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About one inverse initial-boundary value problem
for nonlinear one-dimensional poroelasticity

equations

Kh.Kh. Imomnazarov, Sh.Kh. Imomnazarov, P.V. Korobov,
A.E. Kholmuradov

Abstract. We consider a one-dimensional inverse boundary value problem for
a nonlinear system of the poroelasticity equations. We obtain estimates for the
conditional stability of the inverse problem.
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Let us consider the following one-dimensional initial boundary value
problem for the nonlinear system of equations of poroelasticity

ρsutt = (µ(ux)ux)x − ρ2
l ((u− v)χ(u− v))t,

ρlvt = ρ2
l (u− v)χ(u− v), x ∈ (0, L), t ∈ (0, T ),

(1)

u|t=0 = u0(x), ut|t=0 = u1(x), v|t=0 = 0, x ∈ (0, L), (2)

µ(ux)ux|x=L = f(t), u|x=0 = 0, t ∈ (0, T ). (3)

Here u and v are the velocities of elastic porous body with a constant partial
density ρs = ρfs (1− d0) and of the fluid with a constant partial density ρl =

ρfl d0, respectively, d0 is porosity, ut =
∂u

∂t
, f : [0, T ] → R, u0 : [0, L] → R,

u1 : [0, L] → R, ρfs and ρfl are the physical density of elastic porous body
and the fluid, respectively, µ(ν) is a three times continuously differentiable
positive function, χ(ν) is a two times continuously differentiable positive
function.

In this paper, using the ideas from [4], we study the inverse problem for
the one-dimensional dynamical system of equations of porous media. The
direct problem is considered in [1].

The statement of the problem and formulation of results. The
problem of definition of u and v from (1)–(3) with given µ, χ, ρs, ρl will be
called a one-dimensional direct dynamic problem for porous media [1]. The
inverse problem is to determine u, v, µ from (1)–(3) (with given χ, ρs, ρl)
with additional information ũ := u(L, ·).
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We introduce the functions µ̃(s) = sµ(s), χ̃(s) = sχ(s). To study the
properties of our mathematical model, we consider the operator F , that is,
mapping the function µ̃ onto the given ũ := u(L, ·), which is a restriction of
the solution u for the following initial boundary value problem

ρsutt = (µ̃(ux))x − ρ2
l (χ̃(u− v))t,

vt = ρlχ̃(u− v), x ∈ (0, L), t ∈ (0, T ),
(4)

with the initial conditions

u|t=0 = u0(x), ut|t=0 = u1(x), v|t=0 = 0, x ∈ (0, L), (5)

and the boundary conditions

µ̃(ux)|x=L = f(t), u|x=0 = 0, t ∈ (0, T ). (6)

Then the function µ̃ can be found from the solution of the operator equation

F (µ̃) = ũ. (7)

The derivative of the operator F in some direction δµ̃ is calculated in the
following way

F ′(µ̃)[δµ̃] =
_
u(L, ·), (8)

where the functions
_
u,

_
v are the solution of the initial-boundary value prob-

lem
ρs

_
utt = (µ̃′(ux)

_
ux)x − ρ2

l (χ̃
′(u− v)(

_
u − _

v))t + (δµ̃(ux))x,

_
v t = ρlχ̃

′(u− v)(
_
u − _

v), x ∈ (0, L), t ∈ (0, T ),
(9)

with the initial conditions

_
u|t=0 = 0,

_
ut|t=0 = 0,

_
v |t=0 = 0, x ∈ (0, L), (10)

and the boundary conditions

_
u|x=0 = 0, µ̃′(ux)

_
ux + δµ̃(ux)|x=L = 0, t ∈ (0, T ). (11)

In formulas (9)–(11) the functions u, v are the solution of the initial-boundary
value problem (4)–(6).

