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On the finite volume approach to the 3D
quasistructured grids∗

V.P. Il’in, M.V. Pavlov, A.P. Volkov

Abstract. The finite volume methods and technologies for the solution of the 3D
elliptic boundary value problems (BVPs), with a complex geometry, on the qua-
sistrucured grids are proposed. The grid data structure and the element-by-element
approach for computing the local balance and assembling the global matrices are
considered. The results of numerical experiments, obtained with the help of the
preconditioned conjugate gradient algorithm, demonstrate the efficiency of the pro-
posed technologies.

1. Introduction

The most widespread approaches to the numerical solution of the BVPs
with complicated curvilinear boundary surfaces are finite element methods
(FEMs) and finite volume methods (FVMs) (see, e.g., [1, 2]). One of the
main technological problems in mathematical modeling is the adapted dis-
cretization of a computational domain and the automatic construction of
the approximation algorithms. Of course, challenging issue in the 3D BVPs
is grid generation for piece-wise smooth boundary and piece-wise smooth co-
efficients of the partial differential equations (PDEs), i.e., different material
properties in subdomains (see [3, 4] and the references therein). A success
of this computational step is provided by means of its grid data structure
(GridDS) which is usually know-how of the developers of the applied pro-
gram packages (APPs), for example, see information about ANSYS and
FEMLAB in Internet. The second implementation aspect of FVM (or FEM)
is element-by-element technology of approximation stage, based on comput-
ing the local balance (or local stiffness) matrices and assembling the global
matrix.

We use, in fact, a mixed finite volume method which includes the ap-
proximation of the density of a substance and its flux simultaneously [8]. In
addition to GridDS, an efficient realization of these algorithms for a wide
class of BVPs and PDEs needs a careful formalization of the geometrical
and functional data structure (Geom and FDS) which must support the de-
scription and modification of mathematical objects in the original problems
to be solved [5, 6]. The final result of these procedures is algebraic data
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structure (ADS), based on conventional sparse matrix formats [7], which
presents all necessary information about SLAE (a system of the linear al-
gebraic equations). The third important part of the computational process
is a numerical solution of SLAE which is realized for large 3D problems by
iterative sparse solvers and does not directly depend on a grid, geometrical
and functional data structures.

The aim of this paper is to consider computational technologies on a
quasistructured grid which is presented as union of the subdomains with
structured grids. The latter means a set of successive ordered mesh ob-
jects: nodes, edges, faces and volume elements, with regular numbering and
a possibility of finding the neighbors for each representer. In Section 2, we
describe the grid data structures at the macrolevel (subdomains) and at the
microlevel (mesh objects). In particular, the special type of grid domain
(cylinder in parallelepiped) is constructed. Also, the element-by-element
FVM technology for a quasistructured grid is described. Section 3 presents
the results of numerical experiments, obtained with the help of the precon-
ditioned conjugate gradient algorithm (the explicit incomplete factorization
method–– EXIFCG, see [9, 10]).

2. Algorithms and technologies of discretization and
approximation

The development of the proposed computational methods and technologies
is demonstrated on the numerical solution to the diffusion equation

−∇(σ∇u) = f(~x), ~x ∈ Ω ⊂ R3, (1)

with the piece-wise smooth functions σ(~x) and f(~x), in the bounded com-
putational domain whose closure is

Ω = Ω ∪ Γ, Γ = Γe ∪ Γi, Γe =
Me⋃

m=1

Γe
m, Γi =

Mi⋃
m=1

Γi
m. (2)

At different parts of the external boundary Γe = Γe,D∪Γe,N , the Dirichlet
or the Neumann (or the Robin) boundary condition can be given:

u|Γe,D = g(~x),
(
α(~x)u +

∂u

∂~n

)∣∣∣
Γe,N

= β(~x). (3)

Here ~n notes the external normal to Γe,N . At the internal boundary Γi,
consisting of the surfaces with jumps of the functions σ(~x) or f(~x), the
conjunction conditions
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σ+ ∂u

∂n

∣∣∣
Γi,+

= σ−
∂u

∂n

∣∣∣
Γi,−

, u|Γi,+ = u|Γi,− (4)

hold, which are the direct sequence of original equation (1).
The boundary Γ is supposed to be piece-wise smooth. We also assume

that the unknown solution u(~x) possesses smoothness in the open domain
Ω, sufficient for validity of the approximations.

