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Poroelasticity theory of chemically active
clay shales∗

Bunyod Imomnazarov, Kholmatzhon Imomnazarov

Abstract. The deformation tensor ε in a porous medium is a function of the
stress tensor σ and the pore pressure p. Additional osmotic effects are present
in some rocks, such as shales. It is shown that such effects, in turn, modify the
thermodynamics of the system, namely, in terms of the internal energy of the
additional term due to the chemical potential µr of all the chemical components in
the pore fluid. Because of this, an additional term due to the chemical potentials
appears in the strain-stress relations.
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Clays are one of the most common types of rocks that make up to 11 %
of the entire volume of the Earth’s crust. They are often associated with
constructing the foundations of buildings and various engineering structures.
They are everywhere used as raw materials for the production of ceramics,
bricks, cement, as well as fillers in manufacturing rubber, paper, drilling
fluids, etc. Clays have a high adsorption capacity, and are successfully used
for cleaning oils, paints, wines, bleaching of fabrics, and, also, as natural
ecological barriers for the technogenic pollutions control [1].

1. Thermodynamics of a two-phase medium with surfacant

Let us consider a two-phase medium with thermodynamic equilibrium in
the volume V , which is a fluid with droplets in it, and these droplets may
be, for example, oil. Let us denote the water mass within the indicated
volume as M1, the oil mass as M2, and the surfactant mass as Mc. The first
principle of thermodynamics mentioned below introduces a version of the
hydrodynamic system analyzed here [2]:

dẼ0 = T dS̃ − p dV + µ1 dM1 + µ2 dM2 + µc dMc + σ̃ dΣ̃. (1)

Here Ẽ0, S̃ are the internal energy and the entropy of the system within the
volume V ; T is the temperature; p is the pressure; σ̃ is the surface tension
at the interface between water and oil; Σ̃ = ζJ is the total surface area of
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the interface between water and oil droplets; J is the number of droplets in
the volume; µ1, µ2, µc are the chemical potentials of components 1, 2, and
surfactant. The pressure drop in “fluidic subsystems” may be neglected in
further considerations. Equation (1) introduces the chemical potentials [3].
For the hydrodynamic description, we need to introduce the physical densi-
ties:

(Ẽ0, S̃,M1,M2,Mc, Σ̃) = (E0, S, ρ1, ρ2, ρc, ζ J)V. (2)

Substituting the relationships from (2) into (1), we arrive at the first prin-
ciple of thermodynamics for a unit volume of the medium:

dE0 = T dS − p dV + µ1 dρ1 + µ2 dρ2 + µc dρc + ζσ̃ dJ. (3)

The pressure can be found via the thermodynamic formula [4]

p = −E0 + TS + µ1ρ1 + µ2ρ2 + µcρc + ζσ̃J.

Let us introduce the density of a medium containing water, oil, and surfac-
tant:

ρ = ρ1 + ρ2 + ρc.

In terms of the new variables, formula (3) takes the following form:

dE0 = T dS + µ1 dρ+ (µ2 − µ1) dρ2 + (µc − µ1) dρc + ζσ̃ dJ.

Because the relationship ρ2 = M/V = mN/V = mJ holds, we arrive at
the local form of the first principle of thermodynamics of the four-parameter
thermodynamic system [5]

dE0 = T dS + µ1 dρ+ ζσ̄ dJ + (µc − µ1)ρc

= T dS + µ1 dρ+
ζσ̄

m
dρ2 + (µc − µ1)ρc (4)

σ̄ = σ̃ +
m

ζ
(µ2 − µ1),

p = −E0 + TS + µ1ρ+ (µc − µ1)ρc + ζσ̄J,

dp = S dT + ρ dµ1 + ρc d(µc − µ1) + ζJ dσ̄.

Here m is the mass of a droplet, µ2 6= µ1.

Formula (4) describes a local thermodynamic equilibrium. For a relative
mutual motion of two components, we need to generalize the theory [6]
for the case without local equilibrium. The velocity difference w = u − v
of the water–oil continuum may be considered to be a relaxing degree of
freedom [7]:
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dE0 = T dS + µ1 dρ+ ζσ̄ dJ + (µc − µ1) dρc + (u− v) dj0

= T dS + µ1 dρ+
ζσ̄

m
dρ2 + (µc − µ1) dρc + (u− v) dj0,

p = −E0 + TS + µ1ρ+ (µc − µ1)ρc + ζσ̄J + (u− v)j0,

dp = S dT + ρ dµ1 + ρc d(µc − µ1) + ζJ dσ̄ + j0 d(u− v).

Here, j0 is the density of a relative momentum of the two components;
u is the velocity of the droplet continuum; v is the velocity of the water
continuum. The kinetic term for the two-velocity medium was introduced
as recommended by Landau [4].

2. Deformation-stress relations with allowance for chemical
potentials

Let f be the Helmholtz free energy of the porous system (that is, the skeleton
of the pore fluid) of the temperature T and of the entropy per unit volume
S of the porous body. We have

df = σij dεij +
R∑

r=1

µrdmr − S dT.

Here the solvent (usually water) and (R−1) of other species are in the pore
fluid. The mass mr of each species per unit volume of a porous material is
measured in moles.

The chemical potentials of the components in the solution can be written
down in the form [8]

µr = µr0 +RT lnxrγr = µr0 +RT ln ar.

