About one inverse initial-boundary value problem for nonlinear one-dimensional poroelasticity equations

Kh.Kh. Imomnazarov, Sh.Kh. Imomnazarov, P.V. Korobov, A.E. Kholmuradov

Abstract

We consider a one-dimensional inverse boundary value problem for a nonlinear system of the poroelasticity equations. We obtain estimates for the conditional stability of the inverse problem.

Keywords: hyperbolic system, direct problem, Volterra's equation, porous medium, friction coefficient.

Let us consider the following one-dimensional initial boundary value problem for the nonlinear system of equations of poroelasticity

$$
\begin{gather*}
\rho_{s} u_{t t}=\left(\mu\left(u_{x}\right) u_{x}\right)_{x}-\rho_{l}^{2}((u-v) \chi(u-v))_{t}, \\
\rho_{l} v_{t}=\rho_{l}^{2}(u-v) \chi(u-v), \quad x \in(0, L), \quad t \in(0, T), \tag{1}\\
\left.u\right|_{t=0}=u_{0}(x),\left.\quad u_{t}\right|_{t=0}=u_{1}(x),\left.\quad v\right|_{t=0}=0, \quad x \in(0, L), \tag{2}\\
\left.\mu\left(u_{x}\right) u_{x}\right|_{x=L}=f(t),\left.\quad u\right|_{x=0}=0, \quad t \in(0, T) . \tag{3}
\end{gather*}
$$

Here u and v are the velocities of elastic porous body with a constant partial density $\rho_{s}=\rho_{s}^{f}\left(1-d_{0}\right)$ and of the fluid with a constant partial density $\rho_{l}=$ $\rho_{l}^{f} d_{0}$, respectively, d_{0} is porosity, $u_{t}=\frac{\partial u}{\partial t}, f:[0, T] \rightarrow R, u_{0}:[0, L] \rightarrow R$, $u_{1}:[0, L] \rightarrow R, \rho_{s}^{f}$ and ρ_{l}^{f} are the physical density of elastic porous body and the fluid, respectively, $\mu(\nu)$ is a three times continuously differentiable positive function, $\chi(\nu)$ is a two times continuously differentiable positive function.

In this paper, using the ideas from [4], we study the inverse problem for the one-dimensional dynamical system of equations of porous media. The direct problem is considered in [1].

The statement of the problem and formulation of results. The problem of definition of u and v from (1)-(3) with given $\mu, \chi, \rho_{s}, \rho_{l}$ will be called a one-dimensional direct dynamic problem for porous media [1]. The inverse problem is to determine u, v, μ from (1)-(3) (with given χ, ρ_{s}, ρ_{l}) with additional information $\tilde{u}:=u(L, \cdot)$.

We introduce the functions $\tilde{\mu}(s)=s \mu(s), \tilde{\chi}(s)=s \chi(s)$. To study the properties of our mathematical model, we consider the operator F, that is, mapping the function $\tilde{\mu}$ onto the given $\tilde{u}:=u(L, \cdot)$, which is a restriction of the solution u for the following initial boundary value problem

$$
\begin{align*}
\rho_{s} u_{t t} & =\left(\tilde{\mu}\left(u_{x}\right)\right)_{x}-\rho_{l}^{2}(\tilde{\chi}(u-v))_{t} \tag{4}\\
v_{t} & =\rho_{l} \tilde{\chi}(u-v), \quad x \in(0, L), \quad t \in(0, T)
\end{align*}
$$

with the initial conditions

$$
\begin{equation*}
\left.u\right|_{t=0}=u_{0}(x),\left.\quad u_{t}\right|_{t=0}=u_{1}(x),\left.\quad v\right|_{t=0}=0, \quad x \in(0, L) \tag{5}
\end{equation*}
$$

and the boundary conditions

$$
\begin{equation*}
\left.\tilde{\mu}\left(u_{x}\right)\right|_{x=L}=f(t),\left.\quad u\right|_{x=0}=0, \quad t \in(0, T) \tag{6}
\end{equation*}
$$