2.1. Quasistructured grids and data structure. Let us divide the
computational domain into such subdomains

Ω =
l̄⋃

l=1

Ωl (5)

that in each Ωl the functions σ(~x), f(~x) are smooth. We can also define
an “external subdomain” as Ω0 = R3 \ Ω. The internal boundary segment
between the two adjacent subdomains Ωl, Ωl′ can be denoted by a pair of
corresponding indices and defined as intersection of the respective closures:

Γi
l,l′ = Ωl ∩ Ωl′ . (6)

As for the external boundary, it can formally be presented in a similar
manner:

Γe =
⋃
l

Γe
l,0 =

⋃
l

Ωl ∩ Ω0 = Ω ∩ Ω0, Γe
l,0 = Γe

l . (7)

A set of the boundary surface segments Γe
l,l′ and Γi

l,l′ can also be num-
bered by one index m = m(l, l′), m = 1, . . . , m̄ = Mi + Me, i.e.,

Γ = Γe ∪ Γi =
m̄⋃

m=1

Γm. (8)

Each pair of the intersecting boundary segment surfaces Γm, Γm′ forms
the boundary edge Rm,m′ , either linear or curvilinear. A set of such edges
can be numbered by one index:

Rm,m′ = Rq, q = q(m,m′) = 1, . . . , q̄. (9)

Formally, the edge Rq is an open 1D point set, and its closure is

R̄q = Rq ∪ Pq,1 ∪ Pq,2, (10)

where Pq,1 and Pq,2 are the beginning and the end vertices of Rq, respectively.
A set of all the vertices in Ω̄ we denote as P = {Pr, r = 1, . . . , r̄}. The
closure of the surface segment Γm is
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Γm = Γm ∪Rm,q = Γm ∪Rm,q ∪ Pm,r, q ∈ ωf,e
m , r ∈ ωf,p

m , (11)

where ωf,e
m and ωf,p

m denote the set of edges and vertices incident to Γm, i.e.,
they form the boundary of Γm.

The total set of subdomains Ωl, l = 1, . . . , l̄, surface segments Γm, m =
1, . . . , m̄, boundary edges Rq, q = 1, . . . , q̄, and vertices Pn, n = 1, . . . , n̄, will
be considered as a macrogrid, and its object will be called macroelements,
macrofaces, macroedges and macronodes, respectively. The topology of the
macrogrid is uniquely defined by a set of own objects and by connections
between them. For describing these connections we can introduce, similar
to ωf,e

m and ωf,p
m , the sets of the indices: ωp,Ω

n , ωp,f
n , and ωp,e

n , i.e., the subsets
of the numbers of macroelements, macrofaces and macroedges, respectively,
which are incident to the macronode Pn; ωΩ,f

l , ωΩ,e
l , and ωΩ,p

l being the
subsets of the numbers of macrofaces, macroedges and macronodes, which
are incident to the macroelement Ωl.

In addition to the topological information, necessary data for identifi-
cation of a computational domain contains a geometrical description of the
boundary surfaces, i.e., their equations. By means of solution to the sys-
tems of such equations, macroedges and macronodes can be defined. If such
systems have non-unique solutions, some additional constraints have to be
given.

Collection of the information considered presents a geometrical data
structure (GeomDS) for BVP. The typical computational domains consist of
a set of standard macroelements: parallelepipeds, pyramids, spheres, cylin-
ders and cones, for example, as well as of their intersections. The full de-
scretization procedure of BVP must also include the functional information:
what coefficients and right-hand sides of PDE are defined in each subdomain
Ωl, what kind of the boundary condition at each external boundary segment
Γe

m,l is given. This functional data structure (FDS) is formulated as related
to the GeomDS.

The construction of the adapted grid Ωh in the complicated com-
putational domain Ω can be implemented by discretization of separate
subdomains Ωl. This procedure includes creating discrete analogues to
macroedges, macrofaces, and macroelements which are denoted by Rh

q , Γh
m,

and Ωh
l , respectively. We suppose all the macronodes to be included into

a macrogrid, i.e., Pr = P h
r . If the macroedge Rq is a linear interval, then

let Rh
q = Rq. Similarly, if the macroface Γm is a linear segment, then de-

fine Γh
m = Γm. But generally, Rh

q (or Γh
m) can be an approximation of Rq

(or Γm). For example, for curvilinear Rq or Γm, their discrete analogies Rq

or Γh
m can be presented by piecewise linear segments.

