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Two explicit incomplete factorization
methods*

V.P. I’in, E.A. Itskovich

Two explicit incomplete factorization methods and their program implemen-
tation are presented for solution of linear algebraic systems with real symmetric
positive definite (SPD) matrices. The algorithms are based on the efficient Eisen-
stat modification of preconditioning for the matrix row sparse format. The fast
iterative convergence is provided by conjugate gradient approaches, relaxation, and
compensation parameters.

1. Introduction

Iterative solution of linear algebraic systems of equations with very large
sparse matrices is the topic of many books, papers, and codes, see for ex-
ample [1-5]. The purpose of this paper is the description of algorithms and
building blocks for solving the real systems with the SPD matrices, which
arise in finite-difference, or finite-volume, or finite-element approximations
of multi-dimensional boundary value problems (BVPs):

Au=f, A=D-L-U. (1)

Here A = {aij}, v = {w}, f = {fi} is square matrix, unknown, and
given vectors, i,7 = 1,...,N; D, L, and U are diagonal, strictly low, and
upper triangular matrices, respectively. For the SPD matrices (4 = AY,
L* = U, A(A) > 0) we denote the spectral condition number cond(4) =
Amax(A4)/Amin(A4). '

We also consider the positive type (PT) matrices which mean positive
diagonal and non-positive off-diagonal entries, and diagonal dominance:

0 >0, a;<0fori#j, ai> > lail, (2)
j=1,...,N, j#i

under existence of strictly inequality even for one i in the last relation
(2). The PT-matrices are the particular class of M-matrices, i.e., mono-
tone (A~ > 0) ones with the non-positive off-diagonal entries. A particular
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type of the symmetric PT-matrices is called the Stiltijes matrices which have
both the SPD and monotonicity properties.

In this paper, two explicit incomplete factorization methods are pre-
sented. Its implementation is based on the efficient Eisentat modification of
preconditioning and different types of conjugate gradient approaches, see [1].

2. Description of algorithms

Define the explicit (i.e., non-block, or point-wise) preconditioning matrix as

l—w

B=(G-L)G"Y(G-U), G= ép—es, Se = (TD+LG"1)e, (3)
where w, @ are the relaxation and the compensation parameters, e is the
vector with unit entries, S and G are diagonal matrices. The preconditioner
B provides for § = 1 the row sum criteria, or compensation principle, Be =
Ae. For symmetric original matrix A and § = 0 from (2) and conjugate
gradient approach, we obtain the SSOR-CG method [2].

If G is the SPD-matrix, system (1) is transformed to equivalent precon-
ditioned system

A = GY}G - L) 'A(G-U)GY?
=(I-L)'+(I-0)t-(I-Ly@er-D)yI-0)",

f] — G—1/2L G_1/2, l"jr — G—1/2U Gw1f2, D — G—1/2D G—I/Z’

i=(I-0)6", f=-L)'¢'?f Adu=f.

An important sense of the above transformation consists of spectral condi-
tion number property (for the SPD matrices B, A)

cond(A) = cond(B'A) (5)

(4)

and simple implementation of the matrix-vector multiplication
Ap=q+(I-L)'p-(I-D)g, q¢=(I-0)""p, (6)

which approximately demands the same number of arithmetical operations
as the matrix-vector product Ap.

The classical preconditioned conjugate gradient method for the SPD ma-
trix A, in terms of system (4), can be written as follows (we call it the
EXIFCG):

P fodd, P=7,
ﬂ“"‘l =" + aﬂpn, R (F",‘Fn)/(fipn,pn),
Fatl _ g an!_'ipn, pn+1 = gntl + ﬁnpn,

B = (P, 7N (7, 7), n=0,1,2,... .

