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Conservation laws for the two-velocity
hydrodynamics equations with one pressure*

Kh.Kh. Imomnazarov, P.V. Korobov, N.M. Zhabborov

Abstract. A series of the differential identities connecting velocities, pressure
and body force in the two-velocity hydrodynamics equations with equilibrium of
pressure phases are found. Some of these identities have a divergent form and can
be considered to be certain conservation laws. It is detected that the flow functions
for the plane motion satisfy the Monge—Ampere system of equations.
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1. Introduction

In the vector analysis, in the theory of field and in the mathematical physics,
an important role is played by differential identities of a classical kind. In
paper [1], the generalization of some identities of the theory of inverse prob-
lems for the kinetic equations is obtained. In paper [2], a set of formulas
of the vector analysis in the form of differential identities of second and
third orders connecting the Laplacian of an arbitrary smooth scalar func-
tion u(x,y) of two independent variables, the module of its gradient, the
angular value and the direction of its gradient have been obtained. Rep-
resentation of the Gaussian curvature of a surface in the three-dimensional
Euclidean space with a graph z = wu(x,y) is found. Some of its general-
izations and similar formulas for a surface in a pseudo-Euclidean space are
given. The results of paper [2] are generalized in [3] in the two directions:
a three-dimensional case and any (not necessarily potential) smooth vector
field v. A set of formulas of the vector analysis in the form of differential
identities which, on the one hand, connect the module |v| and the direction 7
of any smooth vector field v = |v|7 in the three-dimensional (v = v(z, y, 2))
and in the two-dimensional (v = v(x,y)) cases, are obtained. On the other
hand, the formulas are found separately in the sense of the module |v| and
the direction 7 of the vector field v = |v|r. Namely, the basic identity to
any smooth vector field v explicitly compares a vector field Q = P + S,
where P is defined only by the module |v| of the field v and is potential
both in a two-dimensional, and in a three-dimensional cases, and the field
S is defined only by the direction 7 of the field v and is solenoidal in a
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two-dimensional case. Applications of the identities obtained to the Euler
hydrodynamic equation are presented.

In this paper, applications of the obtained identities [3] to the two-
velocity hydrodynamics equations with one pressure are given.

2. A.G. Megrabov’s differential identities connecting
the modulus and the direction of a vector field

In paper [3], the following theorem was obtained:

Theorem 1. For any vector field v = v(x,y,z) = |v|T with components
vi(z,y,2) € CHD), k = 1,2,3, the module |v| # 0 in D and the direction
T, the following identity is valid

Q= Q(v) = P(|v|) + S(r), (1)

where ' )
Qo) & PIUELIINE  p) e = TEE )
S =5(r) dédeiVT—‘rTXI‘OtTZQ(’U)—P(”UD. (3)

For the vector field S, any of the following representations holds:

S=S(r)=7vdivr—1s = —{(xV)x7+(7-V) 7} = _(vx|vv|ng (4)

(ts=(7-V)T =rot T X T is a derivative of the vector T in the direction T),

S = rot(ak)—cos? frot(ak—tan§ X) = rot(ak+cosf1p)—2cosfrot 1, (5)
where A = —sinat +cosaj, ¥ = —sinf A+ acosbk,

S=—-Vax (cosdT—k)+ V0 x A, S =rdivr — kv. (6)

Here Kk is the curvature of the vector line of the field v and v is its unit
normal. The following formula is valid: k*> = sin?0 a2 + 62, where o, =
(Va - 1) and 0s = (VO - 1) are derivatives of the angles o and 6 in the
direction T, respectively.

The basic identity (1) can also be presented in any of the forms:

Q+H;,=Vn|v|+rotF;, i=1,2,

where H; = cos?@rot(ak — tanf ), Hy = 2cosfrotyp, Fy = ak, Fy =
ak + cos 0, thus the vectors H;, F;, as well as S, are defined only by the
angles «, 0, i.e. the direction T of the field v.
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If the presence of the property |v| # 0 in D is not assumed, then (1)
takes the form
W =wvdive 4+ v x rotv = Vv =V,

where

1
VY s = QVMQ —vdivv — v X rot v

= —|vH{rdivr+7 xrot T} =v x V x v.

Other formulas for W and v are obtained by substituting any expression for
S from (4)—(6) in the latter equality.

Theorem 2. Under condition of Theorem 1 and provided vg(x,y,z) €
C?*(D), k =1,2,3, the following formulas are valid:

2sinf (v - B)

divS = —2sinf (7 - B) = — 0]

9

where B = Va x VO = rot(aVl) = —rot(0Va). In addition, the following
identity takes place

div(Q-P+ H;) =0 <—
. [vdivy +v X rotv
div
|[v[?