We have also to remark that a subdomain Ωh
l , in principle, does not

approximate a certain computational subdomain, and the numbers of a grid
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and computational subdomains can be different. The motivation for the
definition of grid subdomains consists in the possibility of constructing a
simple grid data structure. The GridDS is defined as a full, but a minimal,
information which is required, together with the GeomDS and the FDS,
for implementation of approximation algorithms by the element-by-element
technology. It includes the coordinates of nodes, equations of the grid edges
and faces, formulas for coefficients of PDE and boundary conditions for each
element and its boundary faces.

Similar to a macrogrid, a microgrid (a grid in the sequel) is presented by
a set of elementary grid objects: nodes ph

n′ , edges rh
q′ , faces γh

m′ , and elements
eh
l′ . The typical elements are a parallelepiped, a tetrahedron, a prism, etc.

These figures can be understood in the topological sense if their edges are
curvilinear.

The grid computational domain has the own closure

Ωh = Ωh ∪ Γh = Ωh ∪ Γh ∪Rh ∪ P h, (12)

and it can be divided into a set of subdomains:

Ωh =
(⋃

l

Ωh
l

)
∪ Γh,i

, Ωh =
⋃
l

Ωh
l , (13)

where Γ̄h,i is the closure of the grid internal boundary.
The idea of a quasistructured grid consists in the possibility of con-

structing a simple structured grid in the subdomain Ωh
l if it has a regular

geometrical and(or) a topological structure.
We assume, for simplicity, that grids in the adjacent subdomains Ωh

l , Ωh
l′

are consistent, i.e., they have the same meshpoints at the joint macrofaces
and Γh

l,l′ = Γh
l′l. According to such a structure, each grid object has a double

number: the regional (in Ωh
l ) and the global one.

A structured grid is defined as the
one which is generated by regular sets
of coordinate surfaces and has simple
numbering in such a way that for each
its object the adjacent objects can be
easily found. For a non-structured
grid, objects can be given by the di-
rect enumeration, only.

As a special type of a quasistruc-
tured grid, we consider the discretiza-
tion of the figure “cylinder into paral-
lelepiped” presented in Figure 1.

Figure 1. Computational domain
“cylinder into parallelepiped”
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Figure 2. Cross-section of the grid

Here, we have two computational
and two grid subdomains. The node
Cartesian coordinates of a consistent
grid in the cylinder Ω1 are defined by
the simple formulas

xi,j = x(ri, θj,i), yi,j = y(ri, θj,i),
zk = z0 + khz, ri = ihr, (14)

θj,i = θj−1,i + hθ
i , hθ

i = 2π/(3 + i).

The grid element in such a case is the
triangular prism with one cylindrical
face. A sample of grid z-cross-section
for Ω1 and Ω2 = Ω/Ω1 is described in
Figure 2.

2.2. Local and global balance matrices. For the FVM approximation
of equation (1), rewrite it in the mixed form

∇~v = f(~x), (15)
~v = −σ∇u, (16)

where ~v is a flux vector of the substance.
For the grid node P h

n define the Dirichlet–Voronoi cell Vn with the surface
Sn and the adjacent nodes P h

n′ , n′ ∈ ωp,p
n . Let dn,n′ = [P h

n , P h
n′ ] be a line

segment and Sn,n′ be the corresponding cell side, which is perpendicular to
dn,n′ . Let us note that if the node P h

n is placed at the boundary Γ̄e,h, then
instead of Vn we consider its internal part Vn ∩ Ωh, only.