(7)
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This iterg.tive process provides at each n the minimization of the functional
¢n = (A71#",7"). The necessary number of iteration for satisfying the
condition ¢, /@ < € < 1 is estimated by the inequality

n(e) <1+ a—'lngl\/ condA, (8)

where the condition number of preconditioned matrix A is defined in (5).
But, because the values g, are not known during implementation of formulas
(7), the following stopping criteria in iterations is used:

[, 7/, 7)) <e. (9)
The vectors 7", p™ in (7) satisfy the following orthogonal conditions:
(7 7*) = &apbup,  (AP",P*) = Enpboi, (10)

where 4, is the Kronecker symbol and é,%, &, are some normalizing
values.

Another algorithm is a variant of the MINRES which minimizes a func-
tional ¢, = (#",7") and is described by the formulas which can be obtained
from (7) by simple changing the computation of the parameters o, G, to

an = (A7, 7)/(Ap", Ap"), fBn = (AF™H1,7H)/(AF", 7). (11)

An implementation of formulas (7), (11) demands two matrix-vector
products Ap™ and A7". To avoid such disadvantage, we reformulate this
method (we call it the EXIFMR) in the following way:

7 — f“— A, =7

o = (4‘11"" )/(4p", Ap™), @ = @" + anp”,

=" anAP v Bn= (‘;ii"ndl-l -n+1)/(j,’-,n -n)’ (12)
pn+1 = 1‘"+1 +ﬂn?m Apn+1 Arn+1 +ﬁ Ap :
n=012,....

For this method, the number of iterations is also estimated by inequality
(8), but ¢ is defined here from the condition ¥, /9o < e. So, the last method
has an advantage that stopping criteria (9) is really optimal in this case,
and the values (7",7") decrease monotonically during iterations. Instead of
(10), the vectors 7#*,p™ in (11) have the orthogonal properties

(A7 %) = turbnp, (Ap™, AD*) = & kbn - (13)

In both algorithms, the reconstruction of solution is performed after
finishing iterations by means of the formula

w=G VI -U) 4. (14)
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The diagonal entries of the matrix G in (3) are computed by the recurrent
formula
gi=[1+0(w—1)ai;/w+w;, i=12,...,N,

i—1 N (15)
wi =0, wi=Y aiitj/g;, ti= Y. aij
i=1 j=i+1

and the matrix-vector transformations (4) are implemented by simple rela-
tions

D ={ai; = aiz/g:}, U ={aij=aij/\/5ig;}

N
- -~ 2 - 2 .
Uy = uNgIlv/z, U = u,g:/ -_— Z a,-,,-ujg;/ , 1= N — 1,.. . ,1,
j=i+l (16)
i—1
r3 1/2 7 —-1/2 - §F —-1/2
h= f191/ , Ji= fig; /2 _ zai,jfjgj / .
j=1

The transformation of the matrix L into L can really be avoid because
of symmetricity property, i.e., a;; and @;; for i > j equal to aj; and aj;,
respectively.

If system (1) is obtained from the 5-point approximation of the two-
dimensional boundary value problem for the Poisson equation at the rect-
angular quasi-uniform grid with characteristic mesh step h = O(N~1/2),
then for w = @ = 1 the condition number of precondition matrix is

cond(4) = O(k™?),

and corresponding number of iterations equals to n(e) = O(h~1/2), see [2].
The same order of cond(A) and n(e) is provided for the SSOR-CG method
with optimal value of relaxation parameter w and § = 0, see [1]. The similar
results are valid for the 7-point grid systems, which approximate the 3D
boundary value problems.

In [2], it is also proved that for grid approximation of the elliptic self-
adjoint PDEs with strongly variable coefficients or mesh steps, it is possible
to construct an adaptive ordering of mesh points (or unknowns), which
provides the increasing (!) of convergence rate of iterations, comparing to
the model problem with constant coefficients and uniform grid.

