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The solution of one overdetermined stationary
system arising in an incompressible two-fluid
medium in a half-space*

Kh.Kh. Imomnazarov, Sh.Kh. Imomnazarov, M.V. Urev,
R.Kh. Bakhramov

Abstract. We have considered the classical solution in the half-space of the second
boundary value problem for an overdetermined stationary system of second order
equations arising in a two-fluid medium with phase equilibrium in pressure. The
solution is constructed using the Fourier transform apparatus. The effect of the
kinetic parameters of the medium on the solution of the system has been shown.
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1. The second boundary value problem for the two-velocity
Stokes system with one pressure in a half-space

In the domain Q = R3 = {& = (21,22, 23) € R?: 23 > 0}, we consider the
second boundary value problem for the two-velocity Stokes system with one
pressure [1, 2]:

—vAv+gradp=f, divv=0 in Q, (1)
—nAu+gradp=f, divu=0 in Q, (2)
T(v,p)n|zy=0 = a(r1,72), T(u,p)n|s=0 = b(x1,72), (3)

where n = (0,0,—1) denotes the normal to 02 at x3 = 0, v,y are the
kinematic viscosity coefficients, a,b are given functions, v = (vy,va,v3),
u = (u1, u2, us) are unknown vector fields of velocities, p is pressure, T'(v, p),
T'(u,p) are the stress tensors corresponding to the flows v, p and u, p:

61)1' Ovj>
Oz O/ ij=1.23
811,2‘ 4 6u])
Ox;  Ox;/ij=123

T('U,p) = —p1+ I/S(’U), S(’U) — (

T(u,p) = —pl +1v1S(u), S(u)= (

Here I is the unit matrix, S(v), S(u) are the doubled strain rate tensors.
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2. The half-space problem for a homogeneous system

Consider the homogeneous problem for system (1)-(3) in R3:

. . 3
—vAv +gradp=0, divv=0 in RY,

81)]' 61}3 B o
V(Tm + 8@3) 23m0 —aj(z1,22), J=1,2, @
61)3
\ <_p - 2y87x3> 23=0 - —CL3($1,:L‘2)7

—v1Au+gradp=0, divu=0 in Ri,

8“]’ Ous .
dzs | Ox; = —b; =1,2
”1(8333 + &Ej) 2ot i(z1,22), J 2, )
8u3
—p+2 7) = b1, o),
( D+ V18$3 - 3(21, 2)
assuming that the functions a,,(z1,22) and by, (x1,z2) (m = 1,2,3) are

smooth and decrease sufficiently rapidly for |(z1,z2)| — oo. The solution
should also decrease at infinity.

The solution of system (4), (5) is reduced to the sequential solution of
two boundary value problems. First, the Stokes problem (4) is solved for
(v,p) [3-5], and then the second velocity w is determined as a solenoidal
solution to the following boundary value problem for the Poisson vector
equation:

nAu =gradp, divu=0 in Ri,

8’U,J 8U3 o R
(G + ) |y = ") G= 12 (©)
% - i(p(xl x2,0) — b3(z1, z2)).
8563 xr3=0 2V1 ’ ' ’

Denote by g(a, ag,x3) Fourier transform of the function g(z1,z2, x3) with
respect to the variables x1, 9 [3-5]:

1

(271_)3/2/2 efz‘mmfiagng(xl?x%x?)) d:l:l dl‘z.
R

gloq, o, 23) =

After applying the Fourier transform with respect to the variables x1,zs
to system (4), for the transformed functions o, p, we obtain the boundary
value problem for a system of ordinary differential equations on the semi-axis
(0,00) with the parameter a = (aq, a2):
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vla|? v]—ud —{—zoz]p—O j=1,2,
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2~ 3 p
vla|*t3 —v—m + — =0, (7)
"3 da;S dxs
dvg
1101 + tavg + — =0,
dxs
dv; . - .
I/(dix3 + ZOéjUg) 240 =—a;, J= 1,2,
do
( P+ 2uﬁ) — s, (8)
dxg x3=0

v — 0 at 3 — oco.