Then the function $\tilde{\mu}$ can be found from the solution of the operator equation

$$
\begin{equation*}
F(\tilde{\mu})=\tilde{u} \tag{7}
\end{equation*}
$$

The derivative of the operator F in some direction $\delta \tilde{\mu}$ is calculated in the following way

$$
\begin{equation*}
F^{\prime}(\tilde{\mu})[\delta \tilde{\mu}]=\widetilde{u}(L, \cdot) \tag{8}
\end{equation*}
$$

where the functions \widehat{u}, \widehat{v} are the solution of the initial-boundary value problem

$$
\begin{align*}
\rho_{s} \widehat{u}_{t t} & =\left(\tilde{\mu}^{\prime}\left(u_{x}\right) \widehat{u}_{x}\right)_{x}-\rho_{l}^{2}\left(\tilde{\chi}^{\prime}(u-v)(\widehat{u}-\widehat{v})\right)_{t}+\left(\delta \tilde{\mu}\left(u_{x}\right)\right)_{x} \\
\widehat{v}_{t} & =\rho_{l} \tilde{\chi}^{\prime}(u-v)(\widehat{u}-\widehat{v}), \quad x \in(0, L), \quad t \in(0, T) \tag{9}
\end{align*}
$$

with the initial conditions

$$
\begin{equation*}
\left.\widehat{u}\right|_{t=0}=0,\left.\quad \widehat{u}_{t}\right|_{t=0}=0,\left.\quad \widehat{v}\right|_{t=0}=0, \quad x \in(0, L), \tag{10}
\end{equation*}
$$

and the boundary conditions

$$
\begin{equation*}
\left.\widetilde{u}\right|_{x=0}=0, \quad \tilde{\mu}^{\prime}\left(u_{x}\right) \widehat{u}_{x}+\left.\delta \tilde{\mu}\left(u_{x}\right)\right|_{x=L}=0, \quad t \in(0, T) \tag{11}
\end{equation*}
$$

In formulas (9)-(11) the functions u, v are the solution of the initial-boundary value problem (4)-(6).

Suppose that the following conditions are valid

$$
\begin{equation*}
u_{0} \in C^{3}(0, L), \quad u_{1} \in C^{2}(0, L), \quad f \in C^{2}(0, T) \tag{12}
\end{equation*}
$$

and the compatibility conditions

$$
\begin{gather*}
\left(\tilde{\mu}^{-1} \circ f\right)(0)=u_{0}^{\prime}(L), \quad\left(\tilde{\mu}^{-1} \circ f\right)^{\prime}(0)=u_{1}^{\prime}(L), \\
\rho_{s}\left(\tilde{\mu}^{-1} \circ f\right)^{\prime \prime}(0)=\left(\tilde{\mu}\left(u_{0}^{\prime}\right)\right)^{\prime \prime}(L)-\rho_{l}^{2}\left[\left(u_{1}-\rho_{l} \tilde{\chi}\left(u_{0}\right)\right) \tilde{\chi}^{\prime}\left(u_{0}\right)\right]^{\prime}(L) \tag{13}
\end{gather*}
$$

on the boundary and

$$
\begin{equation*}
u_{0}(0)=u_{1}(0)=u_{0}^{\prime \prime}(0)=u_{1}^{\prime \prime}(0)=0 \tag{14}
\end{equation*}
$$

on the left boundary.
Assume that the functions $\tilde{\mu}, \tilde{\chi}$ belong to the set

$$
D(F)=\left\{\begin{array}{l}
(\tilde{\mu}, \tilde{\chi}) \in X \mid \tilde{\mu}^{\prime}(s) \geq \mu_{0}, \tilde{\mu}^{\prime \prime}(s) \leq C, \tilde{\chi}^{\prime \prime}(s) \leq C \tag{15}\\
\text { for any } s \in[0, S], \text { and condition }(13) \text { is fulfilled }
\end{array}\right\}
$$

for some positive constants μ_{0}, C. Further, we denote by C a positive constant that is greater than the previous C,

$$
\begin{equation*}
X=\left\{(\tilde{\mu}, \tilde{\chi}) \in C^{3}(0, S) \times C^{2}(0, S) \mid \tilde{\mu}(0)=0, \tilde{\chi}(0)=0\right\} \tag{16}
\end{equation*}
$$

where $S>0$.
Using different norms both in the preimage and in the image spaces, we obtain a stable solution in the interval $[0, \bar{s}] \subseteq[0, S]$, the parameter curve $s \mapsto \tilde{\mu}(s)$ can be uniquely determined from the given measurements.