3. Description of the code

The presented algorithms are implemented into two subroutines EXIFCG and
EXIFMR. The programming language is FORTRAN-77. All arithmetic oper-
ations are implemented in double precision only. These subroutines use the
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same special row sparse format for saving non-zero entries of the matrices
D and U only, because the matrix A is symmetric. So, for each i-th row
of the matrix I/ the number ne(i) of nonzero entries a;; for j > i, their
corresponding column numbers j and own real values a;; are given in the
arrays NEIB(NU) and AU(NU), where the NU is the total number of nonzero
entries in the matrix U. :

The iterations are going until the convergence criteria (9) for the given
tolerance ¢ or the condition n = nmax will be held, where nyay is the given
number. The call of the subroutines is identical for both cases, except its
name, and has the form

call EXIFCG(D, U, F, NE, N, NEIB, AU, NU, EPS, NMAX, TETA, OM)
Here the arguments are:

N is an order of the system Au = f,

NU is the number of nonzero entries of U — the upper triangular part
of the matrix A,

EPS is an accuracy of iterative solution (tolerance),

NMAX  is a maximal number of iterations (input) and resulting number of
iterations (output),

U(N)  is an initial value of solution (input) and resulting solution (output),

F(N)  is the right-hand side (input) and preconditioned residual #* (out-
put),

D(N) is an array of diagonal entries of the matrix A (input), entries of
the matrix 2I — D (output),

NE(N) is the numbers of nonzero entries into the rows of the matrix U,
NEIB(NU) contains the column numbers of nonzero entries of U,

AU(NU) contains the values of nonzero entries of U (input), corresponding
entries of the matrix U (output),

TETA  is the compensation parameter 6,
oM is the relaxation parameter w.

The subroutine EXIFCG uses, in addition, an auxiliary real arrays ul(n),
ap(n), g(n), p(n).

The general structure and building blocks of subroutines can be described
by the following scheme:

e computing the matrix G by formulas (15) (call the auxiliary subroutine
PRECD),

¢ implementation of the Eisenstat matrix-vector transformations (4),
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e calculations of initial residual #° by means of (7) and (79,#), p°
(for EXIFMR — the vector A#°, also),

e realization of iterative process, by formulas (7),

e reconstruction of solution by formula (14).

The computational resources of considered subroutines are defined (per
grid node) by the number @ of multiplications at each iteration and the
volume of necessary operative memory P: for EXIFCG, P =11 and Q = 12;
for EXIFMR, P =12 and Q = 14.

The robustness of subroutines is provided by the full control of possible
division by zero and positive definiteness of the matrix.

4. Examples

We present the input and output data for algebraic system which arise in
finite difference approximation of the Dirichlet boundary problem for the
Poisson equation in the rectangular computational domain at the uniform
grid:
?u  %u

_EZE_W =f(z,y), (xfy)en=[03 (I+1)h] X[O,(J-l-l)h],

u(z,y)Ir = 9(=,9), .

z;=1th, yj=jh, i=0,1,...,I+1, 7=0,1,...,J+1, (17)
(Av)ij = —aivi1,5 — bijvij1 — Cijvit1 — dijvij + eyvig = fij,
i=1,...,I, j=1,...,J.

Here the coefficients and f;; are computed taking into account the exact
solution and boundary conditions in (17):

u(m’y) = g(a:,y) =1, f(z'»y) =0,
aij =1—20i0, bij=1—38;0, cij=1—0;1, dij=1-8; 7, e;j =4,

0, 1<i<I, 1<j<J, 18
fiij=< 1, i=11 or j=1,J,

jty Under natural row-by-row ordering of grid nodes and
L I respective numbering of vector components by the in-
3 AP dex k = i + (j — 1)I, for the presented in the figure
2 ‘grid example (I = J = 3, N = 9) we have NU = 12
11— and the structures of input arrays are shown in Tables 1

% and 2.
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Table 1. Input arraysFand NEfor I =J =3

k 1|23 |4 |5|6]|7]|8]9
F(k) 21|12 (101 }|2;1]2
NE(k) 2 14 2 111|160

l 1123 |[4|5|6|7|8|9](10](1112
NEIB(l) {2 | 4|3 ;5|6 |5|7[6]|8]| 9|89
Audl) 13111411 {1}1]1]1 1 1

