.
The solution of the system of diffusion equations (1) is the following:

p = p2 +
λ2

λ2 − λ1
[
p1 − p2 + λ1(x

s
1 − xs2)

]
erf
(1

2
x(k1t)

−1/2
)
−

λ1
λ2 − λ1

[
p1 − p2 + λ2(x

s
1 − xs2)

]
erf
(1

2
x(k2t)

−1/2
)
,

xs = xs2 +
1

λ1 − λ2
[
p1 − p2 + λ1(x

s
1 − xs2)

]
erf
(1

2
x(k1t)

−1/2
)
−

1

λ1 − λ2
[
p1 − p2 + λ2(x

s
1 − xs2)

]
erf
(1

2
x(k2t)

−1/2
)
,

where erf(x) is the error function, with erf(0) = 0 and erf(x)→ 1 as x→∞,

λ1 =
E −A+ ((E −A)2 + 4HC)1/2

2C
, (2)

λ2 =
E −A− ((E −A)2 + 4HC)1/2

2C
; (3)

two relaxation rates are determined as follows

k1 = A+ λ1C =
E +A+ ((E −A)2 + 4HC)1/2

2
, (4)

k2 = A+ λ2C =
E +A− ((E −A)2 + 4HC)1/2

2
. (5)

3. Poroelasticity theory

In order to connect changes in the rock deformation eij with changes in the
applied stress σij and changes in the chemical potentials of the components
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of the porous fluid, we use the modified poroelasticity theory. If the pore
fluid contains chemicals with the chemical potentials µi, i = 1, . . . , n, and
with the mass mi (per unit volume of a porous material), then [3]

deij = Sijkldσkl +
∑
p

Qpijdµ
p, (6)

dmp = Qpijdσij +
∑
q

Bpqdµq, (7)

where the cross-coefficients Qrij are common for (6) and (7), and Brs = Bsr.
Assume that a change in the applied stress dσij compresses the compo-

nents of the pore fluid is proportional to their molar fractions and, there-
fore, (7), Qpij = xp. From the Gibbs–Dumen equation it follows that∑

pQ
p
ijdµ

p = Vsolndp and only changes in the pore pressure are required
for solving (6). Assume that a rock is isotropic with the shear modulus G,
the Skempton parameter B, and the drained and undrained Poisson ratios
ν, νu, respectively. Then equation (6) takes the following form:

2Gdeij = dσij −
ν

1 + ν
dσkkδij +

3(νu − ν)

B(1 + ν)(1 + νu)
pδij . (8)

The chemical potentials µi in (7) cannot be reduced to a simple pore
pressure p. However, in a two-component porous liquid, it is convenient
to use the pressure p and the molar fraction xs, rather than the chemical
potentials µs, µw, respectively. Thus, for some constant α there are:

dms =
3xs(νu − ν)

2GB(1 + ν)(1 + νu)Vsoln
[dσkk + 3B−1dp] +

α

Vs
dxs,

dmw =
3(1− xs)(νu − ν)

2GB(1 + ν)(1 + νu)Vsoln
[dσkk + 3B−1dp]− α

Vw
dxs.

If the pore volume (per unit reference volume) is φ0, the number of moles
of a solvent and a solute is as follows

mw = (1− xs) φ0
Vsoln

, ms = xs
φ0
Vsoln

and, hence

α =
φ0VwVs
V 2
soln

.

Using the conservation laws

∂ms

∂t
+∇fs = 0,

∂mw

∂t
+∇fw = 0,
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we obtain

3xs(νu − ν)

2GB(1 + ν)(1 + νu)Vsoln

[
∂σkk
∂t

+
3

B

∂p

∂t

]
+
α

Vs

∂xs

∂t

= λk∇xs∇p+ λD∆xs, (9)

and

3(1− xs)(νu − ν)

2GB(1 + ν)(1 + νu)Vsoln

[
∂σkk
∂t

+
3

B

∂p

∂t

]
− α

Vw

∂xs

∂t

= k∇(1− xs)∇p− [(1− λ)RTk + λDVs]V
−1
w ∆xs. (10)

Following [1], we further assume that changes xs are sufficiently small,
and we can neglect changes in coefficients in (9) and (10). After simple
transformations, we obtain a system of diffusion equations:

∂Φ

∂t
= A∇2Φ +H∇2xs,

∂xs

∂t
= C∇2Φ + E∇2xs, (11)

where

Φ = σkk +
3p

B
,

A =
2GB2k(1− ν)(1 + νu)2

9(1− νu)(νu − ν)Vsoln
[γVsx

s
0 + Vw(1− xs0)],

H =
2GB(1 + ν)(1 + νu)(γ − 1)RTk

3(νu − ν)
,

C =
(γ − 1)Bk(1− ν)(1 + νu)VsVwx

s
0(1− xs0)

3(1− νu)(1 + ν)αVsoln
,

E =
Vs

αVsoln
[γDVso ln + (1− γ)RTkxs0].

