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Conservation laws for the two-velocity
hydrodynamics equations with one pressure∗

Kh.Kh. Imomnazarov, P.V. Korobov, N.M. Zhabborov

Abstract. A series of the differential identities connecting velocities, pressure
and body force in the two-velocity hydrodynamics equations with equilibrium of
pressure phases are found. Some of these identities have a divergent form and can
be considered to be certain conservation laws. It is detected that the flow functions
for the plane motion satisfy the Monge–Ampere system of equations.
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1. Introduction

In the vector analysis, in the theory of field and in the mathematical physics,
an important role is played by differential identities of a classical kind. In
paper [1], the generalization of some identities of the theory of inverse prob-
lems for the kinetic equations is obtained. In paper [2], a set of formulas
of the vector analysis in the form of differential identities of second and
third orders connecting the Laplacian of an arbitrary smooth scalar func-
tion u(x, y) of two independent variables, the module of its gradient, the
angular value and the direction of its gradient have been obtained. Rep-
resentation of the Gaussian curvature of a surface in the three-dimensional
Euclidean space with a graph z = u(x, y) is found. Some of its general-
izations and similar formulas for a surface in a pseudo-Euclidean space are
given. The results of paper [2] are generalized in [3] in the two directions:
a three-dimensional case and any (not necessarily potential) smooth vector
field v. A set of formulas of the vector analysis in the form of differential
identities which, on the one hand, connect the module |v| and the direction τ
of any smooth vector field v = |v|τ in the three-dimensional (v = v(x, y, z))
and in the two-dimensional (v = v(x, y)) cases, are obtained. On the other
hand, the formulas are found separately in the sense of the module |v| and
the direction τ of the vector field v = |v|τ . Namely, the basic identity to
any smooth vector field v explicitly compares a vector field Q = P + S,
where P is defined only by the module |v| of the field v and is potential
both in a two-dimensional, and in a three-dimensional cases, and the field
S is defined only by the direction τ of the field v and is solenoidal in a
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two-dimensional case. Applications of the identities obtained to the Euler
hydrodynamic equation are presented.

In this paper, applications of the obtained identities [3] to the two-
velocity hydrodynamics equations with one pressure are given.

2. A.G. Megrabov’s differential identities connecting
the modulus and the direction of a vector field

In paper [3], the following theorem was obtained:

Theorem 1. For any vector field v = v(x, y, z) = |v|τ with components
vk(x, y, z) ∈ C1(D), k = 1, 2, 3, the module |v| 6= 0 in D and the direction
τ , the following identity is valid

Q = Q(v) = P (|v|) + S(τ ), (1)

where

Q(v) def=
v div v + v × rotv

|v|2
, P (|v|) def= ∇ ln |v| = ∇|v|2

|v|2
, (2)

S = S(τ ) def= τ div τ + τ × rot τ = Q(v)− P (|v|). (3)

For the vector field S, any of the following representations holds:

S = S(τ ) = τ div τ−τs = −{(τ×∇)×τ+(τ ·∇) τ} = −(v ×∇)× v
|v|2

(4)

(τs =(τ · ∇)τ = rot τ × τ is a derivative of the vector τ in the direction τ ),

S = rot(αk)−cos2 θ rot(αk−tan θλ) = rot(αk+cos θψ)−2 cos θ rotψ, (5)

where λ = − sinα i+ cos α j, ψ = − sin θλ+ α cos θ k,

S = −∇α× (cos θ τ − k) +∇θ × λ, S = τ div τ − κν. (6)

Here κ is the curvature of the vector line of the field v and ν is its unit
normal. The following formula is valid: κ2 = sin2 θ α2

s + θ2
s , where αs =

(∇α · τ ) and θs = (∇θ · τ ) are derivatives of the angles α and θ in the
direction τ , respectively.

The basic identity (1) can also be presented in any of the forms:

Q+Hi = ∇ ln |v|+ rotFi, i = 1, 2,

where H1 = cos2 θ rot(αk − tan θλ), H2 = 2 cos θ rotψ, F1 = αk, F2 =
αk + cos θψ, thus the vectors Hi, Fi, as well as S, are defined only by the
angles α, θ, i.e. the direction τ of the field v.
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If the presence of the property |v| 6= 0 in D is not assumed, then (1)
takes the form

W = v div v + v × rotv = ∇|v|2 − V ,

where
V

def= −|v|2S =
1
2
∇|v|2 − v div v − v × rotv

= −|v|2{τ div τ + τ × rot τ} = v ×∇× v.

Other formulas for W and v are obtained by substituting any expression for
S from (4)–(6) in the latter equality.