—VIn|v|+Hl} =0, 1=1,2,

which can be considered to be a conservation law (its differential form) with
the integrated form for a flux /S([Q — P+ H;]-n)dS = 0, where S is a

piecewise smooth boundary of the domain D with normal n.

In Theorems 1 and 2, the following notations are used: symbols (a-b) and
(a x b) denote the scalar and the vector products of a and b, respectively;
V is the Hamiltonian operator (a nabla); A is the Laplace operator; D is
a domain in the space x,y, z; ¢, 3, k are unit vectors on the axes x, y, 2;
v =wv(x,y,2) = vit+vyJ +vsk is a vector field defined in D, vy, = vi(z, vy, 2)
are scalar functions, k = 1,2,3, |[v|*> = v} + v + v3; @ = a(z,y,2) is the
angle of the slope of the vector vi2 + voj to the axis Oz, so that cosa =
v1/y/v] +v3, sina = va/y/v] +v3, ie. a(z,y,z) is the polar angle of a
point (§ = v1, ¢ = v2) on the plane £, or the argument Arg w of a complex
number w = £ 4+ i< (i is an imaginary unit):

a ¥ arctan 2—2 + (2k+9)m, keZ, (7)
1

0 =0 and § =1 in quadrants I, IV and II, III of the plane &, ¢, respectively;

6 = 0O(x,y,z) is the angle between the vector v and the axis Oz: 6 &
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U3

. V2 + vl .
arccos %, so that 0 < 0 <, cosf = Tl sinf = % This means that

a, 0 are spherical coordinates on the space £ = vy, ¢ = v9, ( = v3. Thus,
v = |v| T, where 7 = 7(a,0) = cosasinfi + sinasinfj + cosf k is the
direction of the vector field v (|7| = 1).

In a two-dimensional case, v = v(z,y) = v1i +v27 = v|7|, v3 = 0,
0 =7/2 = 1 =1(a) = cosai + sinayg, the angle o being defined by
formula (7), VO = B = 0; V¢(z,y) € CY(D), we have rot(p k) = @y,i— ¢.7,

(0% Oy
where ¢, = 90 P = 9y

From Theorem 1 follows

Theorem 3. For any plane vector field v(x,y) with the components
vi(z,y) € CYD), k = 1,2, the modulus |v| # 0 in D and the direction
T = 7(«a), we have the identity

def vdivv + v X rotv

Q=
|v[?
diveo = ({Vn|v|+rot(ak)}-v), rotv={Vin|v|+rot(ak)} xv. (8)

=Vn|v|+rot(ak) =

Thus, S =rot(ak) = (S -Va) =0, i.e., the vector lines of the vector field
S coincide with the lines of the level of the scalar field of the angles a(x,y).
If vp(x,y) € C*(D), k = 1,2, the following identities are valid:

divS =0, rotS=—-(Aa)k —
Alnjv| =divQ, (Aa)k=-rotQ =
ALn{|v]eT™} = divQ T i(rot Q - k).

In the conservation law of Theorem 2 we have H; = 0.

As is known [4], any smooth vector field can be presented in the form of
the sum of a gradient of some scalar and a rotor of a certain vector. Identity
(8) gives such a representation for the vector field Q. At v = Vu(z,y),
Theorem 3 gives the identity from paper [2].

3. Two-velocity hydrodynamics equations with one pressure

In papers [5, 6], based on conservation laws, the invariance of the equa-
tions concerning the Galilee transformation and conditions of thermody-
namic conditioning, a nonlinear two-velocity model of motion of a liquid
through deformable porous media is constructed. The two-velocity hydro-
dynamic theory with a condition of balance of pressure phases, has been
constructed in paper [7]. The equation of motion of the two-velocity media
with one pressure in the system in an isothermal case looks like [7]:
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i + div(po + pv) =0, 9p

9t 9 + div (pv) =0, 9)
(lv—i-('v V)v——@—I—EV(ﬁ—vf—kf (10)
ot ’ P2 ’

0v - __ Vp  po o

e + (0, V)v = 5 2ﬁV(v v)*+ f, (11)

where v and v are the vectors of velocities of the subsystems making up
a two-velocity continuum with the corresponding partial densities p and p,
p = p+ p is the general density of the continuum; p = p(p, (0 — v)?) is the
equation of state of the continuum; f is the vector of the mass force carried
to the mass unit.

