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The Laguerre spectral method for solving
dynamic problems in porous media∗

Sherzad Imomnazarov, Alexander Mikhailov

Abstract. The paper illustrates the applicability of the Laguerre spectral method
to solving a one-dimensional problem of the dynamics of a saturated porous medium.
A one-dimensional non-stationary problem of a pulsed action on a saturated porous
medium is investigated taking into account the effects of electromagnetoacoustics.
The features of the acoustic response to a pulsed electromagnetic action in such
a system are numerically discovered. The dependence of the amplitudes of trans-
verse acoustic waves arriving at a boundary of the porous medium on the external
magnetic field for various parameters of the porous medium is revealed.

Keywords: porous saturated medium, Laguerre transform, interfacial friction,
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1. Introduction

Models of the dynamics of heterophase saturated porous media are widely
used in solving applied geophysical and geological problems. Of particular
interest is the problem of the influence of the presence of an external field, in
particular, a magnetic field, on the nonlinear dynamics of such media. One
of the effective methods for solving nonlinear heterophase models is such
a numerical-analytical method as the method of integrating the integral
Laguerre transform with respect to time and the finite-difference method
with respect to space.

This method is analogous to the spectral-difference method based on
the Fourier transform, in which the analogue of frequency is the degree of
the Laguerre polynomials. An advantage of the Laguerre transform is the
ability to reduce the original system of equations to a system with the sep-
aration parameter only on the right side. This approach makes it possible
to reduce the computation time when solving non-stationary problems of
the dynamics of heterophase media. This method for solving dynamic prob-
lems is successfully applied to the problems of the theory of elasticity and
viscoelasticity [1, 2]. When applied to two-velocity media, this method was
used to describe the acoustics of elastic porous media [3].

∗The work was carried out according to the state order of the IGM SB RAS.
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2. Formulation of the problem

This paper discusses the axially-symmetric problem of the impulse action of
a quasi-stationary magnetic field on a saturated porous medium surround-
ing a channel with a saturating liquid [4]. The system that is homogeneous
along the channel is considered. In the cylindrical coordinates (r, ϕ, z) for
the half-space (R1,∞), the velocity of the porous matrix u = (0, uϕ, uz),
the velocity of the saturating fluid v = (0, vϕ, vz) and the magnetic field
B = (0, Bϕ, Bz) satisfy the following initial-boundary value problem. The
system of governing equations obtained within the framework of the com-
bined theory of electromagnetism in porous fluid-saturated media [5, 6] has
the form:
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The boundary r = R1 is considered to be free from the stress and magnetic
field

∂uϕ
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− uϕ

r
= 0,

∂uz
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= 0, Bϕ = 0, Bz = Bz0(t), (7)

and the initial Cauchy data are taken to be zero.
Here ρ = ρl+ρs, ρs and ρl are the partial densities of the matrix and liq-

uid, u and v are the matrix and fluid velocities, B is the magnetic induction,
σ is the electrical conductivity, $ = ρlχ, χ is the coefficient of friction, α is
the electroacoustic parameter, At is the sound velocity, ce is the velocity of
light. A constant magnetic field (B0/r, 0, 0) is directed along the axis Or.

The operator L is defined by the relation Lu =
∂u

∂r
+

u

r
.

3. Algorithm for solving the problem

To solve problem (1)–(7), the integral Laguerre transform with respect to
time is applied
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−→
Wm(x1, x2) =

∫ ∞
0

−→
W (x1, x2, t)(ht)

−α/2lαm(ht) d(ht),

with the inversion formulas

−→
W (x1, x2, t) = (ht)α/2

∞∑
m=0

m!

(m+ α)!

−→
Wm(x1, x2)lαm(ht),

where lαm(ht) are the Laguerre functions, which are expressed in terms of
the classical orthonormal Laguerre polynomials Lαm(ht) [7].

In this paper, the parameter α is chosen to be integer and positive. Then

lαm(ht) = (ht)α/2e−ht/2Lαm(ht).

For the first derivative of the Laguerre polynomials with respect to the
variable t, the following expression is valid:
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It can be noted that in order to satisfy the initial conditions of problem
(1)–(7), it is sufficient to choose the value α ≥ 1. In addition, the shift
parameter h > 0 is introduced in the formulas, whose meaning and efficiency
is discussed in detail in [8, 9].

As a result of this transformation, the original problem is reduced to a
boundary value problem for a system of ordinary differential equations in
the spectral domain
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with the boundary conditions at r = R1
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Here fm1 , fm2 are the coefficients of the Laguerre expansion of the source
function f(t):
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umi , vmi , Bm
i , i ∈ {ϕ, z}, are the expansion coefficients of the corresponding

field components in a series of the Laguerre functions. The superscript m
denotes the number of the coefficient in the Laguerre expansion. Note that
the value of m explicitly presents only in the right-hand side of the equations
in the form of a recurrent dependence for all the field components.

The finite difference approximation of derivatives with respect to the
spatial coordinates for solving this problem is carried out on staggered grids
with the fourth order of accuracy [10]. For this, in the computational domain
in the direction of the coordinate r, the grids ωr and ωr1/2 are introduced
with a discretization step ∆r that is shifted relative to each other by ∆r/2:

ωr = (j∆r, t), ωr1/2 = ((j + 1/2)∆r, t), j = 0, . . . ,M.