Suppose that the following conditions are valid

u0 ∈ C3(0, L), u1 ∈ C2(0, L), f ∈ C2(0, T ), (12)

and the compatibility conditions
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(µ̃−1 ◦ f)(0) = u′0(L), (µ̃−1 ◦ f)′(0) = u′1(L),

ρs(µ̃
−1 ◦ f)′′(0) = (µ̃(u′0))′′(L)− ρ2

l [(u1 − ρlχ̃(u0))χ̃′(u0)]′(L)
(13)

on the boundary and

u0(0) = u1(0) = u′′0(0) = u′′1(0) = 0 (14)

on the left boundary.
Assume that the functions µ̃, χ̃ belong to the set

D(F ) =

{
(µ̃, χ̃) ∈ X | µ̃′(s) ≥ µ0, µ̃

′′(s) ≤ C, χ̃′′(s) ≤ C
for any s ∈ [0, S], and condition (13) is fulfilled

}
, (15)

for some positive constants µ0, C. Further, we denote by C a positive
constant that is greater than the previous C,

X =
{

(µ̃, χ̃) ∈ C3(0, S)× C2(0, S) | µ̃(0) = 0, χ̃(0) = 0
}
, (16)

where S > 0.
Using different norms both in the preimage and in the image spaces, we

obtain a stable solution in the interval [0, s̄] ⊆ [0, S], the parameter curve
s 7→ µ̃(s) can be uniquely determined from the given measurements.

A difference F (
^
µ)−F (µ̃),

^
µ, µ̃ ∈ D(F ), can be written as the right-hand

side value for
_
u,

_
v for the following initial-boundary value problem

ρs
_
utt = (a

_
ux + φ)x − ρ2

l (b(
_
u − _

v))t,

_
v t = ρlb(

_
u − _

v), x ∈ (0, L), t ∈ (0, T ),
(17)

with zero initial conditions and the boundary conditions

a
_
ux + φ|x=L = 0,

_
u|x=0 = 0, t ∈ (0, T ), (18)

where

a(x, t) =

∫ 1

0
µ̃′(

^
ux(x, t) + (ux(x, t)− ^

ux(x, t))θ) dθ,

b(x, t) =

∫ 1

0
χ̃′
(^
ux(x, t)− ^

vx(x, t) +

(ux(x, t)− vx(x, t)− (
^
ux(x, t)− ^

vx(x, t))θ
)
dθ,

φ(x, t) = δµ̃(ux(x, t)), δµ̃ =
^
µ − µ̃. (19)

The functions
^
u,

^
v are the solution of the initial-boundary value problem

(4)–(6) with µ̃ =
^
µ, i.e.

F (
^
µ)− F (µ̃) = û(L, ·). (20)
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First, consider the initial boundary value problem (17)–(18) in the case of
constant coefficients, i.e. a(x, t) = ā, b(x, t) = b̄, ā, b̄ ∈ R. Therefore, we
consider the following initial-boundary value problem

ρs
_
utt = ā

_
uxx − ρ2

l b̄(
_
ut −

_
v t) + φx,

_
v t = ρlb̄(

_
u − _

v), x ∈ (0, L), t ∈ (0, T ),
(21)

with zero initial conditions

_
u|t=0 = 0,

_
ut|t=0 = 0,

_
v |t=0 = 0, x ∈ (0, L), (22)

and boundary conditions

ā
_
ux + φ|x=L = 0,

_
u|x=0 = 0, t ∈ (0, T ). (23)

Using the method of characteristics, initial boundary value problem (21)–
(23) is reduced to Volterra’s equation of the first kind for the difference δµ̃
between the parameters of curves.

Theorem 1. Let the functions û, v̂ be the solution of the initial bound-
ary value problem (21)–(23). The function φ is defined by formula (19)
for u ∈ C3,2([0, L] × [0, T ]), v ∈ C0,1([0, L] × [0, T ]), satisfying boundary
conditions (6) and initial conditions (5) with condition of smoothness (12),
f(0) = 0 and f is a strictly monotoniously increasing function, u′0 ≡ 0,
µ̃ ∈ D(F ), and δµ̃ ∈ C2([0, S1]) for some S1 > 0 such that{

ux(x, t) | (x, t) ∈ [0, L]× [0, T ]
}
⊆ [0, S1].

