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Estimates of conditional stability of some
combined inverse problems for Maxwell’s
equations and equations of porous media*

Kholmatzhon Kh. Imomnazarov

A combined mathematical model of Maxwell’s system of equations and a system
of equations for porous media taking into account admixtures is constructed.

1. Introduction

The mathematical studies of combined inverse problems for equations of
mathematical physics are comparatively new. The questions of uniqueness
of the solutions to the combined inverse problems of mathematical physics
are key issues in their investigation. The uniqueness and stability of the
solutions of the combined inverse problem of seismic acoustics and grav-
ics were studied for the first time in [1, 2]. The conditional stability and
uniqueness of the solutions to the inverse problem for equations of porous
media are considered in [3, 4]. Combined one-dimensional inverse problems
for Maxwell’s equation and the equation of continual filtration theory are
discussed in [5, 6]. It is shown that the solutions to the problems being con-
sidered are unique: three one-dimensional functions are determined from
two one-dimensional functions (by using the information measured at the
free boundary of the displacement velocity of a conducting elastic porous
body and the electric field intensity). In this case Archie’s law [7] is used:
o1f/o = pgy, m is a positive constant.

The statements of combined inverse problems for Maxwell’s equations
and equations of porous media result from the mathematical modeling of
the processes of vibrational treatment of oil strata. Here it is necessary to
determine the coefficients of friction, the permeability and viscosity of the
conducting liquid, shear module, all-round compression, and others using
indirect information about an oil stratum.

The estimates of conditional stability in a class wider than that consid-
ered in [3-6] are obtained. Other statements are considered.
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2. One-dimensional inverse problem
for transverse waves

Let us consider the following initial boundary value problem [8]:

po,s(2)use — ((2)uz): + x(2)P51(2) (ur — ve) =0, (t,2) RS, (1)
po(2)vn — X(2)p51(2) (ue — ve) = 0, (t,z) Ry, (2)
u(0,z) = Uy(z), ut(0,2) = Ua(z), v(0,2) =1(0,2) =0, z€Rf, (3)
p(0)u,(t,0) =0, teRy. (4)

Here u(t, z) and v(t, z) are the horizontal components of the velocity vector
of the elastic porous body and liquid with partial densities pg ,(2) and pg(2),
respectively, x(z) is the friction coefficient,

R;’z{(t,z)t—oo<t<oo, z>0}.

Problem 1. Determine the friction coefficient x(z) (the other functions
p0,1(2), po,s(z), and p(z) are known) from the relations (1)~(4) by using the
information

u(t,0) = uo(t), te[-T,T). (5)

Assuming in (1) that t = 0, we obtain, for x(z), the formula

_ (p0,s(2)c} (2)U12)z — po,s(2)ust(0, 2)
x(z) = 20 (2) !

(6)

where ci(z) = 1/#(2)/!’0.;(2).

Let us eliminate the friction coefficient x(z) from system (1), (2) us-
ing (6). We obtain a Cauchy problem with a nonlocal operator for u, v

_ (Pﬂ,s (Z)cg (Z))z u

Ust ——c,,z(.?:)'u,zz =R, +
PD,s(Z)
2(z - 2)uy (0,2
(PO,s(z)ct( )p[oftz)zz)sz;lia( ) ﬂ(oa )(vt i ut); (7)
u= L) - a0, o), v, e R, @)
u(t,0) = w®), w(t,0)=0, te[-T,T) @
v(0,2) = v(0,2z) =0, =z € R{. (10)

Let @ C R? be an open set of real variables t, z, and || - ||(x)(Q) is the

norm in the Sobolev space W¥(Q). For the real function ¢ € C*°(Q) and
the number 7 > 0, we introduce a family of norms
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ul2(Q) = | &1 |u(t, 2)2dz dt
T Q

Let @ = QN{z > 0} # 0, P(z,8) = n?(2)8? — 8 be D’Alembert’s operator,
&y = d/ot.