A difference $F(\breve{\mu})-F(\tilde{\mu}), \breve{\mu}, \tilde{\mu} \in D(F)$, can be written as the right-hand side value for \widehat{u}, \widehat{v} for the following initial-boundary value problem

$$
\begin{align*}
\rho_{s} \widehat{u}_{t t} & =\left(a \widehat{u}_{x}+\phi\right)_{x}-\rho_{l}^{2}(b(\widehat{u}-\widehat{v}))_{t} \tag{17}\\
\widehat{v}_{t} & =\rho_{l} b(\widehat{u}-\widehat{v}), \quad x \in(0, L), \quad t \in(0, T),
\end{align*}
$$

with zero initial conditions and the boundary conditions

$$
\begin{equation*}
a \widehat{u}_{x}+\left.\phi\right|_{x=L}=0,\left.\quad \widehat{u}\right|_{x=0}=0, \quad t \in(0, T) \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
& a(x, t)= \int_{0}^{1} \tilde{\mu}^{\prime}\left(\breve{u}_{x}(x, t)+\left(u_{x}(x, t)-\breve{u}_{x}(x, t)\right) \theta\right) d \theta \\
& b(x, t)= \int_{0}^{1} \tilde{\chi}^{\prime}\left(\breve{u}_{x}(x, t)-\breve{v}_{x}(x, t)+\right. \\
& \quad\left(u_{x}(x, t)-v_{x}(x, t)-\left(\breve{u}_{x}(x, t)-\breve{v}_{x}(x, t)\right) \theta\right) d \theta \\
& \phi(x, t)= \delta \tilde{\mu}\left(u_{x}(x, t)\right), \quad \delta \tilde{\mu}=\widetilde{\mu}-\tilde{\mu} \tag{19}
\end{align*}
$$

The functions \breve{u}, \breve{v} are the solution of the initial-boundary value problem (4)-(6) with $\tilde{\mu}=\widetilde{\mu}$, i.e.

$$
\begin{equation*}
F(\widetilde{\mu})-F(\tilde{\mu})=\hat{u}(L, \cdot) \tag{20}
\end{equation*}
$$

First, consider the initial boundary value problem (17)-(18) in the case of constant coefficients, i.e. $a(x, t)=\bar{a}, b(x, t)=\bar{b}, \bar{a}, \bar{b} \in R$. Therefore, we consider the following initial-boundary value problem

$$
\begin{align*}
\rho_{s} \widehat{u}_{t t} & =\bar{a} \widehat{u}_{x x}-\rho_{l}^{2} \bar{b}\left(\widehat{u}_{t}-\widehat{v}_{t}\right)+\phi_{x} \\
\widehat{v}_{t} & =\rho_{l} \bar{b}(\widehat{u}-\widehat{v}), \quad x \in(0, L), \quad t \in(0, T) \tag{21}
\end{align*}
$$

with zero initial conditions

$$
\begin{equation*}
\left.\widehat{u}\right|_{t=0}=0,\left.\quad \widehat{u}_{t}\right|_{t=0}=0,\left.\quad \widehat{v}\right|_{t=0}=0, \quad x \in(0, L) \tag{22}
\end{equation*}
$$

and boundary conditions

$$
\begin{equation*}
\bar{a} \widehat{u}_{x}+\left.\phi\right|_{x=L}=0,\left.\quad \widehat{u}\right|_{x=0}=0, \quad t \in(0, T) \tag{23}
\end{equation*}
$$

Using the method of characteristics, initial boundary value problem (21)(23) is reduced to Volterra's equation of the first kind for the difference $\delta \tilde{\mu}$ between the parameters of curves.

Theorem 1. Let the functions \hat{u}, \hat{v} be the solution of the initial boundary value problem (21)-(23). The function ϕ is defined by formula (19) for $u \in C^{3,2}([0, L] \times[0, T]), v \in C^{0,1}([0, L] \times[0, T])$, satisfying boundary conditions (6) and initial conditions (5) with condition of smoothness (12), $f(0)=0$ and f is a strictly monotoniously increasing function, $u_{0}^{\prime} \equiv 0$, $\tilde{\mu} \in D(F)$, and $\delta \tilde{\mu} \in C^{2}\left(\left[0, S_{1}\right]\right)$ for some $S_{1}>0$ such that

$$
\left\{u_{x}(x, t) \mid(x, t) \in[0, L] \times[0, T]\right\} \subseteq\left[0, S_{1}\right]
$$