Here µr0 is the chemical potential of the form r in the equilibrium state, xr

is the partial molar fraction of the species r, Γr is the activity coefficient,
ar = xrγr is the activity of the rth kind, and R is the gas constant. In an
ideal solution, γr = 1. The chemical potential µr0 is the function of pressure
and satisfies the relation

∂µr0
∂p

= vr =
1

ρr
,

where vr is the volume of one mole of the substance.
Further, we neglect the effect of temperature. Usually, in laboratory

conditions, this is done. We define the Helmholtz free energy f0 associated
with a solid particle in the form

df0 = d(f − µrmr) = σij dεij −
R∑

r=1

mrdµr.
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This is because df0 is a complete differential. Taking εij and µr as indepen-
dent state variables, we obtain

∂σij
∂µr

= −∂m
r

∂εij
, (5)

∂mr

∂µs
=
∂ms

∂µr
. (6)

Thus, in these variables the strain-stress relationship has the form

dσij = Cijkl dεkl −
∑
r

Dr
ij dµ

r, (7)

dmr = Dr
ij dεij +

∑
s

Arsdµs, (8)

where we used (5) to determine the cross-ratio Dr
ij in (7) and (8), and

where by virtue of (6) Ars = Asr. In addition, we can consider the Gibbs
free energy

d

(
f −

∑
r

µrmr − σijεij
)

= εij dσij −
∑
r

mrdµr.

Again, by virtue of the total differential, and taking σij and µr as variables
of state, we obtain

∂εij
∂µr

=
∂mr

∂σij
, (9)

and, as before, relation (6) holds. Consequently,

dεij = Sijkl dσkl +
∑
r

Qr
ij dµ

r, (10)

dmr = Qr
ij dσij +

∑
s

Brsdµs, (11)

where we used (9) to determine the cross-ratio Qr
ij in (10) and (11), and

where by virtue of (7) Brs = Bsr.
Next, we use the stress σij and the chemical potentials µr as indepen-

dent variables of state, and we use relations (10) and (11). The coefficients
Sijkl, Q

r
ij , and Bsr appearing in these relations are determined from the ex-

periments. The experiments on compaction of clay in contact with a large
reservoir were performed in [9, 10]. In each experiment, the composition of
the formation fluid was maintained to be constant, and the applied voltage
varied: the results give information on the coefficients Sijkl. The chemical
composition of the fluid of the oil pool varied within the same experiment,
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either by changing the solution CaCl2 by the solution NaCl, or by chang-
ing the salt concentration. Observation of the degree of swelling of clays
as a function of the salt concentration can also be performed at a micro-
scopic level, using X-ray diffraction to measure the distance between the
clay particles (see, for example, [11, 12]). Thus, such information allows us
to determine the cross coefficients Qr

ij .

3. The one-component pore fluid

In a single-component pore fluid, ar = xr = γr = 1, and, therefore, accord-
ing to formula (1), µ1 = dp/dρ1. The response of the shale will depend only
on the pore pressure p of the liquid in the reservoir and the applied voltage
σkl. If the system is isotropic, relations (10) and (11) are simplified and take
the form

dεij = S1 dσij + S2δij dσkk + δij
∑
r

Qrdµr, (12)

dmr = Qrdσkk +
∑
s

Brsdµs, (13)

and it is evident that for the modeling four material coefficients are required.
In an isotropic porous medium, relations (12) and (13) can be written in the
form [13]

2µεij = σij −
ν

ν + 1
σkkδij +

3(νu − ν)

B(ν + 1)(νu + 1)
σkkp δij ,

m−m0 =
3ρ0(νu − ν)

2µB(ν + 1)(νu + 1)

(
σkk +

3

B
p
)
.

Here we have chosen the four material coefficients: the shear modulus µ, the
saturated and unsaturated Poisson coefficients ν and νu, and the Skempton
parameter B, which connects the unsaturated response of the pore pressure
and the applied stress.

4. Equations of motion

If deviations from the thermodynamic equilibrium are inessential, then the
mass flow of the qr of rth kind can be represented in the form

qri = −
∑
s

Lrs
ij∇jµ

s,

where according to the Onsager principle Lrs
ij = Lsr

ij . Since in this study we
consider single-component pore fluids, the saturable porous media are taken
to be isotropic, and for such media in the hydraulic case the Darcy law holds
[5, 14]:

q1 = − 1

χρρ1
∇p,
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where ρ1 is the partial density of the pore liquid (water), ρ is the total
density of the continuum, χ is the interfacial friction coefficient. The law of
conservation of mass for each species is valid

∂mr

∂t
+ div qr = 0,

and, hence,

∂

∂t

(
Qr

ijdσij +
∑
s

Brsdµs
)

=
∂

∂xi

(∑
s

Lrs
ij∇jµ

s

)
.

The electroneutrality requires that there should be no build-up in a charge
at any point. If zr is the valency of the rth type, then

∂

∂xi

(∑
r

qri z
r

)
= 0.

The streaming potentials will be created for preserving electrical neutrality.
It is convenient to explicitly introduce the streaming potential Ψ, and to
write the chemical potentials of the rth kind in the following way µr =
µ̂r + zrFΨ, where µ̂r is the chemical potential (the rth kind) corresponding
to the local concentration of ions, water, and clay. The ionic flows take the
form

qri = −
∑
s

Lrs
ij

∂

∂xj
(µ̂s + zsFΨ),

and the streaming potential Ψ is the solution to the Poisson equation of the
following form

∑
r

zr
∂

∂xi

(∑
s

Lrs
ij

∂

∂xj
(µ̂s + zsFΨ)

)
= 0

with zero Dirichlet boundary condition for the contact with a high conduc-
tivity of a fluid or a porous rock.

If flows are specified, then the conditions of non-flow and non-conducting
boundaries are satisfied. If an ion is adsorbed on the walls of the pores, it
will travel only slowly through the rocks, and the corresponding transfer
coefficients Lrs

ij will be small. If the chemical effects are negligible (for ex-
ample, if the porosity within the shale, due to the outflow is essential), then
the convective currents will dominate with additional diffusion of ions with
respect to the fluid volume.
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