Theorem 2. Under condition of Theorem 1 and provided vk(x, y, z) ∈
C2(D), k = 1, 2, 3, the following formulas are valid :

divS = −2 sin θ (τ ·B) = −2 sin θ (v ·B)
|v|

,

where B = ∇α ×∇θ = rot(α∇θ) = − rot(θ∇α). In addition, the following
identity takes place

div(Q− P +Hi) = 0 ⇐⇒

div
{
v div v + v × rotv

|v|2
−∇ ln |v|+Hi

}
= 0, i = 1, 2,

which can be considered to be a conservation law (its differential form) with
the integrated form for a flux

Z
S
([Q − P + Hi] · η) dS = 0, where S is a

piecewise smooth boundary of the domain D with normal η.

In Theorems 1 and 2, the following notations are used: symbols (a·b) and
(a× b) denote the scalar and the vector products of a and b, respectively;
∇ is the Hamiltonian operator (a nabla); ∆ is the Laplace operator; D is
a domain in the space x, y, z; i, j, k are unit vectors on the axes x, y, z;
v = v(x, y, z) = v1i+v2j+v3k is a vector field defined in D, vk = vk(x, y, z)
are scalar functions, k = 1, 2, 3, |v|2 = v2

1 + v2
2 + v2

3; α = α(x, y, z) is the
angle of the slope of the vector v1i + v2j to the axis Ox, so that cos α =
v1/

√
v2
1 + v2

2, sinα = v2/
√

v2
1 + v2

2, i.e. α(x, y, z) is the polar angle of a
point (ξ = v1, ς = v2) on the plane ξ, ς or the argument Arg w of a complex
number w = ξ + i ς (i is an imaginary unit):

α
def= arctan

v2

v1
+ (2k + δ)π, k ∈ Z, (7)

δ = 0 and δ = 1 in quadrants I, IV and II, III of the plane ξ, ς, respectively;
θ = θ(x, y, z) is the angle between the vector v and the axis Oz: θ

def=
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arccos v3

|v| , so that 0 ≤ θ ≤ π, cos θ = v3

|v| , sin θ =
p

v2
1 + v2

2

|v| . This means that
α, θ are spherical coordinates on the space ξ = v1, ς = v2, ζ = v3. Thus,
v = |v| τ , where τ = τ (α, θ) = cos α sin θ i + sinα sin θ j + cos θ k is the
direction of the vector field v (|τ | = 1).

In a two-dimensional case, v = v(x, y) = v1 i + v2 j = v |τ |, v3 ≡ 0,
θ ≡ π/2 ⇒ τ = τ (α) = cos α i + sinα j, the angle α being defined by
formula (7), ∇θ = B = 0; ∀ϕ(x, y) ∈ C1(D), we have rot(ϕk) = ϕyi−ϕxj,

where ϕx = ∂ϕ

∂x
, ϕy = ∂ϕ

∂y
.

From Theorem 1 follows

Theorem 3. For any plane vector field v(x, y) with the components
vk(x, y) ∈ C1(D), k = 1, 2, the modulus |v| 6= 0 in D and the direction
τ = τ (α), we have the identity

Q
def=
v div v + v × rotv

|v|2
= ∇ ln |v|+ rot(αk) =⇒

div v = ({∇ ln |v|+ rot(αk)} · v), rotv = {∇ ln |v|+ rot(αk)} × v. (8)

Thus, S = rot(αk) ⇒ (S · ∇α) = 0, i.e., the vector lines of the vector field
S coincide with the lines of the level of the scalar field of the angles α(x, y).
If vk(x, y) ∈ C2(D), k = 1, 2, the following identities are valid :

divS = 0, rotS = −(∆α)k =⇒
∆ ln |v| = divQ, (∆α)k = − rotQ =⇒
∆ Ln{|v|e±iα} = divQ∓ i(rotQ · k).

In the conservation law of Theorem 2 we have Hi = 0.

As is known [4], any smooth vector field can be presented in the form of
the sum of a gradient of some scalar and a rotor of a certain vector. Identity
(8) gives such a representation for the vector field Q. At v = ∇u(x, y),
Theorem 3 gives the identity from paper [2].