Let us define the unknown components of the solution vector at the
following grid nodes:

umi (r), vmi (r), Bm
i (r) ∈ ωr, umr (r), vmr (r), Bm

r (r) ∈ ωr1/2.

The choice of the location of the components at the integer and half-integer
grid nodes is based on the difference approximation of the equations of
system (8)–(13) and satisfying the boundary conditions (14), for which the
second order of accuracy is used.

As a result of the finite difference approximation of problem (8)–(14),
we obtain a system of linear algebraic equations. Representing the desired
solution vector ~W in the form
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A sequence of the wave field components in the solution vector ~W is
selected taking into account the minimization of the number of diagonals in
the matrix A∆. In this case, on the main diagonal of the matrix, the compo-
nents included in the equations of the system as terms with the parameter h
as a factor are specially located. It should be noted that by choosing the
parameter h, it is possible to significantly improve the conditionality of the
system matrix. Having solved the system of linear algebraic equations (15),
we can determine the spectral values for all the components of the wave field
~W (m). Then, using the Laguerre transformation inversion formula, we can
obtain a solution to the original problem (1)–(7).

To solve the system of linear algebraic equations (15), the most effective
was the use of the iterative conjugate gradient method. The advantages of
this method is that there is no need to store the entire matrix in a machine
memory for large-scale systems, as well as fast convergence to the solution of
the problem provided that the matrix of the system is well conditioned. The
matrix A∆ due to the parameter h has this property. The choice of h can
significantly accelerate the convergence of the iterative process. The optimal
value of h is chosen based on minimizing the number of Laguerre harmonics
in the inversion formula, as well as reducing the number of iterations when
finding a solution for each harmonic. The analysis of test calculations shows
the stability of the algorithm proposed for the studied class of the model.

4. Simulation results

The solution to the problem in question provides a basis for the develop-
ment of technological methods for measuring the permeability and electri-
cal conductivity of the rock [4, 11, 12]. In the model problem, a medium
with the following physical parameters (CGS system) is considered: α =
107 (cm3/gc2)1/2, R1 = 10 cm, σ = 109 c−1, $ = 107 c−1, B0 = 103,
ρl = 0.1 g/cm3, ce = 3 ·1010 cm/c, ct = 1 ·105 cm/c, ε = 0.1. At the channel
boundary, an impulse action as a function of time is set. The configurable
source signal

Bz0(t) = 103 exp(−πf0(t− t0)2/8) sin(2πf0(t− t0)),

with f0 = 100 Hz, t0 = 0.015 s is shown in Figure 1.

Figure 1. The source signal
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Figures 2–5 show the calculated seismic traces of the components of the
displacement velocities of the porous matrix for two values of the electrical
conductivity σ. The distance along the coordinate r between the points of
the calculated paths is ∆r = 50 m. The calculation results for the compo-
nent uϕ and for the time derivative of the component uz are presented.

Let us also present the graphs illustrating a change in the displacement
rates with a simultaneous proportional change in the coefficient α and in the
coefficient of the interfacial friction χ. The corresponding calculated seismic
traces are presented in Figures 6, 7. The distance along the coordinate r
between the points of the calculated paths is ∆r = 50 m.

Figure 2. Calculated seismic traces for the component uϕ at σ = 109 c−1

Figure 3. Calculated seismic traces for the component uϕ at σ = 5 · 109 c−1
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Figure 4. Calculated seismic traces for the component
∂uz

∂t
at σ = 109 c−1

Figure 5. Calculated seismic traces for the component
∂uz

∂t
at σ = 5 · 109 c−1

The numerical analysis of the calculations performed has shown that at
the inner boundary of the porous space, the maximum values of acoustic
amplitudes depend on the parameters of the saturated porous medium and
the amplitude of the magnetic field

∂uz
∂t

=
σ

ce

B0B

4πρ
, uϕ =

α

χ

B

4πρ

1

k(R1)
,

where k(R1) is the calculated function of the inner radius of the well. The
fulfilment of the formula uϕ ∼ ∂uz/∂tmakes possible to generalize the earlier
obtained formula in the frequency representation uz = iω∗ω

−1uy [13] (ω∗ is
the characteristic frequency at which the moduli of the acoustic response of
the shear waves |uy|, |uz| are equal). The implementation of this formula
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Figure 6. Calculated seismic traces for the component
∂uz

∂t
at $ = 107 c−1,

α = 107 (cm3/gc2)1/2

Figure 7. Calculated seismic traces for the component
∂uz

∂t
at $ = 3 · 107 c−1,

α = 3 · 107 (cm3/gc2)1/2

makes it possible to determine the electrical conductivity of a rock and the
ratio of its permeability and electroacoustic constant from the measured
values of the amplitudes of acoustic and electromagnetic fields at a known
rock density.

5. Conclusion

A numerical-analytical algorithm based on the spectral Laguerre method as
applied to the problem of analyzing the acoustic response of a porous satu-
rated medium to an external induction action in an external magnetic field
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is considered. This algorithm is an analogue of the known spectral methods
for solving dynamic problems in the continuum mechanics, however, unlike
the Fourier and the Laplace transforms, the use of the Laguerre transform
leads to a system of equations in which the harmonic separation parameter
is included only in the right-hand side in a recurrent form. As a result, the
matrix of the reduced problem system is well conditioned. This fact allows
the use of effective methods for solving systems of linear algebraic equations.
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