Furthermore, assume that

$$
\begin{equation*}
\left| \pm \sqrt{\frac{\bar{a}}{\rho_{s}}} u_{x x}(x, t)+u_{x t}(x, t)\right| \geq c_{1} \quad \forall(x, t) \in(0, L) \times(0, \bar{t}) \tag{24}
\end{equation*}
$$

holds for some $c_{1}>0,0<\bar{t} \leq T$.
Then, with

$$
\begin{equation*}
\bar{s}=\tilde{\mu}^{-1}(f(\bar{t}))>0 \tag{25}
\end{equation*}
$$

the estimate of l-stability [4] is valid

$$
\begin{equation*}
\|\delta \tilde{\mu}\|_{L_{2}(0, \bar{s})} \leq C\left\{\|\hat{u}(L, \cdot)\|_{H^{1}(0, \bar{t})}+\rho_{l}^{3}\|\hat{u}\|_{H^{1}((0, \bar{t}) \times(0, \bar{t}))}\right\} \tag{26}
\end{equation*}
$$

with some constant $C>0$.

Theorem 2. Let the conditions of Theorem 1 be fulfilled and

$$
\begin{gather*}
f(0)=0, \quad f(t) \geq 0, \quad f^{\prime}(t) \geq f_{0}>0 \quad \forall t \in[0, \bar{t}] \tag{27}\\
u_{0}^{\prime}(x)=0 \quad \forall x \in[0, L] \tag{28}
\end{gather*}
$$

for some f_{0}. Let $\tilde{\mu} \in D(F)$, and u, v be solutions of the initial-boundary value problem (4)-(6).

Additionally, assume that

$$
\begin{equation*}
\left|\left(\pm \sqrt{\frac{\tilde{\mu}^{\prime}\left(u_{x}\right)}{\rho_{s}}} u_{x x}+u_{x t}\right)(x(t), t)\right| \geq c_{1} \quad \forall t \in[0, \bar{t}] \tag{29}
\end{equation*}
$$

performed on some segment $[0, \bar{t}] \subseteq[0, T]$ with some $c_{1}>0$, for all the characteristic curves $t \mapsto x(t)$ of (4), and \bar{t}, L are small enough.

Then the function $u(L, t), t \in[0, \bar{t}]$, uniquely determines $\tilde{\mu}$ on the interval $[0, \bar{s}]$, where

$$
\begin{equation*}
\bar{s}=\tilde{\mu}^{-1}(f(\bar{t}))>0 \tag{30}
\end{equation*}
$$

and the estimate of l-stability is valid

$$
\begin{equation*}
\|\breve{\mu}-\tilde{\mu}\|_{L_{2}(0, \bar{s})} \leq C\left\{\|F(\breve{\mu})-F(\tilde{\mu})\|_{H^{1}(0, \bar{t})}+\rho_{l}^{3}\|\hat{u}\|_{H^{1}((0, \bar{t}) \times(0, \bar{t}))}\right\} \tag{31}
\end{equation*}
$$

with some constant $C>0$ for all $\tilde{\mu} \in D(F) \cap B_{r}(\tilde{\mu})$, where $B_{r}(\tilde{\mu})$ is a ball of sufficiently small radius r (in C^{3} norm) with the center $\tilde{\mu}$.

Proof of Theorems. For simplicity, assume that $\rho_{s}=L=a=1$. For the sake of convenience exclude the function \widehat{v} from the equation of motion for \widehat{u}. These functions satisfy the relations (17)-(20):

$$
\begin{gather*}
\widehat{u}_{t t}=\widehat{u}_{x x}-b \rho_{l}^{2} \widehat{u}_{t}+b^{2} \rho_{l}^{3} \widehat{u}-b^{3} \rho_{l}^{4} \int_{0}^{t} e^{-b \rho_{l}(t-\tau)} \widehat{u}(x, \tau) d \tau+\phi_{x} \\
\widehat{u}_{x}(1, t)+\phi=0, \quad m(t):=\widehat{u}(1, t) \\
\widehat{v}(x, t)=b \rho_{l} \int_{0}^{t} e^{-b \rho_{l}(t-\tau)} \widehat{u}(x, \tau) d \tau \tag{32}
\end{gather*}
$$