Lemma 1. Let, for all (¢,2) € 0,

ozl 21, @2 >8>0, (11)
)
ny(z) > 0, —i’c;ii) > 0. (12)

Then at ny € CY(Q) there ezist numbers ¢y and 10 > 0 such that for all
u € C§°(Q2), 7 > 1 the estimate

(11l + 1eul2 + 10.ull?) < el Pull? (13)
holds.

Proof. Inaccordance with Hormander’s theorem [9], it is sufficient to check
the positiveness of the function

H(:ﬂ,f) = (‘szV£P1 Vﬁp) + (VEP: (V::P)’.gvm(ﬁ’> — (va, (VEP)EVZ‘P): (14)
(31‘5) €EA= {(9316) i T Q: § € Rz: Ifl 75 0, P($)§)=0: (V£P1 vzﬁ"):o}'

Here the matrices (V'ZP){E and (VEP)’C. are the derivatives of the vectors V, P
and V¢ P with respect to the variables ¢, (-,) is the scalar product in R,.

Since P(z, d) is a differential second order operator with a real coefficient,
then, in accordance with [9, Theorem 8.6.3], ¢(z) = exp(A)(z)) can be
taken as a weight function, where ) is a sufficiently large positive number,
¢ = (z,t). The symbol of the operator P(z,8) has the form P(z,¢) =
n?(z)&3 — ¢i. We choose 9(z) = —z. Note that A = . Then

V{:P = (_251!2'”?(2)52)1 V§P = (znt(z) 81;£Z)£§?D): V:I:LP = _(A‘P:O):

ong(z
0z >0, @, = Pzt = Py =0, P"‘Ez - 4nt(Z)fz ('fg ),

Peey = -2, P, = Zntz(z), P, = Py, = Py, = 26, = 0.

Substituting these expressions into (14), after easy transformations and tak-
ing into account the estimate (12), we obtain

H(z,¢) = o) (A - 22 > g

as was to be shown. O
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Assume that Q. = QN {p > ¢} and n € C®°(R,), so that 0 <n < 1in
Q, with n =1 at (t,2z) € Q. and n =0 at (t,2) € R\ Q2.

Let us use the notation M; = {u | u € C?, ||ullc2(qy) < M1}, where M;
is a positive number.

Theorem 1. Assume that ci(z), po,s(2), po,(2) € CY(Q) and ci(z) satisfies

conditions ci(z) > 0, 8':‘: 50

Let (u,v) € M; x C%(Q) be the solutions to problem (7), (8), (9), and
(10) and Uy(z) # 0. Then the following estimate of conditional stability is
valid:

llvll(0) () + llvello) (Re) + llusllz)(Re) < Clluollfy 2 ({z = ODllullz) ™. (15)
Here C does not depend on u and v, k € (0,1).

Proof. Solving the Cauchy problem (8), (10) for v; and estimating it in the
weight L, norm, we obtain :

/ e?7¢() |y, |2dz dt < Ce*TM /‘; ?™0() |u,|2dz dt, (16)
Qe

€

Here we used the meanvalue theorem and the boundedness of the operator
of integration J, (Ju(t) = Jy u(t) dr) in the space Lz(—T,T).

Below C(e) stands for the positive constant. To avoid the numbering
of the constants C(e), each constant is considered to be larger than the
preceding one.

In accordance with the continuation theorem [9, 10], there exists such a

function @ that
&1 () < Cliuollfsz)({z = 0}), (17)
a(t,0) = ug(t), u:(t,0)=0, te€ (-T, 71,

we determine w = u — U.
‘Note that

POrw)? < O(jul? + uel? + |us|? + |Pu* + |Paf*). (18)
Therefore, from estimate (13) we obtain
7'/ e27e(?) (|u|2 + |ue)® + |u,|2)dz dt
Qe
< [ o) (fmul? + pul? + b ) d dt
Qo

< co [ &PO\P(nu)dz dt
Qo
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<cC fn ) (Jul? + Jug 2 + [ f? + [ug]? + |\Pal?)dz dt
0
<c f ) (Juf + fwf + fus? + |Paf)dzdt.  (19)
Q0