3. Two-velocity hydrodynamics equations with one pressure

In papers [5, 6], based on conservation laws, the invariance of the equa-
tions concerning the Galilee transformation and conditions of thermody-
namic conditioning, a nonlinear two-velocity model of motion of a liquid
through deformable porous media is constructed. The two-velocity hydro-
dynamic theory with a condition of balance of pressure phases, has been
constructed in paper [7]. The equation of motion of the two-velocity media
with one pressure in the system in an isothermal case looks like [7]:



Conservation laws for the two-velocity hydrodynamics equations. . . 5

∂ρ̄

∂t
+ div(ρ̃ṽ + ρv) = 0,

∂ρ̃

∂t
+ div (ρ̃ṽ) = 0, (9)

∂v

∂t
+ (v,∇)v = −∇p

ρ̄
+

ρ̃

2ρ̄
∇(ṽ − v)2 + f , (10)

∂ṽ

∂t
+ (ṽ,∇)ṽ = −∇p

ρ̄
− ρ

2ρ̄
∇(ṽ − v)2 + f , (11)

where ṽ and v are the vectors of velocities of the subsystems making up
a two-velocity continuum with the corresponding partial densities ρ̃ and ρ,
ρ̄ = ρ̃ + ρ is the general density of the continuum; p = p(ρ̄, (ṽ − v)2) is the
equation of state of the continuum; f is the vector of the mass force carried
to the mass unit.

In terms of the vectorsW , V , S, Q, P , Hi, Fi, W̃ , Ṽ , S̃, Q̃, P̃ , H̃i, F̃i,
determined in Theorem 1, the system of equations (10), (11) can be written
down in any of the following forms (symbols without tilde and with a tilde
concern the corresponding subsystems of the continuum):

W =
∂v

∂t
+ v div v +

1
2
∇v2 +

∇p

ρ̄
− ρ̃

2ρ̄
∇(ṽ − v)2 − f ,

−V =
∂v

∂t
+ v div v +

∇p

ρ̄
− ρ̃

2ρ̄
∇(ṽ − v)2 − f ,

(12)

G
def=

1
v2

{
∂v

∂t
+ v div v +

∇p

ρ̄
− ρ̃

2ρ̄
∇(ṽ − v)2 − f

}
= S ⇐⇒

G+Hi = rotFi, i = 1, 2; (13)

W̃ =
∂ṽ

∂t
+ ṽ div ṽ +

1
2
∇ṽ2 +

∇p

ρ̄
+

ρ

2ρ̄
∇(ṽ − v)2 − f ,

−Ṽ =
∂ṽ

∂t
+ ṽ div ṽ +

∇p

ρ̄
+

ρ

2ρ̄
∇(ṽ − v)2 − f ,

(14)

G̃
def=

1
ṽ2

{
∂ṽ

∂t
+ ṽ div ṽ +

∇p

ρ̄
+

ρ

2ρ̄
∇(ṽ − v)2 − f

}
= S̃ ⇐⇒

G̃+ H̃i = rot F̃i, i = 1, 2. (15)

In the case of a homogeneous incompressible medium, i.e., provided that
ρ = const, ρ̃ = const ⇒ div v = 0, div ṽ = 0 ⇔ v = rotA, ṽ = rot Ã, where
A and Ã are the vector potentials of the velocities v and ṽ, respectively,
the two-velocity hydrodynamics equations are represented in the form

W = ∇
{

1
2
v2 +

p

ρ̄
+ U − ρ̃

2ρ̄
(ṽ − v)2

}
+ rot{At +M},

−V = ∇
{

p

ρ̄
+ U − ρ̃

2ρ̄
(ṽ − v)2

}
+ rot{At +M},

W̃ = ∇
{

1
2
ṽ2 +

p

ρ̄
+ U +

ρ

2ρ̄
(ṽ − v)2

}
+ rot{Ãt +M},
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−Ṽ = ∇
{

p

ρ̄
+ U +

ρ

2ρ̄
(ṽ − v)2

}
+ rot{Ãt +M},

where −f = ∇U +rotM ; Ãt and At are the time derivatives of the vectors
Ã and A, respectively. Hence, when the velocities and physical density of
phases coincide, we obtain W̃ = W , Ṽ = V and, as consequence, the for-
mulas for the vector fields W , V from paper [2]. Thus, the solution (v, ṽ, p)
of the system of the two-velocity hydrodynamics equations for homogeneous
incompressible media gives a representation of the vector fields W , V , W̃ ,
Ṽ , defined in Theorem 1 (where v = rotA, ṽ = rot Ã) in the form of the
sum ∇Φ + rotΨ.

From (13), (15) and Theorem 2 follows

Theorem 4. For any motion of an ideal two-velocity system with one pres-
sure (v 6= 0, ṽ 6= 0), the following identities are valid :

divG = −2
sin θ

v
(v · (∇α×∇θ)), div G̃ = −2

sin θ̃

ṽ
(ṽ · (∇α̃×∇θ̃)).