We represent $\widehat{u}=p e^{-b \rho_{l}^{2} t / 2}$. For the function p we obtain the following problem

$$
\begin{gather*}
p_{t t}=p_{x x}+A p-b^{3} \rho_{l}^{4} \int_{0}^{t} e^{-B(t-\tau)} p(x, \tau) d \tau+\tilde{\phi}_{x} \tag{33}\\
p_{x}(1, t)+\tilde{\phi}=0, \quad p(1, t)=\tilde{m}(t)
\end{gather*}
$$

where

$$
A=b^{2} \rho_{l}^{3}\left(1+\frac{\rho_{l}}{4}\right), \quad B=b \rho_{l}\left(1-\frac{\rho_{l}}{2}\right), \quad \tilde{\phi}=\phi e^{b \rho_{l}^{2} t / 2}, \quad \tilde{m}=m e^{b \rho_{l}^{2} t / 2}
$$

Solution of problem (33) has the form [3]

$$
\begin{align*}
p(x, t)= & \frac{1}{2}[\tilde{m}(1+t-x)+\tilde{m}(1+t-x-\min \{1+t-x, 2(1-x)\})]+ \\
& \frac{1}{2} \int_{1+t-x-\min \{1+t-x, 2(1-x)\}}^{1+t-x} \tilde{\phi}(1, \eta) d \eta- \\
& \int_{0}^{\min \left\{\frac{1}{2}(1+t-x), 1-x\right\}} \int_{0}^{\eta} \tilde{\phi}_{x}(1-\tau, \tau+1+t-x-2 \eta) d \tau d \eta- \\
& \int_{\min \left\{\frac{1}{2}(1+t-x), 1-x\right\}}^{1-x} \int_{2 \eta-(1+t-x)}^{\eta} \tilde{\phi}_{x}(1-\tau, \tau+1+t-x-2 \eta) d \tau d \eta- \\
& \int_{0}^{\min \left\{\frac{1}{2}(1+t-x), 1-x\right\}} \int_{0}^{\eta} P(1-\tau, \tau+1+t-x-2 \eta) d \tau d \eta- \\
& \int_{\min \left\{\frac{1}{2}(1+t-x), 1-x\right\}}^{1-x} \int_{2 \eta-(1+t-x)}^{\eta} P(1-\tau, \tau+1+t-x-2 \eta) d \tau d \eta, \tag{34}
\end{align*}
$$

where

$$
P=A p-b^{3} \rho_{l}^{4} \int_{0}^{t} e^{-B(t-\tau)} p(x, \tau) d \tau
$$

From the initial and boundary conditions at the left boundary for \widehat{u} we obtain

$$
p(x, 0)=P(x, 0)=0, \quad p(0, t)=P(0, t)=0 .
$$

From (32), (33) it follows that $\tilde{m}(0)=m(0)=0$.
Repeating the arguments from [4] relative to $\tilde{\phi}$, we obtain Volterra's integral equation of the first kind

$$
\begin{align*}
-\tilde{m}(t)= & \int_{0}^{t} \tilde{\phi}(|\sigma-t+1|, \sigma) d \sigma-2 \int_{0}^{t / 2} \int_{0}^{\eta} P(1-\tau, \tau+t-2 \eta) d \tau d \eta- \\
& 2 \int_{t / 2}^{t} \int_{2 \eta-t}^{\eta} P(1-\tau, \tau+t-2 \eta) d \tau d \eta \tag{35}
\end{align*}
$$

In the first integral we make a change in the variables

$$
\lambda:=u_{x}(|\eta-t+1|, \eta), \quad \tau:=f^{-1}(\tilde{\mu}(\lambda)) .
$$