Table 3. The resultsfore =10"",w=60=1

57

I41 16 32 64 128 256 512

EXIFCG 13 19 29 42 63 92
1.7-10% | 2.1-107° | 8.0-1077 | 1.2..107% | 9.0-1077 | 8.6-10"7

EXIFMR 13 19 28 42 62 a0
1.5-107% | 2.0.107% [ 2.1-10% | 1.6-10"° | 1.9-107% | 2.4.10"°

Table 4. The numbers of iterations for EXIFCG, e = 1077, I +1=J + 1 = 256

w\@ 0.0 0.2 0.4 0.6 0.8 0.9 0.97 0.98 0.99 1.0
1.0 187 177 166 151 143 123 93 86 74 63
1.2 154 148 155 145 126 109 84 78 67 63
1.4 140 137 131 123 109 95 76 70 61 63
1.6 111 108 105 101 96 86 68 63 55 63
1.8 79 81 80 78 73 67 57 53 50 63
1.9 61 61 61 60 58 54 50 50 50 63
1.91 58 58 59 58 56 53 50 50 50 63
1.92 57 56 56 55 54 51 50 50 51 63
1.93 56 55 54 b4 52 51 50 50 51 63
1.94 55 54 53 53 51 50 50 50 51 63
1.95 54 53 53 52 51 50 50 51 52 63
1.96 55 53 53 52 51 51 51 51 52 63
1.97 55 54 53 53 52 52 52 52 52 63
1.98 58 55 54 53 53 54 56 57 58 63
1.99 74 68 66 65 64 63 63 64 64 63
2.0 112 103 95 92 86 86 80 78 72 63
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Table 5. The numbers of iterations for EXIFMR, e =10~7, I +1=J + 1 = 256

w\é 0.0 0.2 0.4 0.6 0.8 0.9 0.97 0.98 0.99 1.0

1.0 178 170 161 147 126 109 86 85 73 62
1.2 151 145 137 128 120 107 77 76 66 62
1.4 123 121 124 120 107 94 75 69 60 62
1.6 107 107 104 99 91 82 66 61 54 62
18 78 78 78 77 72 66 55 52 50 62
1.9 59 59 60 59 57 53 50 49 49 62
1.91 58 57 57 57 55 52 49 49 49 62
1.92 56 56 55 55 53 51 49 49 50 62
1.93 55 54 54 53 52 50 49 49 50 62
1.94 54 53 53 52 51 50 49 50 50 62
1.95 53 52 52 51 50 49 50 50 51 62
1.96 54 52 52 51 50 50 50 50 51 62
1.97 54 52 52 52 51 51 51 51 51 62
1.98 57 54 53 52 52 53 55 55 57 62
1.99 72 66 64 63 62 62 62 62 62 62
2.0 108 100 92 87 84 81 77 75 71 62

In Table 3, we present the output results for the subroutines EXIFCG
and EXIFMR for different number of mesh steps (I + 1) x (J + 1) = 162,
322, 642, 1282, 2562, and 512%2. In each cell of this table there are the
numbers of iterations n for ¢ = 1077, w = @ = 1, and resulting errors
6 = maxiy{|1 - ufy}.

Here and in the following the computations were done under initial value

r . Uy
sin y

0 _ .
u(2,9) = (10sin 7= sin 7=

)2+z

In Tables 4 and 5, there are the values of iterations for EXIFCG and
EXIFMR under conditions ¢ = 1072, I+ 1 = J + 1 = 256.

From these results and from similar numerous experiments, the following
conclusions can be done:

1. The number of iterations in EXIFMR is slightly less than in EXIFCG
and the end error is slightly bigger, but the differences are very small.
The computational complexity of both algorithms is approximately
the same.

2. The incomplete factorization method for w = § = 1 has approximately
the same convergence rate as the SSOR for optimal wy (and 6 = 0).

3. The considered methods have high iterative convergence and optimal
values of iterative parameters 1 < wp < 2, 0.9 < 6 < 1. But the
number of iterations for w = # = 1 is close to optimal one, and these
values can be recommended in practice.
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