After integration of equations (15), (16) over Vn and dn,n′ , respectively,
we obtain the relations

∑
n′∈ωp,p

n

∫
Sn,n′

vn,n′ ds =
∫
Vn

f(~x) dv, (17)

un − un′ =

P h
n′∫

P h
n

σ−1vn′(ξ) dξ, (18)

where vn′ is the projection of ~v on dn,n′ and vn,n′ is the value of vn′ in the
middle of this segment.
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Using simple approximations of (17), we have∑
n′

Sn,n′vn,n′
∼= Vnfn, n ∈ Ωh

/Γe,D = Ω̃h, (19)

σn,n′(un − un′) ∼= dn,n′vn,n′ , σn,n′ =

[ P h
n′∫

P h
n

σ−1(ξ) dξ

]−1

. (20)

Here Vn, Sn,n′ , dn,n′ mean the values of the corresponding volume, area, and
length. After excluding vn,n′ from (19), obtain the SLAE

(Auh)n ≡
∑
n′

σn,n′

dn,n′
Sn,n′(un − un′) = Vnfn, n ∈ Ω̃h. (21)

It is supposed in (21) that if Pn′ ∈ Γe,D (the Dirichlet node), then we
set un′ = g(Pn′), and the corresponding term is replaced from the left- to
the right-hand side. Also, if Pn ∈ Γe,N and Sn,n′ = Vn ∩Γe,N , then from the
sequence of equation (3) we have

σnαnun + σnun,n′ = σnβn. (22)

So, take into account this boundary condition by adding the terms
Sn,n′σnαnun and Sn,n′σnβn to the left- and the right-hand sides of (22),
respectively.

Now, let ωe
p be the set of Np mesh nodes Pn which are the vertices of the

finite element Ep. Each element can be divided into a set of sub-elements

Ep,n = Ep ∩ Vn, n ∈ ωe
p.

Let us denote by Sp,n′,n′′ the joint boundary segment of the sub-elements
Ep,n′ , Ep,n′′ , and by Sp,n′ =

⋃
n′′ Sp,n′,n′′ –– the union of the boundary seg-

ments, corresponding to the node Pn′ . If we define the “local flux” vector
v̄(p) of Np, whose components are approximations of the integrals

v(p)
n =

∫
Sp,n′

vn,n′ ds ∼=
∑

n′∈ωe
p

a
(p)
n,n′un′ , (23)

and, also, define the local vector ū(p) = {u(p)
n , n ∈ ωe

p} of the same order,
the following linear relation can be written down:

v̄(p) = A(p)ū(p). (24)

Here the square matrix A(p) = {a(p)
n,n′} of order Np is called a local balance

matric. The global matrix A of system (21) is formed by means of the
assembling procedure, see [2], for details.
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2.3. Iterative solution of SLAE. The obtained algebraic system

Au = f (25)

has a Stiltjies (symmetric, positive definite, and positive type) matrix. For
solving this equation, we use a preconditioned, by explicit incomplete two-
parametrized factorization, conjugate gradient method, see [9].

Define the explicit (i.e., non-block, or point-wise) preconditioning matrix
as

B = (G−L)G−1(G−U), G =
1
ω

D−θS, S e =
(

1− ω

ω
D+LG−1

)
e, (26)

where ω and θ are relaxation and compensation parameters, e = {1} is a
vector with unit entries, S and G are diagonal matrices. The preconditioner
B provides the row sum criteria for θ = 1, or a compensation principle,
Be = Ae.

Because G is s.p.d.-matrix, system (25) is transformed to the equivalent
preconditioned system

Ãũ = f̃ , (27)

Ã = G1/2(G− L)−1A(G− U)−1G1/2

= (I − L̃)−1 + (I − Ũ)−1 − (I − L̃)−1(2I − D̃)(I − Ũ)−1,

L̃ = G−1/2LG−1/2, Ũ = G−1/2U G−1/2, D̃ = G−1/2D G−1/2,

ũ = (I − Ũ)G1/2u, f̃ = (I − L̃)−1G−1/2f.

An important idea of the above transformation consists in the spectral con-
dition number property (for s.p.d.-matrices B, A)

cond(Ã) = cond(B−1A) (28)

and in a simple implementation of the matrix-vector multiplication:

Ãp = q + (I − L̃)−1[p− (2 I − D̃)q], q = (I − Ũ)−1p, (29)

which demands approximately the same number of arithmetical operations
as matrix-vector product Ap.

The classical preconditioned conjugate gradient method for s.p.d.-matrix
Ã, in terms of system (27), can be written down as follows (let us call it
EXIFCG):
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r̃0 = f̃ − Ãũ0, p0 = r̃0,

ũn+1 = ũn + αnpn, r̃n+1 = r̃n − αnÃpn, αn =
(r̃n, r̃n)

(Ãpn, pn)
,

pn+1 = r̃n+1 + βnpn, βn =
(r̃n+1, r̃n+1)

(r̃n, r̃n)
, n = 0, 1, 2, . . .

