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The Bernoulli equation for an incompressible
two-fluid medium at pressure phases equilibrium

with constant saturation of phases

Bunyod Imomnazarov, Sherzad Imomnazarov

Abstract. In this paper, the Bernoulli equation for an incompressible two-fluid
medium with equilibrium of pressure phases in the reversible hydrodynamic ap-
proximation is constructed.
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The development of the advanced computational modeling for compress-
ible multi-phase flows is of interest in a number of scientific and engineering
disciplines and in many industrial applications. Although in recent years
the intensive efforts in the multiphase flow modeling have been made still
many basic physical, mathematical, and computational issues are largely
unresolved. The classical approach to the development of multiphase mod-
els is based on the assumption that a multiphase flow can be considered as a
set of interacting continua and described as an averaged continuous medium
in which the behavior of each phase is governed by the conservation laws
of mass, momentum and energy, while the interfacial interaction is taken
into account through differential and algebraic source terms in the phase
conservation laws [1, 2].

The study of flows of viscous compressible / incompressible liquids based
on solving a complete system of equations of the two-velocity hydrodynamics
is actual. A very limited number of cases admitting an analytical integration
of the Navier–Stokes equations is considered in published works [3–5]. For
an analytical solution of hydrodynamic problems, there is, in fact, only
the perturbation method, whose development and application have recently
been the major achievements. Numerical methods stand apart.

Both the previous and current research efforts in relation to the mul-
tiphase flow modeling mostly concentrate on the two-phase computational
models. These include, in particular, a single-pressure model for the two-
phase compressible flows, which is still used as a basic model in some in-
dustrial computer codes. The governing equations used in the basic single-
pressure model are of a mixed hyperbolic/elliptic type thus making the initial
boundary value problem mathematically ill-posed. Consequently, computa-
tions performed with this model on coarse meshes or using dissipative nu-
merical schemes yield reasonable solutions, but when a mesh is sufficiently
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refined or more accurate numerical methods are used, the solution does not
converge [6].

The objective of the present paper is to construct the Bernoulli equations
for a stationary system of equations of the two-velocity hydrodynamics with
equilibrium of pressure phases. On the one hand, these solutions can be
useful for testing numerical methods of solving equations of the two-velocity
hydrodynamics, on the other hand, they are used to find the fluid outflow
velocity through the opening in the wall or in the bottom of a vessel.

1. Equations of the two-velocity hydrodynamics with
pressure phases equilibrium

In papers [7] and [8] there is constructed a nonlinear two-velocity model for
the motion of a fluid saturated through a deformable porous medium based
on conservation laws, invariance of equations with respect to the Galilean
transformations and the thermodynamic consistency condition. The two-
velocity two-fluid hydrodynamic theory with the pressure equilibrium con-
dition in the subsystems was constructed [6]. In the isothermal case the
equations of motion of a two-velocity medium in the non-dissipative case
with equilibrium of pressure phases in the system have the form [9–11]:

∂ρ̄

∂t
+ div(ρ̃ṽ + ρv) = 0,

∂ρ̃

∂t
+ div(ρ̃ṽ) = 0, (1)

ρ̄

(
∂v

∂t
+ (v,∇)v

)
= −∇p+

ρ̃

2
∇(ṽ − v)2 + ρ̄f , (2)

ρ̄

(
∂ṽ

∂t
+ (ṽ,∇)ṽ

)
= −∇p− ρ

2
∇(ṽ − v)2 + ρ̄f , (3)

where ṽ and v are the velocity vectors of the subsystems of the two-velocity
continuum with the corresponding partial densities ρ̃ and ρ, ρ̄ = ρ̃ + ρ is
the total density of the two-velocity continuum, p = p(ρ̄, (ṽ − v)2) is the
equation of state of the two-velocity continuum, and f is the mass force
vector per unit mass.

In the absence of the mass forces f = 0, the system of equations (1)–(3)
has the solution v = 0, ṽ = 0, ρ = ρ0, ρ̃ = ρ̃0, p = p0 for a mixture of fluids
at rest with the uniform pressure p = p0, the partial densities ρ0, ρ̃0, and
the temperature T .

We rewrite equations (2) and (3) in the equivalent form

ρ̄

(
∂v

∂t
+

1

2
∇(v2)− v × rotv

)
= −∇p+

ρ̃

2
∇(ṽ − v)2 + ρ̄f , (4)

ρ̄

(
∂ṽ

∂t
+

1

2
∇(ṽ2)− ṽ × rot ṽ

)
= −∇p− ρ

2
∇(ṽ − v)2 + ρ̄f , (5)
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From these equations, it is possible to derive other equations that determine
the variation of the vortices in the course of time. For this, we apply the
operator rot to both parts of equations (4), (5). As a result, we obtain

∂Ω

∂t
− rot(v ×Ω) = − rot

(∇p
ρ̄

)
+ rot

(
ρ̃

2ρ̄
∇(ṽ − v)2

)
+ rotf ,

∂Ω̃

∂t
− rot(ṽ × Ω̃) = − rot

(∇p
ρ̄

)
− rot

(
ρ

2ρ̄
∇(ṽ − v)2

)
+ rotf .

Here Ω = v, Ω̃ = ṽ.

2. The Bernoulli equations for an incompressible two-fluid
medium at pressure phases equilibrium with constant
saturation of phases

In the case of homogeneous incompressible media, that is, under the con-
ditions ρf = const and ρ̃f = const, where ρf , ρ̃f are the physical densities
of the phases and constant bulk saturation of the substances composing the
two-phase continuum ⇒ ρ = const, ρ̃ = const ⇒

div v = 0, div ṽ = 0.

In other words, the vectors v and ṽ are solenoidal [12].
In the stationary case, the system of equations (4), (5) takes the form

v × rotv = ∇
(

1

2
v2 +

1

ρ̄
p− ρ̃

2ρ̄
(ṽ − v)2

)
− f , (6)

ṽ × rot ṽ = ∇
(

1

2
ṽ2 +

1

ρ̄
p+

ρ

2ρ̄
(ṽ − v)2

)
− f . (7)

From these relations for the potential mass force with the potential F , mul-
tiplying, respectively, (6) by v and (7) by ṽ, we obtain(

v,∇
(1

2
v2 +

1

ρ̄
p− ρ̃

2ρ̄
(ṽ − v)2 + F

))
= 0,(

ṽ,∇
(1

2
ṽ2 +

1

ρ̄
p+

ρ

2ρ̄
(ṽ − v)2 + F

))
= 0.

Hence, we obtain the Bernoulli equations

1

2
v2 +

p

ρ̄
− ρ̃

2ρ̄
(ṽ − v)2 + F = C, (8)

1

2
ṽ2 +

p

ρ̄
+

ρ

2ρ̄
(ṽ − v)2 + F = C̃, (9)
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where C, C̃ are arbitrary constants.
Equations (8) and (9) admit a passage to the limit to the Bernoulli

equation in the single-velocity hydrodynamics of incompressible media when
the velocity of the fluid and the physical densities coincide.
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