Here we used inequality (16) at € = 0.
Choosing 7 > 2C, from (19) we obtain

r fn s (162 + el + o ?) dz dt

<20 ( f e??(?)| Pi|2dz dt +
Qo
27¢(z) 2 2 2
e u|® + |ug|” + |u,|*)dzdt |. 20
Jooa, €70 (1l + el + s ) ) (20)

Factoring minexp(27¢) = exp(2re) outside the integral over 2., and fac-
toring the weight maxima maxexp(27yp) = exp(7¢) and max exp(27y) <
exp(27) outside the integral over )\, /2, after dividing by factor exp(27¢),
we obtain

Tf (|u.|2 + ug)® + |uz|2)dz dt < C(A;e¥(-e) 4 Aze™). (21)
Q.
Here A, = ||ﬁ||fz)(ﬂg), Ap = ﬂﬂﬂ?l)(ﬂo)- We choose

T=(2—¢) " In(42/4;) + C(e).

Then the first term in the right-hand side of (21) is not larger than the
second term. Since @ = u — w, at the given 7 estimate (21) is valid with
u instead of 4. Taking into account the choice of 7 and estimate (17), we
derive from (21) that

lulfy (2) < C AR gl (22)

As v(t,z) = (Jv;)(t, z), and since the operator of integration J in the space
Ly(~T,T) is bounded, the following estimate holds:

10117y (Re) < ClloelFy) (). (23)

Assuming that 7 = 0 in estimate (17), we have
el () < ClueliZy (9-0). (24)

Hence, from estimates (23) and (24) we obtain

12117y (26) + llwellfoy () < CllueliFyy () < Cllullfyy (). (25)
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Therefore, taking into account estimate (22), we get
o1y (©) + llueliyy (@) < CATE ™ A7
Combining this estimate with inequality (22), we obtain estimate (14). O

Corollary 1. Let ci(2), po,s(2), po,i(z) satisfy the conditions of Theorem 1.
Then the solution u, v, x to Problem 1 is unique.

The proof of Corollary 1 is performed in the same way as in [11].
3. One-dimensional inverse problem

for longitudinal waves

Let us consider in half-space R; the following initial boundary value problem
for the equations of porous medla (8, 12]:

2 z
ug — L1(u,v) + X(Z)M—)(“t —-wu)=0, (t2)€Ry, (26)
, PO,a(z)
Vit — LZ(")”) (Z)PO l( ('u't - 'Ut) = ; (t7z) € R;’ (27)
ult:o = Ul (z), ut|t=0 N U2(z)1 v|t=0 = vtlt:O = O) z € R-li-, (28)
has +plimo =0, 2lp| =0, teR. (29)
PO |z=0

Here u(t, z) and v(t, z) are the normal components of the velocity displace-
ment vector of the elastic porous body and liquid, Li(u,v), k = 1,2, are the
second-order differential operators with respect to z (they depend on the
parameters of the medium pg;(2), po,s(2), A(2), u(2), and a(z)) determined
in [12]. .

Problem 2. Determine the functions x(z) (the other functions pg;(z),
po,s(2), A(2), u(z), and a(z) are given) from relations (26)—(29) and

u|z=0 = uO(t)a te [_T) T] . (30)

We consider that x() € C(R}), pog(2), pos(2), A(2), w(2), al2) €
C?%(R{") and the velocities of the first longitudinal wave ¢, () are as follows:

dcy, (2)

2, z € Rf. _ (31)

c,(z) >0,
Assuming that ¢ = 0 in (26), we obtain the following formula for x(z):

-
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) = P0ss(2) L1(U1,0) — un(0, 2)
x7) P%(2) Us(z) ’

(32)

Let us exclude the friction coefficient x(z) from equations (26) and (27) by
using (32). We obtain differential second-order equations with a nonlocal
operator for u,v:

L1(U1,0) e utt(O,z)
Uz(z)

_ po,s(2) L1(U1,0) — ug(0, 2)

po,i(2) Ua(z)

Let us use the following notation:

Ut — L]_(U,’U) %+

(ut - Ut) =0, (t) Z) € R;-) (33)

vyt — La(u,v) (ut —v) =0, (t,2) € RS. (34)

M; = {u,v | u,v € C?, lullc2(ag) + lIvllc2(o) < M2},
where M, is a positive number.