(30)

This iterative process provides at each n the minimization of the functional
ϕn = (Ã−1r̃n, r̃n). The necessary number of iteration, for satisfying the
condition ϕn/ϕ0 ≤ ε < 1, is estimated by the inequality

n(ε) ≤ 1 +
1
2

∣∣∣ln ε

2

∣∣∣√cond Ã, (31)

where the condition number of preconditioned matrix Ã is defined in (28).
But, because the values ϕn are not known when implementing formulas (30),
the stopping criteria in iterations is used as

[(r̃n, r̃n)/(r̃0, r̃0)]1/2 ≤ ε. (32)

3. Numerical results

We present and discuss the results of experiments for the solution to equa-
tion (1) on a non-structured grid. The first example is the model Dirichlet
boundary value problem for the subdomain Ω2 (a parallelepiped with a cylin-
drical hole; σ = 1, H = 4, Hz = 15, R = 1), described in Figure 1. The
exact solution and the boundary condition were chosen as u = ln

√
x2 + y2.

In Table 1, the maximal errors δ of the obtained solutions and numbers of
iterations are given for ε = 10−6 and ε = 10−8 for three types of embedded
grids: coarse Ωh

c , middle Ωh
m, and fine Ωh

f . Here N means the number of
mesh points.

Table 1. Numerical results for Problem 1

Subdomain N δ(ε = 10−6) n (ε = 10−6) δ (ε = 10−8) n (ε = 10−8)

Ωh
c 2560 1.657 · 10−3 14 1.657 · 10−3 18

Ωh
m 17856 4.300 · 10−4 17 4.298 · 10−4 22

Ωh
f 132736 1.121 · 10−4 25 1.119 · 10−4 33

As can be seen from this table, the order of accuracy of the grid solution
is O(h2), where h is a characteristic mesh step. The number of iteration
is approximately proportional to h−1/2. So, the efficiency of approach used
is the same, as for a uniform parallelepiped grid (see numerical results in
[9, 10]).

The second example is closer to practice and presents two vertical cylin-
ders which are placed into horizontal layer media with a piecewise constant
σ(~x) (Figure 3).
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Figure 3. Computational
grid for Problem 2

The computational domain is a paral-
lelepiped Ω = [0, 16]×[0, 10]×[0, 20] including
three subdomains

Ω1 = [0, 16]× [0, 10]× [0, 5],
Ω2 = [0, 4]× [0, 4]× [5, 20],
Ω3 = [12, 16]× [6, 10]× [5, 20]

and two cylindrical holes

Ω4 = {(x− 2)2 + (y − 2)2 ≤ 1, 5 ≤ z ≤ 20},
Ω5 = {(x− 14)2 + (y − 8)2 ≤ 1, 5 ≤ z ≤ 20}.

The values of the coefficient in (1) are equal
to σ = 1, except subdomains: in Ω1, σ = 0.1;
in (Ω2\Ω4)∪(Ω3\Ω5), σ = 10, and in Ω4∪Ω5,
σ = 0 (the external subdomain).

The boundary conditions are u|Γ4 = u|Γ5 = 0 and ∂u

∂n
= 0 at the external

faces of the parallelepiped Ω. Numerical results on the coarse, middle and
fine embedded grids at a few different points are presented in Table 2.

Table 2. Numerical results for Problem 2

P1 P2 P3 P4 P5

Ωc, N = 37492, n = 477 2.9191 · 10−2 0.66883 4.3264 4.9709 4.5195
Ωm, N = 284330, n = 731 2.9643 · 10−2 0.67259 4.3202 4.9703 4.5181
Ωf , N = 2212804, n = 860 2.9787 · 10−2 0.67400 4.3174 4.9702 4.5185
‖uc − um‖ 452 · 10−2 376 · 10−5 62 · 10−4 6 · 10−4 6 · 10−4

‖um − uf‖ 144 · 10−6 141 · 10−4 26 · 10−4 1 · 10−4 4 · 10−4

Because this BVP does not have analytical solution, we analyze the
differences of solutions on various grids. As can be seen, the convergence
of the grid solution obtained is close to the second order. The number of
iterations is acceptable and can be estimated as O(h−1/2).
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