The general solution of the system of equations (7) tending to zero when
x3 — 0o has the following form:

~ ) ; 1 B
(e, w3) = (|Z|2201 - ZaflCQ b (— — 563) Cg)e ldes

ol 2T 2] \Jal
- (65} iOzQ i()dg 1 _
Jx3) = (Lo - 220 (=) Gy Jetolon,
o2(a,73) < P T a2 2] o] 3>€ (9)

1

U3(or, w3) = (Cz + *90303) e~ lales,
2v

o z3) = Cye~loles

The constants C7, Cy, C3 are determined from boundary conditions (8). The
solution to problem (7), (8) can be represented as follows:

= —a®' — ay®’ — azd®, p=—ap — ap’ — asp°, (10)
where 0! (a, 3), p*(a, 23) is the solution (9) of system (7) with the constants
10
o’
satisfying boundary conditions (8) with the vector e; = (1,0, 0) in the right-
hand side:

Cr=——2

vlal

, Cy=0, (C3=

2 2
") aj ) —|alxs
(o, 23) ( 21/|oz| ~ 2w|af? * 2V|O[|2x3 ¢ ’
(@, z3) < 0410423 Oéla22 xs) —\a|a€3’
2v|a 2v|a (1)
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p(a,x3) = e ;
|af
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?(a, x3), p?(v, w3) is the solution (9) of system (7) with the constants
o1 1e%)
Cr= ) Cy = 0, Cs = T
v]al |

satisfying boundary conditions (8) with the vector e; = (0, 1,0) in the right-
hand side:

. (s aran _
o, ws) = <2V]a\3 2V\a\2x3>e ok,
1 a? ol
~2 _(_ o 1 2 —|a|xs
Oa(e,73) ( v|al  2v|af? 2y]04]2$3)€ ’ (12)
- (a2 _
03, 3) = 20ja] 73 ¢ loles
~ iy
P (o, w3) = me s

and ©3(«a, x3), p° (v, x3) is the solution (9) of system (7) with the constants

1
C1=0, Co=———, C3=-1
2v|al

)

satisfying boundary conditions (8) with the vector es = (0,0, 1) in the right-
hand side:

- 10 _
U%(a’qj?)) = 2V|a’$36 |Oé‘$37
~3 _ i —|e|zs
05 (e, x3) 21/|a]x36 , (13)
~3 1 1 —|alzs
v3(a, 3) :—$<m+$3)6 )
(0, z5) = —eloles,
Denote |x| = (23 + 23 + 22)/2. When performing the inverse Fourier
transform in formulas (11)—(13), we use the equations
Jam [ie—\alw:{ — i i€i$1a1+i$2a2—\almsdaldOQ _ i’
|| b2 Jge o ||
_ — i x3
F 1{6 ||z _ 3
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B des  xiwows(3xi + 323 + 223)
= 3r129 5 2, .2 ,
|| (a1 + 23)* 2|’
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Performing the inverse Fourier transform in (11) using the above formulas,
we obtain

) —__TiH23 @3-

1 2v(af +adle] * 2v(a? + a3)?
x% ( 233% m% B 1)
2v(at + 23)|z| \af + 25 |z* )

Ul( ) = _IL‘lfL‘z(l‘% + l’% + 21’%) 1712132:17%(3:1;% + 3;3% + 2$§)
’ 2v(2? + a3)?[| ) T
Ly — —*1%3 Ly = %1

v3(x) = ek p(x) p

Similarly, from (12) and (13), we have

2(a.2 2 2
2 T122 ( 2, 2 o w3(3x7 + 375 + 21’3))
T)=— + x5 + 225 — )
) = T gl T TR 2P
1)2(%) - 21’%—’_1% (x%—:r%)]w\
? 2v(af +a3)lz|  2v(af + 23)
3 < 273 a3 1)
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2 - —X2T3 2 . —I2
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’1)1(93) - 21/’33|3’ /1)2(:1:) 2V‘$|3’
vy(x) = —+—=_"3 x)=—
3 oz P [f?