Theorem 2. Assume that the velocity c;,(z) satisfies condition (31).
Let (u,v) € My be the solutions to problems (28)-(30), (33), and (34)
and Uz(z) # 0. Then the following estimate of conditional stability is valid:

01l (0) () + llvell o) (Re) + llaell 1y ()
< Clluallfsz)({z = 0D (llull ) + lIvll(z))**.
Here C does not depend on u and v, k € (0,1).

The proof of this theorem is similar to that of Theorem 1.

Corollary 2. Let ¢;, satisfy the conditions of Theorem 2. Then the solution
u,v, X to Problem 2 is unique.

The proof of Corollary 2 is performed in the same way as in [11].

4. Multidimensional inverse problem

for equations of porous media
Let us use the following notation: u(Z) = (u1(), u2(),u3(z)) and v(z) =
(v1(Z),v2(&),v3(&)) are the velocity vectors of the elastic porous body and
liquid, respectively,

Ms = {u,v | u,v € Wy, lull5)(Qo) + [[v]|4)(Qo) < M},

M3 is a positive number,
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z = (z,t) € R4, T= (z1,%2,%3), t= 24,
(u,v) = wv1 + ugv2 + usvs, lu| = (“,'4‘)1‘!2

9 .
D< =D§"Dg2D§'3Dg’, Dj ="i'6;1 a = (01:‘--,'14): la| = Zajl
J

i( )2 (_?_ 9 i)
B:c, 3:!:1"3:1:2’3%; !

¢=—a:2—:r:2——2z2+4a:1:3—9t2+r2 a-——z—é B=ﬁ
172 3 ! 4d 2’ T?’

Q,:Qﬂ{¢>cr}, Q=Gx (—TrT)l r=Tx (_T‘DT)!
I' = 8GN {z3 =0}, G={$l—d<m3<0, \‘/$%+:B§<r},

d, T are some positive numbers.

Assume that the domain D = {G x (0,T)} N {¢ > 0} is filled with an
isotropic-porous medium. The parameters of the medium A(z), p(z), a(z),
po,s(z), and po;(z) are elements of the space 02(9) NWHN), 2 ={Gx{t=
0}} n{v > 0}. In what follows these conditions are considered satisfied.

The wave propagation process in such a medium is described by the
following initial boundary value (direct) problem:

uy — Li(u,v) = Fy, vy —La(u,v)=F; at D, u,ve W4(D), (35)

u=v=u=v,=0 at {Gx{0}}n{y>0}, (36)

his + Péi3 = 0, ’-::l'iP —0at {Gx(0,T)}Nn{$p>0} i=123 (37
0 .

Here §;; is the Kronecker symbol, the operators Li(u,v), k = 1,2, are
determined in [12].

Problem 3 (3, 4]. Determine three functions (u,v,9), F: = Fg, g = 0,
from (35)—(37) using the additional condition

u=u’ at {Tx(O,T)}n{y>0} (38)

at the given F (&), A(z), p(z), a(z), po,(z), po(2)-
Assuming that ¢ = 0 in the first equation of system (35), we exclude the
unknown function g(x) from the system of equations (35) and making an

even continuation (u(t,z) = u(—t,z), v(t,z) = v(—t,z)) of the functions u
and v over t at [—T', 0], we obtain
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uy — Li(u,v) = FF1(0,z)uy(0,2) and

vy — La(u,v) = FF1(0,2)uy(0,z) at Qo, (39)
v=v:=0 at {Gx{0}}n{y >0}, (40)
u=G% wu,,=G! at 3, (41)