Furthermore, assume that∣∣∣∣±√ ā

ρs
uxx(x, t) + uxt(x, t)

∣∣∣∣ ≥ c1 ∀ (x, t) ∈ (0, L)× (0, t̄) (24)

holds for some c1 > 0, 0 < t̄ ≤ T .

Then, with

s̄ = µ̃−1(f(t̄)) > 0 (25)

the estimate of l-stability [4] is valid

‖δµ̃‖L2(0,s̄) ≤ C
{
‖û(L, ·)‖H1(0,t̄) + ρ3

l ‖û‖H1((0,t̄)×(0,t̄))

}
(26)

with some constant C > 0.
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Theorem 2. Let the conditions of Theorem 1 be fulfilled and

f(0) = 0, f(t) ≥ 0, f ′(t) ≥ f0 > 0 ∀ t ∈ [0, t̄], (27)

u′0(x) = 0 ∀x ∈ [0, L] (28)

for some f0. Let µ̃ ∈ D(F ), and u, v be solutions of the initial-boundary
value problem (4)–(6).

Additionally, assume that∣∣∣∣(±
√
µ̃′(ux)

ρs
uxx + uxt

)
(x(t), t)

∣∣∣∣ ≥ c1 ∀ t ∈ [0, t̄], (29)

performed on some segment [0, t̄] ⊆ [0, T ] with some c1 > 0, for all the
characteristic curves t 7→ x(t) of (4), and t̄, L are small enough.

Then the function u(L, t), t ∈ [0, t̄], uniquely determines µ̃ on the interval
[0, s̄], where

s̄ = µ̃−1(f(t̄)) > 0 (30)

and the estimate of l-stability is valid

‖^µ − µ̃‖L2(0,s̄) ≤ C
{
‖F (

^
µ)− F (µ̃)‖H1(0,t̄) + ρ3

l ‖û‖H1((0,t̄)×(0,t̄))

}
(31)

with some constant C > 0 for all µ̃ ∈ D(F ) ∩ Br(µ̃), where Br(µ̃) is a ball
of sufficiently small radius r (in C3 norm) with the center µ̃.

Proof of Theorems. For simplicity, assume that ρs = L = a = 1. For the
sake of convenience exclude the function

_
v from the equation of motion for

_
u. These functions satisfy the relations (17)–(20):

_
utt =

_
uxx − bρ2

l
_
ut + b2ρ3

l
_
u − b3ρ4

l

∫ t

0
e−bρl(t−τ)_u(x, τ) dτ + φx,

_
ux(1, t) + φ = 0, m(t) :=

_
u(1, t),

_
v(x, t) = bρl

∫ t

0
e−bρl(t−τ)_u(x, τ) dτ. (32)

We represent
_
u = p e−bρ

2
l t/2. For the function p we obtain the following

problem

ptt = pxx +Ap− b3ρ4
l

∫ t

0
e−B(t−τ)p(x, τ)dτ + φ̃x,

px(1, t) + φ̃ = 0, p(1, t) = m̃(t),

(33)

where

A = b2ρ3
l

(
1 +

ρl
4

)
, B = bρl

(
1− ρl

2

)
, φ̃ = φebρ

2
l t/2, m̃ = mebρ

2
l t/2.
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Solution of problem (33) has the form [3]

p(x, t) =
1

2

[
m̃(1 + t− x) + m̃(1 + t− x−min{1 + t− x, 2(1− x)})