To perform the inverse Fourier transform in equations (10), let us apply
the well-known formula

F[(f xg)] = 2nF[f]F[g] = 2 g,

from where
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Here

(f * 9@ /fsc (v) dy

is the convolution of the functions f and g.
Then, from (10), we have

v =g [(arxv") ~ (a2 % 0%) — (a3 * 0°),

p=—5-l(a1*p") = (a2 *p*) = (a3 % p°)].

2

Let us turn to the solution of problem (6). The solution u will be sought
for in the form w = z+w. We extend the solenoidal function Vp with Ri to
the whole space R? while maintaining solenoidality and smoothness. Such
a continuation is possible (see, for example, [3, Lemma 4]). Setting

() = — 1 / Vp(y) dy.

dvy Jgs | — vy

we obtain with confidence the solenoidal solution z = (21, 22,23) of the
Poisson vector equation
1Az = gradp.

The function w = (wq, we,ws) must be solenoidal and satisfy the Laplace
vector equation (6) with modified boundary conditions:
Aw=0, divw=0 in R},
ow; 0
' (Gas * 5a,)
a$3 3$j

(-r+2n50)

= —dj(z1,22), j=12, (14)

x3=0

= —d3(71, z2),
x3=0

where

0z 0z )

dj(whl‘z)ij(x1,x2)+u1(8—x;+a—;) j=1,2,
j

823

8953

)
z3=0

dg(xl, mg) = bg(a}l,xg) + 21—
xr3= 0

After applying the Fourier transform with respect to the variables z1, z2 to
system (14), for the transformed functions we obtain @y boundary value
problem for the overdetermined system of ordinary differential equations on
the semi-axis (0, 00) with the parameter o = (a1, a2):
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2w

—— —|af*w =0,
dﬂ?% (15)
- L ds
Wy + tagwe + —— =0,
d:L'g
do; . d;
7 , = =1,2
(dZC3 +1CMJ1U3) z3=0 Ul7 J o
- dw ~ 16
—p+ 2w = —ds, (16)
dl’3 z3=0

w— 0 at x3 — oo.

The general solution of the first vector equation in (15), tending to zero
when x3 — oo, has the following form:

w(a,x3) = Ce o € = (C1,Cy, Cy). (17)

The constants C, Co, C3 are determined from boundary conditions (16):
205 5 ~ 1
— (Plas=0 — d3) +

C.= 25
/ 2|a)?1y

Cs = _i(ﬁ‘axg:o — d3).
In addition, there must be a divergent condition on the solution, which

gives a restriction on the functions of the right-hand side boundary condi-
tions (16). From

z’oqu + iOéQCg — ’Oé’Cg =0
follows the equality

1o TR T 10 2 I -
—Ldy + —dy + Plag—o — d3 = 0. (18)
ol |al

Performing the inverse Fourier transform in (17) and (18), we obtain

1 1 a1 1 1 _

- pl = |o¢|z3:| o—d —Fp1 [7 |a|w3} d

wl(m) 21/1 _’a’26 * (p|£E3—O 3) + v ’Oé‘e * 1,
1 1 g 1 1 _

- pl 22 |a|x3} o—d —F! [7 Ialws} d
wa(x) o _|a|2e % (p|lzg=0 — d3) + ” ’a‘e * do,
ws(x) = b F1 1 e_‘a|m3} % (P|ag=0 — d3).

21/1 _|O£| 3=
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The overdetermination of problem (14) results in the necessary condition
of its solvability in the form of the performance requirements

[ e
e 1(,;1‘)*d1+zF 1(’;2‘)*d2+p|x3:0—d3:0.

for the components of the vector d.
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