In terms of the vectors W, V', S. Q, P, H;, F;,, W. V.S, Q, P, H;, F,,
determined in Theorem 1, the system of equations (10), (11) can be written
down in any of the following forms (symbols without tilde and with a tilde
concern the corresponding subsystems of the continuum):

. .
W:a—v+vdivv+va2+vfp—ﬁ,v(’ﬁ—’v)Q_ﬁ
ot 2 P 2p (12)
_V:Z+vdivv+vf—2i)v(ﬁ—”)2—f=
W 1190 | pdive+ Y2 Py v fl=
G v2{8t+vdlvv+ 5 Qﬁv(v v) fp=8
G+ H,=rotF), i=12; (13)
5 5 1
W:a—v—i—f)divff—i—fV@Q—F2})+£,V(17—U)2_f7
ot 2 P 2p (14)
_V:Z—i—ﬁdivﬁ—F?—i—;}V@_U)Q_f’
~def 1 [O0D . . . S
Gifw{£+vdlvv+v;9+ggv(vv)2f}:S A
(;’4-];[2':1"0'6151', =12 (15)

In the case of a homogeneous incompressible medium, i.e., provided that
p = const, p = const = dive =0,divo =0« v =rot A, v = rot A, where
A and A are the vector potentials of the velocities v and @, respectively,
the two-velocity hydrodynamics equations are represented in the form

1 -

W:V{2v2+p+U—2’;('{)—'0)2}+rot{At+M},
_ p P 2

—V—V{p—l—U—Qp(v—v) }—i—rot{At—i-M},

- 1 -
w :V{2@2+§+U+ ;%(ﬁ—v)z} +rot{A; + M},
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V= V{g +U+ L@ v)g} +rot{A; + M},

2p

where —f = VU +rot M; A, and A, are the time derivatives of the vectors
A and A, respectively. Hence, when the velocities and physical density of
phases coincide, we obtain W = W, V = V and, as consequence, the for-
mulas for the vector fields W, V' from paper [2]. Thus, the solution (v, 9, p)
of the system of the two-velocity hydrodynamics equations for homogeneous
incompressible media gives a representation of the vector fields W, V, W,
V, defined in Theorem 1 (where v = rot A, @ = rot A) in the form of the
sum V@ + rot W.
From (13), (15) and Theorem 2 follows

Theorem 4. For any motion of an ideal two-velocity system with one pres-
sure (v # 0, © #0), the following identities are valid:

smﬁ(v (VaxVe)), divG=— sm@

v v

divG = -2

(¥ - (Va x V0)).

In addition to the general conservation law of Theorem 2, which holds
for any smooth vector fields v(z,y, z,t), v(x,y, z,t), the conservation laws
of differential forms are also valid:

div(G + H;) =0, div(G + H;) =0

as well as the integrated forms for the fluxes:
/([G+Hi].n)dszo, /([é+ﬁi]-n)dszo, i=1,2.
S S

Here the wvectors H; (I~L) are defined in Theorem 1 and expressed only
through the angles a (&), 0 (0) of the directions of the velocities v(x,y, z,t)
(0(z,y,2,t)), S is a piecewise smooth boundary of the domain D, 1 is the
normal to S.

For the irrotational motion (at v = Vu, © = V), we have

1

~ 1

G = Q{Vﬂt + AuVu + Vf,p + iV(Vﬂ— Vu)2 — f}
0 p o 2p

and the following identities hold:

2sinf O(u, , )
v O(z,y,2)’

2
divG = — div{urot(a Vcos )} = —
v
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~ 2sinf (i, &, 6)

divG = v O(x,y,2)

[SIEN )

div{a rot(a Vcosf)} =

~—

If one of the following conditions is fulfilled: v = u(z,y) (
0=n/20=7/2);u=uleb) (i =1uwh) v=uo(b
uy = (U, uy) (U = G(ily, iy)), then divG = 0 (div G = 0).

In the plane case v = v(z,y,t) =vT1, © =0(z,y,t) =0T, T = cosa i +
sinaj, T = cosat +sinajg, a = a(z,y,t), & = a(z,y,t) is the angle of
slope of the line of current (a vector line of the field v (0) at ¢ = const). For
an incompressible medium we have divo = 0, divo =0, v = uyt — u,J =
rot (uk), ¥ = 1,4 — U,j = rot (i k), v2 = u2 + “?2;’ 0 = a2 + &Z, where
u=u(z,y,t) and u = u(z,y,t) is a stream function.

From (13), (15) and Theorem 3 follows

Theorem 5. A system of equations of the two-velocity hydrodynamics with
one pressure (10), (11) for a plane motion (v = v(z,y,t), © = v(x,y,t),
v#0, 0 #0) is representable in the form of the identity

G =rot(ak), G=rot(ak) = divG=0, divG =0,
rot G = —(Aa)k, rotG = —(Ad)k =
Alhv=divQ, Alnd=divQ,
(Aa)k = —rotQ, (Ada)k = —rotQ,

where the fields G, Q, G, Q are defined in (8), (13), (15).