As is shown in [4–7], the coefficients ν and k can be associated with the
porosity:

ν =
λ̃

2(λ̃+G)
, λ̃ = λ− (αρ2)−1K2, K = λ+

2

3
G, k =

µ

χρρl
,

where µ is the water viscosity, χ is the friction coefficient, ρ = ρl + ρs,
ρs = ρfs (1−d0) and ρl = ρfl d0 , d0 is the porosity, ρfs and ρfl are the physical
densities of the elastic porous body and the liquid, respectively, λ, G, αρ2

are the elastic parameters of the porous medium [8]. The elastic parameters
K, G, αρ2 are expressed in terms of the velocity of the propagation of the
transverse wave cs and two velocities of the longitudinal waves cp1 , cp2 [9,10].
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4. Modeling the swelling process around the wellbore

We now apply the results of the previous paragraph to a two-dimensional
plane strain analysis of a cylindrical wellbore of radius b surrounded by a
porous rock. We assume that the pore pressure and the mole fraction of
a solute within the rock are initially p∞ and xs∞. The stress at infinity
is uniform, with the components σzz = σ∞zz and σrr = σθθ = σ∞rr . After
drilling (at the time instant t = 0), the boundary conditions at the wellbore
(at r = b) take the form

p = −σrr = pmud, xs = xsmud,

where pmud is the pressure of the drilling fluid within the wellbore, and xsmud
is the mole fraction of solute within the drilling fluid.

Next, following [11,12] consider the behavior of a rock at infinity as initial
state, and measure all the stresses, pressures and concentrations relative to
those at infinity, so that the boundary conditions in the well at r = b have
the form [1]:

p = pw = pmud − p∞,
σrr = σwrr = −pmud − σ∞rr ,
xs = xsw = xsmud − xs∞,

(12)

Consequently, the process of diffusion of deformation is controlled by the
system of equations (11). Applying the Fourier transform with respect to
time to both parts of system (11) we obtain

iωΦ̂ = A∇2Φ̂ +H∇2x̂s, iωx̂s = C∇2Φ̂ + E∇2x̂s, (13)

where

v̂(ω) =

∫ ∞
−∞

eiωtv dt.

The bounded solution of system (13) is the following:

Φ̂ + λix̂
s = Bi(ω)H

(1)
0 (qir), i = 1, 2,

where qi =
√
iω/ki, H

(1)
0 is the Hankel function, Bi(ω) are unknown func-

tions, and the coefficients λi and ki are determined by formulas (2)–(5).

Using the boundary conditions (12) when r = b, we obtain

Bi(ω) =

[
3(1 + ν)(1− νu)

B(1− ν)(1 + νu)
pw + λix

s
w

] /
H

(1)
0 (qib), i = 1, 2.
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Then the bounded solution takes the following form:

x̂s =
B1(ω)H

(1)
0 (q1r)−B2(ω)H

(1)
0 (q2r)

λ1 − λ2
,

Φ̂ =
λ2B1(ω)H

(1)
0 (q1r)− λ1B2(ω)H

(1)
0 (q2r)

λ2 − λ1
,

p̂ =
B(1− ν)(1 + νu)

3(1 + ν)(1− νu)
Φ̂.

Since there are no deformations in the direction z and, therefore, by virtue
of (8),

σ̂zz =
νΦ̂

1 + ν
− 3νup̂

B(1 + νu)
=

(ν − νu)

(1 + ν)(1− νu)
Φ̂.

From the equilibrium equation it follows that

σkk = − 6(νu − ν)

B(1− ν)(1 + νu)
p. (14)

From (8) and (14), we find that the radial displacement u(r, t) satisfies

2G
∂

∂r
(ur) =

r(νu − ν)

(1 + ν)(1− νu)
Φ,

and, hence

2Gûr = C2(ω) +
r(νu − ν)

(1 + ν)(1− νu)(λ2 − λ1)
×[

λ1B2(ω)H
(1)
1 (q2r)

q2
− λ2B1(ω)H

(1)
1 (q1r)

q1

]
,

where C2(s) is a constant of integration. The radial stress is defined as

σ̂rr =
b2

r2
σwrr +

(νu − ν)

(1 + ν)(1− νu)(λ2 − λ1)
×[

λ2B1(ω)

(
H

(1)
1 (q1r)

q1r
− bH

(1)
1 (q1b)

q1r2

)
− λ1B2(ω)

(
H

(1)
1 (q2r)

q2r
− bH

(1)
1 (q2b)

q2r2

)]
,

where, taking into account the stress boundary condition in the wellbore, it
is possible to determine the constant

C2(ω) = −b2σwrr +
(νu − ν)b

(1 + ν)(1− νu)(λ2 − λ1)
×[

λ2B1(ω)
H

(1)
1 (q1b)

q1
− λ1B2(ω)

H
(1)
1 (q2b)

q2

]
.
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The tangential stress is determined by the formula

σ̂θθ = − b
2

r2
σwrr +

νu − ν
(1 + ν)(1− νu)(λ2 − λ1)

×[
λ1B2(ω)

(
H

(1)
1 (q2r)

q2r
− bH

(1)
1 (q2b)

q2r2
+H

(1)
0 (q2r)

)
−

λ2B1(ω)

(
H

(1)
1 (q1r)

q1r
− bH

(1)
1 (q1b)

q1r2
+H

(1)
0 (q1r)

)]
.

Hence, the deviator stress tensor is calculated by the formula

σ̂rr − σ̂θθ =
2b2

r2
σwrr +

νu − ν
(1 + ν)(1− νu)(λ2 − λ1)

×[
λ2B1(ω)

(
2H

(1)
1 (q1r)

q1r
− 2bH

(1)
1 (q1b)

q1r2
+H

(1)
0 (q1r)

)
−

λ1B2(ω)

(
2H

(1)
1 (q2r)

q2r
− 2bH

(1)
1 (q2b)

q2r2
+H

(1)
0 (q2r)

)]
.
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