]
+

1

2

∫ 1+t−x

1+t−x−min{1+t−x,2(1−x)}
φ̃(1, η) dη −∫ min{ 1

2
(1+t−x),1−x}

0

∫ η

0
φ̃x(1− τ, τ + 1 + t− x− 2η) dτ dη −∫ 1−x

min{ 1
2

(1+t−x),1−x}

∫ η

2η−(1+t−x)
φ̃x(1− τ, τ + 1 + t− x− 2η) dτ dη −

∫ min{ 1
2

(1+t−x),1−x}

0

∫ η

0
P (1− τ, τ + 1 + t− x− 2η) dτ dη −∫ 1−x

min{ 1
2

(1+t−x),1−x}

∫ η

2η−(1+t−x)
P (1− τ, τ + 1 + t− x− 2η) dτ dη,

(34)

where

P = Ap− b3ρ4
l

∫ t

0
e−B(t−τ)p(x, τ) dτ.

From the initial and boundary conditions at the left boundary for
_
u we

obtain
p(x, 0) = P (x, 0) = 0, p(0, t) = P (0, t) = 0.

From (32), (33) it follows that m̃(0) = m(0) = 0.
Repeating the arguments from [4] relative to φ̃, we obtain Volterra’s

integral equation of the first kind

−m̃(t) =

∫ t

0
φ̃(|σ − t+ 1|, σ) dσ − 2

∫ t/2

0

∫ η

0
P (1− τ, τ + t− 2η) dτ dη −

2

∫ t

t/2

∫ η

2η−t
P (1− τ, τ + t− 2η) dτ dη (35)

In the first integral we make a change in the variables

λ := ux(|η − t+ 1|, η), τ := f−1(µ̃(λ)).

Then we have∫ t

0
φ̃(|σ − t+ 1|, σ) dσ =

∫ ux(1,t)

ux(|t−1|,0)
k(λ, t)δµ(λ) dλ =

∫ µ̃−1(f(t))

0
k(λ, t)δµ(λ) dλ

=

∫ t

0
k(µ̃−1(f(τ)), t)

f ′(τ)

µ̃′(µ̃−1(f(τ)))
δµ(µ̃−1(f(τ))) dτ ∀ t ∈ [0, t̄],
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where

k(λ, t) =
ebρ

2
l η/2

sgn(η − t+ 1)uxx(|η − t+ 1|, η) + uxt(|η − t+ 1|, η)
,

η = η(λ, t− 1) according to the theorem of the implicit function.
Supplying this ratio in (35) relative to δµ ◦ µ̃−1 ◦ f we obtain Volterra’s

integral equations of the first kind

−m(t)ebρ
2
l t/2 =

∫ t

0
k(µ̃−1(f(τ)), t)

f ′(τ)

µ̃′(µ̃−1(f(τ)))
δµ(µ̃−1(f(τ))) dτ −

2

∫ t/2

0

∫ η

0
P (1− τ, τ + t− 2η) dτ dη −

2

∫ t

t/2

∫ η

2η−t
P (1− τ, τ + t− 2η) dτ dη ∀ t ∈ [0, t̄]. (36)

Note that the kernel k(µ̃−1(f(τ)), t)
f ′(τ)

µ̃′(µ̃−1(f(τ)))
is limited, differentiable

with respect to t separated from zero diagonal τ = t. According to the
theory of Volterra’s integral operators [4, 7], from (36) we obtain

‖δµ‖L2(0,λ̄) ≤
‖f‖C1

µ0
‖δµ ◦ µ̃−1 ◦ f‖L2(0,t̄) + Cρ3

l ‖
_
u‖H1((0,t̄)×(0,t̄))

≤ C
{
‖m̃′‖

L2(0,t̄)
+ ρ3

l ‖
_
u‖H1((0,t̄)×(0,t̄))

}
.

Hence, taking into account the definitions of m̃, we obtain estimate (26).
Theorem 1 is proved.

The proof of Theorem 2 is carried out in the same manner as in [4], using
Theorem 1.
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