In addition to the general conservation law of Theorem 2, which holds
for any smooth vector fields v(x, y, z, t), ṽ(x, y, z, t), the conservation laws
of differential forms are also valid :

div(G+Hi) = 0, div(G̃+ H̃i) = 0

as well as the integrated forms for the fluxes:∫
S
([G+Hi] · η) dS = 0,

∫
S
([G̃+ H̃i] · η) dS = 0, i = 1, 2.

Here the vectors Hi (H̃i) are defined in Theorem 1 and expressed only
through the angles α (α̃), θ (θ̃) of the directions of the velocities v(x, y, z, t)
(ṽ(x, y, z, t)), S is a piecewise smooth boundary of the domain D, η is the
normal to S.

For the irrotational motion (at v = ∇u, ṽ = ∇ũ), we have

G =
1
v2

{
∇ut + ∆u∇u +

∇p

ρ̄
− ρ̃

2ρ̄
∇(∇ũ−∇u)2 − f

}
,

G̃ =
1
ṽ2

{
∇ũt + ∆ũ∇ũ +

∇p

ρ̄
+

ρ

2ρ̄
∇(∇ũ−∇u)2 − f

}
and the following identities hold:

divG =
2
v

div{u rot(α∇ cos θ)} = −2 sin θ

v

∂(u, α, θ)
∂(x, y, z)

,
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div G̃ =
2
ṽ

div{ũ rot(α̃∇ cos θ̃)} = −2 sin θ̃

ṽ

∂(ũ, α̃, θ̃)
∂(x, y, z)

.

If one of the following conditions is fulfilled: u = u(x, y) (ũ = ũ(x, y)) ⇒
θ ≡ π/2 (θ̃ ≡ π/2); u = u(α, θ) (ũ = ũ(α, θ)); v = v(α, θ) (ṽ = ṽ(α, θ));
uz = ϕ(ux, uy) (ũz = ϕ̃(ũx, ũy)), then divG = 0 (div G̃ = 0).

In the plane case v = v(x, y, t) = v τ , ṽ = ṽ(x, y, t) = ṽ τ̃ , τ = cos α i+
sinα j, τ̃ = cos α̃ i + sin α̃ j, α = α(x, y, t), α̃ = α̃(x, y, t) is the angle of
slope of the line of current (a vector line of the field v (ṽ) at t = const). For
an incompressible medium we have div v = 0, div ṽ = 0, v = uyi − uxj =
rot (uk), ṽ = ũyi − ũxj = rot (ũk), v2 = u2

x + u2
y, ṽ2 = ũ2

x + ũ2
y, where

u = u(x, y, t) and ũ = ũ(x, y, t) is a stream function.
From (13), (15) and Theorem 3 follows

Theorem 5. A system of equations of the two-velocity hydrodynamics with
one pressure (10), (11) for a plane motion (v = v(x, y, t), ṽ = ṽ(x, y, t),
v 6= 0, ṽ 6= 0) is representable in the form of the identity

G = rot(αk), G̃ = rot(α̃k) ⇒ divG = 0, div G̃ = 0,

rotG = −(∆α)k, rot G̃ = −(∆α̃)k ⇒
∆ ln v = divQ, ∆ ln ṽ = div Q̃,

(16)

(∆α)k = − rotQ, (∆α̃)k = − rot Q̃,

where the fields G, Q, G̃, Q̃ are defined in (8), (13), (15).

Remark. From Theorem 3 follows that for the irrotational motion (v =
∇u(x, y, t), ṽ = ∇ũ(x, y, t)) with the potentials u, ũ ∈ C3(D) and, in the
case of plane, for the motion of an incompressible two-velocity continuum
(v = rot (u(x, y, t)k) = uyi − uxj, ṽ = rot ˜(u(x, y, t)k) = ũyi − ũxj) with
the stream functions u, ũ ∈ C3(D) for the values αx, αy, v = |v|, Q, S,
V = −v2S, divV , rotV (α̃x, α̃y, ṽ = |ṽ|, Q̃, S̃, Ṽ = −ṽ2S̃, div Ṽ , rot Ṽ )
we obtain the same expressions through the derivative functions “u (ũ)”,
thus v =

√
u2

x + u2
y, ṽ =

√
ũ2

x + ũ2
y, Q = ∆u∇u

v2 , S = rot(αk), Q̃ = ∆ũ∇ũ

ṽ2 ,

S̃ = rot(α̃k),

V =
1
2
∇(u2

x + u2
y)−∆u∇u = −(u2

x + u2
y) rot(αk)

= (uyuxy − uxuyy)i+ (uxuxy − uyuxx)j = (∇u×∇)∇u, (17)

divV = 2(u2
xy − uxxuyy), rotV = −{uy(∆u)x − ux(∆u)y}k, (18)