Here
G’ = u’?) G' = (G%7G§aG§)7 Gllc = ~’u'gt:z:ka k=1,2,

1 A (32 + 1)K + poposa+ (pda — K)(X — popo,,) /03 §
P42 — (B £ 1)K + poposa + (g — K) (X - popo,s)/ ok

0
(u(l)tzl + ug4z, )

Let us introduce the following conditions:

2 on} o
0 <nj 0<6_a:3 at Q, j=t,l. (42)

Theorem 3. Assume that nj(z),j = t,l;, satisfy condition (42), the coeffi-
cients of the matrices F belong to C2 (_Q—o) and det F # 0 at Qo N {t = 0}.
If a and T are chosen such that

4d? + 2V2njrd < r?, j=1t,1,

1 377.2 = 5
3n]2~ + 5(31'"’?::1 + z2n.?zz) . aﬁ -k 7= gy

rznf L, rz(n]?/T+ Ianl/n?) <T at Q, j=tl,

then the solutions u,v € M3 to problem (39)—(41) satisfy the following
estimate of conditional stability:

vl (Qe) + llulifs) (Qe)
' (1-k)
< C()lu?fF2) (Do) (10113 (Qo) + llulity (Q0)] .
Here C(¢) is a positive constant that does not depend on u and v, k€ (0,1).

The proof of the theorem is similar to that from (4] with the use of the
idea from Section 1.

Corollary 3. Let F,F;, n?, J = t,l1, satisfy the conditions of Theorem 3.
Then the solution (u,v,g) to Problem 3 is unique.

The proof of Corollary 3 is performed in the same way as in (13].
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5. Combined one-dimensional inverse problem
for equations of electrodynamics
and porous media

Let us consider the following initial bounda.ry value problems for a parabolic
equation in [6, 14] in the half-space R :

E; — Uul(z)Ezz = H(c:((;)) ut + t;'z((:)) Ut): (t,z) € R-2+! (43)
Eli—o = Er(2), z€ R, (44)
07 'E,|;—0 =0, t€R;. (45)

Here E(t,z) is the horizontal component of electric field intensity, o(z) =
01(z) + 05(2), 01(2) and o4(z) are the conductivities of the liquid and elastic
porous body, respectively.

Problem 4 (5). Determine the functions o;(z), o4(2), and x(z) (the other

functions po1(2), pos(z), #(z) (or poa(2), Pos(2), A(2), p(2), al2)), and the
constant H are known) from relations (1)—(5), (26)—(30), (43)—(45), and

Elz:D = Eﬂ(t)a te [—T, T] (46)

Note that the right-hand side of equation (43) has a known quantity.
Actually, solving the Cauchy problems (7)-(10), (28)—(30), (33), and (34)
for transverse (longitudinal) waves, we determine the functions u and v.
Then, using Archie’s law [7] and the formula o,/0 = 1 — p7, we determine
the right-hand side of (43). ,

Lemma 2. Let 0;(2),04(z) € C}RY), o1(z) > 0, 04(z) > 0, and E(t,z)
be the solution to the initial boundary value problem (43)—(45) such that
E(t,z) € My. Besides, 8*Ey(z)/82z* # 0, z € R, u(t, 2),v(t, z) € C*(RY).
Then the function Eqy(t), t € (=T, T), uniquely determines the function o(z).

The proof of the lemma follows from [15, Theorem 1, p. 95].

Theorem 4 (5). Let u(t,z), v(t,z), E(t,z) be the solution to the initial

boundary value problem (1)—(5), (26)—(30), (43)—(45) such that E(t,z) €

My, (u(t,z),v(t,z)) € M1 xCHQ) (u(t,z),v(t,z) € Msz). Besides,

Us(z) # 0, 8%Ey(2)/02* # 0, z € R, x(2) € C[0,00), a1(2),04(z) €

C?[0,00) and conditions (12) (or (31)) are satisfied. Then the functions
ug(t), Eo(t), t € (-T,T), uniquely determine the functions x(z), oi(2),
ou(z)

The proof of the theorem follows from Theorem 1 (2) and Lemma 2 with
the use of Archie’s law (as in [6, Section 1]).
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