Then we have

$$
\begin{gathered}
\int_{0}^{t} \tilde{\phi}(|\sigma-t+1|, \sigma) d \sigma=\int_{u_{x}(|t-1|, 0)}^{u_{x}(1, t)} k(\lambda, t) \delta \mu(\lambda) d \lambda=\int_{0}^{\tilde{\mu}^{-1}(f(t))} k(\lambda, t) \delta \mu(\lambda) d \lambda \\
\quad=\int_{0}^{t} k\left(\tilde{\mu}^{-1}(f(\tau)), t\right) \frac{f^{\prime}(\tau)}{\tilde{\mu}^{\prime}\left(\tilde{\mu}^{-1}(f(\tau))\right)} \delta \mu\left(\tilde{\mu}^{-1}(f(\tau))\right) d \tau \quad \forall t \in[0, \bar{t}],
\end{gathered}
$$

where

$$
k(\lambda, t)=\frac{e^{b \rho_{l}^{2} \eta / 2}}{\operatorname{sgn}(\eta-t+1) u_{x x}(|\eta-t+1|, \eta)+u_{x t}(|\eta-t+1|, \eta)},
$$

$\eta=\eta(\lambda, t-1)$ according to the theorem of the implicit function.
Supplying this ratio in (35) relative to $\delta \mu \circ \tilde{\mu}^{-1} \circ f$ we obtain Volterra's integral equations of the first kind

$$
\begin{align*}
-m(t) e^{b \rho_{l}^{2} t / 2}= & \int_{0}^{t} k\left(\tilde{\mu}^{-1}(f(\tau)), t\right) \frac{f^{\prime}(\tau)}{\tilde{\mu}^{\prime}\left(\tilde{\mu}^{-1}(f(\tau))\right)} \delta \mu\left(\tilde{\mu}^{-1}(f(\tau))\right) d \tau- \\
& 2 \int_{0}^{t / 2} \int_{0}^{\eta} P(1-\tau, \tau+t-2 \eta) d \tau d \eta- \\
& 2 \int_{t / 2}^{t} \int_{2 \eta-t}^{\eta} P(1-\tau, \tau+t-2 \eta) d \tau d \eta \quad \forall t \in[0, \bar{t}] . \tag{36}
\end{align*}
$$

Note that the kernel $k\left(\tilde{\mu}^{-1}(f(\tau)), t\right) \frac{f^{\prime}(\tau)}{\tilde{\mu}^{\prime}\left(\tilde{\mu}^{-1}(f(\tau))\right)}$ is limited, differentiable with respect to t separated from zero diagonal $\tau=t$. According to the theory of Volterra's integral operators [4, 7], from (36) we obtain

$$
\begin{aligned}
\|\delta \mu\|_{L_{2}(0, \bar{\lambda})} & \leq \frac{\|f\|_{C^{1}}}{\mu_{0}}\left\|\delta \mu \circ \tilde{\mu}^{-1} \circ f\right\|_{L_{2}(0, t)}+C \rho_{l}^{3}\|\widehat{u}\|_{H^{1}((0, \overparen{t}) \times(0, \bar{t}))} \\
& \leq C\left\{\left\|\tilde{m}^{\prime}\right\|_{L_{2}(0, \bar{t})}+\rho_{l}^{3}\|\widehat{u}\|_{H^{1}((0, \bar{t}) \times(0, \bar{t}))}\right\} .
\end{aligned}
$$

Hence, taking into account the definitions of \tilde{m}, we obtain estimate (26). Theorem 1 is proved.

The proof of Theorem 2 is carried out in the same manner as in [4], using Theorem 1.

References

[1] Imomnazarov Kh.Kh., Imomnazarov Sh.Kh., Korobov P.V., Kholmurodov A.E. About one direct initial-boundary value problem for nonlinear one-dimensional poroelasticity equations // This issue.-P. 1-8.
[2] Blokhin A.M., Dorovsky V.N. Mathematical Modelling in the Theory of Multivelocity Continuum. - New York: Nova Science Publishers Inc., 1995.
[3] Kaltenbacher B. Identification of Nonlinear Coefficients in Hyperbolic PDEs, with Application to Piezoelectricity / K. Kunisch, G. Leugering, J. Sprekels, F. Troltzsch, eds. // Optimal Control of Coupled Systems of PDEs. - Springer, 2006. - Vol. 155. - P. 193-216.
[4] Bukhgeim A.L. Volterra's Equation and Inverse Problems. - Novosibirsk: Nauka, 1984 (In Russian).
[5] Evans L.C. Partial Differential Equations.-AMS, 1998.
[6] Kolmogorov A.N., Fomin S.V. Elements of the Theory of Functions and Functional Analysis. - Moscow: Nauka, 1968 (In Russian).
[7] Engl H.W. Integralgleichungen. - Wein: Springer, 1997.