Ṽ =
1
2
∇(ũ2

x + ũ2
y)−∆ũ∇ũ = −(ũ2

x + ũ2
y) rot(α̃k)

= (ũyũxy − ũxũyy)i+ (ũxũxy − ũyũxx)j = (∇ũ×∇)∇ũ, (19)
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div Ṽ = 2(ũ2
xy − ũxxũyy), rot Ṽ = −{ũy(∆ũ)x − ũx(∆ũ)y}k, (20)

and the following identities hold (v 6= 0, ṽ 6= 0):

Q =
∆u∇u

v2
= ∇ ln v + rot(αk), Q̃ =

∆ũ∇ũ

ṽ2
= ∇ ln ṽ + rot(α̃k) ⇔

∆u

v2
rot(uk) = −∇α + rot(ln vk),

∆ũ

ṽ2
rot(ũk) = −∇α̃ + rot(ln ṽk) ⇒

∆ ln v = divQ, ∆ ln ṽ = div Q̃,

(∆α)k = − rotQ, (∆α̃)k = − rot Q̃.

From (12), (14) and (18), (20) follows

Theorem 6. The system of the Monge–Ampere equations:

u2
xy − uxxuyy = F, ũ2

xy − ũxxũyy = F̃ , (21)

(in the general case F and F̃ are smooth functions of the variables x, y, u, ũ,
ux, ũx, uy, ũy, uxx, ũxx, uxy, ũxy, uyy, ũyy and the parameter t) and the sys-
tem of equations for the stream function of a plane motion of incompressible
media

−{uy(∆u)x − ux(∆u)y} = (∆u)t + (rotf∗1 · k),

−{ũy(∆ũ)x − ũx(∆ũ)y} = (∆ũ)t + (rotf∗2 · k),
(22)

are related to each other as follows: their left-hand sides are expressed, re-
spectively, through divergence and a rotor of the same vector fields V , Ṽ of
the form of (17), (19) by formulas (18), (20), where f∗1 = f − ∇p

ρ̄
+ ρ̃

2ρ̄
∇w,

f∗2 = f − ∇p

ρ̄
− ρ

2ρ̄
∇w, w = (ũx − ux)2 + (ũy − uy)2.

Let the functions v(x, y, t) = uyi− uxj, ṽ(x, y, t) = ũyi− ũxj, p(x, y, t)
in the domain Σ = {(x, y) ∈ D, t ∈ (t1, t2)} satisfy a system of equations
of the two-velocity hydrodynamics with one pressure (10), (11) for a plane
motion of incompressible media. In this case, in the domain Σ the stream
functions u(x, y, t), ũ(x, y, t) satisfy both equations (21) and (22) at

F =
div f∗1

2
, F̃ =

div f∗2
2

. (23)

Otherwise, let the functions u(x, y, t), ũ(x, y, t), p(x, y, t) satisfy in the
domain Σ equations (21) and (22) with the right-hand side (23), and on
the boundary S of the domain D at t ∈ (t1, t2), the equality (V · η) =
([f∗1 −rot(utk)] ·η), (Ṽ ·η) = ([f∗2 −rot(ũtk)] ·η) holds, where η is normal to
S. In particular, the latter equalities are valid if on the boundary S equalities
(10), (11) are valid. In this case, the functions v(x, y, t) = uyi − uxj,
ṽ(x, y, t) = ũyi − ũxj, p(x, y, t) in the domain Σ satisfy the system of the
two-velocity hydrodynamics equations with one pressure (10), (11) for the
plane motion of incompressible media.
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In particular, for homogeneous media (ρ = const, ρ̃ = const) and a
potential field f = −∇U , equations (21) and (22) take the form

(rotV · k) = −{uy(∆u)x − ux(∆u)y} = (∆u)t,

(rot Ṽ · k) = −{ũy(∆ũ)x − ũx(∆ũ)y} = (∆ũ)t,
(24)

divV
2

= u2
xy − uxxuyy = F,

div Ṽ
2

= ũ2
xy − ũxxũyy = F̃ , (25)

F = −1
2
∆

(
U +

p

ρ̄
− ρ̃

2ρ̄
w

)
, F̃ = −1

2
∆

(
U +

p

ρ̄
+

ρ

2ρ̄
w

)
.

Hence, the stream functions u(x, y, t), ũ(x, y, t), found, for example, as the
solution to the known system of equations (24) at any fixed t give simul-
taneously the solution to a system of the Monge–Ampere equations (25),
whose right-hand sides can be found from the system of the two-velocity
hydrodynamics equations with one pressure (10), (11) at v = uyi − uxj,
ṽ = ũyi− ũxj.
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