Remark. From Theorem 3 follows that for the irrotational motion (v =
Vu(z,y,t), © = Vi(z,y,t)) with the potentials u, % € C3(D) and, in the
case of plane, for the motion of an incompressible two-velocity continuum
(v = rot (u(z,y,t)k) = uyt — uzj, © = rot (u(x,y,t)k) = @yt — Uyj) with
the stream functions u, % € C3(D) for the values o, oy, v = |v|, Q, S,

V = 28, divV, 10t V (ag, Gy, 0 = |9], Q, S, V = —28, divV, rot V)
we obtain the same expressions through the derivative functions “u (a)”,

thus v = \/m b= Juz 42, Q=""Y" 8 =rot(ak), Q = 2"

v 0?2

S =rot(ak),

1
V= §V(ui + u?/) — AuVu = —(u? + u?/) rot(ak)
= (UyUzgy — UzlUyy)T + (Uglay — UylUsze)J = (Vu x V)V, (17)

divV = 2(u920y — Uggllyy), 10tV = —{uy(Au)y — uz(Au)y 1k, (18)
1
2
= (Uylpy — Uplyy)t + (Uglpy — Uylay)J = (VU x V)V, (19)

% ~2 | ~2 ~ ~2 | ~2 ~
V = _V(ig + uy,) — AuVa = —(uy + 1) rot(ak)
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div V' = 2(i2, — lizgllyy), 1otV = —{iy(Al),; — iz (Ad)ytk,  (20)
and the following identities hold (v # 0, © # 0):

A ~  AuViu
uVu Vinv +rot(ak), Q= % =VInov +rot(ak) <

Q=—3

A A
U—; rot(uk) = —Va + rot(lnvk), 6—; rot(uk) = —Va +rot(Invk) =
Alnv=divQ, Alno=divQ,
(Aa)k = —10tQ, (Ad)k = —rotQ.

From (12), (14) and (18), (20) follows

Theorem 6. The system of the Monge—Ampere equations:

2 ~
Upy — Uggplyy = F, U

2 — Qg lyy = F), (21)

Y

(in the general case F' and F are smooth functions of the variables z,y, u, @,
Uz, Uz, Uy, Uy, Upe, Uze, Uzys Uay, Uyy, Uyy and the parameter t) and the sys-
tem of equations for the stream function of a plane motion of incompressible
media

—{uy(Au)y — ug(Au)y} = (Au); + (rot fi - k),

—{uy(At)y — e (A)y} = (Ad); + (rot f5 - k),
are related to each other as follows: their left-hand sides are expressed, re-
spectively, through divergence and a rotor of the same vector fields V,~V of
the form of (17), (19) by formulas (18), (20), where fi = f — % + Z%Vw,
fo=f— % — Q%Vw, w = (liy — ug)? + (Ty — uy)?.

Let the functions v(z,y,t) = uyt — ugyJ, v(x,y,t) = Gyt — U3, p(z,y,t)
in the domain ¥ = {(x,y) € D,t € (t1,t2)} satisfy a system of equations
of the two-velocity hydrodynamics with one pressure (10), (11) for a plane
motion of incompressible media. In this case, in the domain X the stream
functions u(x,y,t), u(x,y,t) satisfy both equations (21) and (22) at
divff’ B divfz*'

2 2

Otherwise, let the functions u(x,y,t), u(z,y,t), p(z,y,t) satisfy in the
domain ¥ equations (21) and (22) with the right-hand side (23), and on
the boundary S of the domain D at t € (t1,t2), the equality (V - m) =
([ff —rot(usk)]-m), (V-n) = ([fi —rot(i:k)]-n) holds, where n is normal to
S. In particular, the latter equalities are valid if on the boundary S equalities
(10), (11) are wvalid. In this case, the functions v(x,y,t) = uyt — ugJ,
v(z,y,t) = Uyt — UzJ, p(x,y,t) in the domain ¥ satisfy the system of the
two-velocity hydrodynamics equations with one pressure (10), (11) for the
plane motion of incompressible media.

(22)

F= (23)
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In particular, for homogeneous media (p = const, p = const) and a

potential field f = —VU, equations (21) and (22) take the form

(rot V - k) = —{uy(Au)y — ug(Au)y} = (Au)y,

N (24)
(rot V - k) = —{ty(A0)y — Uy (AQ)y} = (A,
divV divv .,
5 = uiy — Uggllyy = F, 5 = uiy — Uggllyy = F, (25)

F
F= —;A(U+p—2’;w>, F= —1A<U+p+2’;w).

Hence, the stream functions u(zx,y,t), u(z,y,t), found, for example, as the
solution to the known system of equations (24) at any fixed ¢ give simul-
taneously the solution to a system of the Monge-Ampere equations (25),
whose right-hand sides can be found from the system of the two-velocity
hydrodynamics equations with one pressure (10), (11) at v = uyt — uzJ,
UV = Uyt — UgJ.
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