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Modeling the 2D seismic waves propagation from
singular sources in porous media based on

the Laguerre spectral method∗

Kh.Kh. Imomnazarov, A.A. Mikhailov, A.T. Omonov, S. Tordeux

Abstract. A linear two-dimensional problem in the form of dynamic equations of
porous media for the components of velocities, stresses and pressure is considered.
Dynamic equations are based on conservation laws and are consistent with the ther-
modynamics conditions. The medium is considered to be ideal (there is no energy
loss in the system) isotropic and two-dimensional inhomogeneous with respect to
space. For the numerical solution of the problem posed, the method of integrating
the integral Laguerre transform with respect to time with finite-difference approx-
imation in spatial coordinates is used. The solution algorithm employed makes it
possible to efficiently carry out simulations in a complex porous medium and to
study the wave effects arising in such media.

Introduction

Studying of the processes of convective heat and mass transfer in saturated
porous media conventionally occupy one of the central places among modern
problems of the theoretical thermal physics. This is primarily due to the rel-
evance of studying the internal mechanisms of mass and energy transfer in a
porous medium, including predictions and assessment of the effectiveness of
the use of porous materials in various fields of engineering and technology.
Porous media are widespread and are diverse both in natural and artificial
materials. Therefore, the study of filtration processes takes an important
place in biology, hydrology, hydrodynamics, as well as in mechanical engi-
neering, the production of composite materials [1–5] and others.

The first publication to formulate the problem of studying the features
of macroscopic mass transfer in a porous medium saturated with a liquid
was a report on the experimental research by a graduate of the Ecole Poly-
technique, France engineer G. Darcy, published in Paris in the middle of
the 19th century [6]. A year later, Darcy published a theoretical study with
an analysis of experimental data and the derivation of the known relation-
ship between the velocity of the saturating fluid and the pressure (or head)
gradient in a porous medium, which was later named after him [7]. The
fundamental nature of the approach and a detailed analysis of the questions
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posed in these publications have a solid basis for a new branch of hydrody-
namics –– the theory of filtration of liquids and gases in a capillary-porous
medium.

When modeling the propagation of seismic waves in a porous medium,
the Frenkel-Biot model is often used [8, 9]. Later, a thermodynamically
consistent nonlinear mathematical model was proposed for describing elas-
tically deformable processes in a porous medium. It was proposed in [10]
based on first general physical principles. The peculiarity of the models
discussed is the existence of three types of sound vibrations: transverse and
two types of longitudinal. In contrast to models of the Frenkel-Biot type, in
the linearized model [10], the medium is described by three elastic parame-
ters [11, 12]. These elastic parameters are one-to-one expressed by the three
velocities of elastic vibrations. This circumstance is important for the nu-
merical simulation of the propagation of elastic waves in porous media, when
the distributions of the velocities of acoustic waves and physical densities of
the matrix, saturating a fluid, and porosity are known.

In this paper, we numerically solve a system of linearized equations for
porous media from [11, 12] in the absence of energy dissipation in the two-
dimensional case. The original system is written down as a hyperbolic sys-
tem in terms of matrix velocities, saturating fluid velocity, stress tensor and
fluid pressure. For the numerical solution of the problem posed, the method
of combining the analytical transformation and the finite-difference method
is used. The algorithm proposed is based on the use of the integral La-
guerre transform with respect to the time coordinate. This method can be
considered as an analogue of the well-known spectral method based on the
Fourier transform. However, in contrast to it, the use of the integral La-
guerre transform in time allows us to reduce the original problem to solving
a system of equations in which the separation parameter is present only in
the right-hand side of the equations and has a recurrent dependence. This
method for solving dynamic problems of the elasticity theory was first con-
sidered in [13, 14] and then developed for problems of viscoelasticity [15, 16].
In these published works, the distinctive features of this method from the
accepted approaches are considered, and the advantages of using the inte-
gral Laguerre transform in contrast to the difference method and the Fourier
transform with respect to time are discussed. In particular there, it is shown
that this solution algorithm is effective in modeling the wave processes in
media with sharply contrasting boundaries, such as earth-water-atmosphere.

1. Formulation of the problem

Let us consider the formulation of the dynamic problem of the propagation
of seismic waves from singular sources in media consisting of elastic and
porous layers. In this case, the propagation of seismic waves in a porous
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medium saturated with a liquid in the absence of energy loss is described
for the Cartesian coordinate system in a half-plane x2 ≥ 0 by the following
initial-boundary value problem [11, 12, 17]:
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where ~u = (u1, u2) and ~v = (v1, v2) are the velocity vectors of an elastic
porous body with a partial density ρ0,s and a liquid with a partial density
ρ0,l, respectively, p is the pore pressure, σik is the stress tensor ρ0 = ρ0,l+ρ0,s,

ρ0,s = ρf0,s(1−d0), ρ0,l = ρf0,ld0, ρ
f
0,s, and ρf0,l are the physical densities of the

elastic porous body and the liquid, respectively, d0 is the porosity, δik is the
Kronecker symbol, K = λ + 2µ/3, λ > 0, µ > 0 are the Lame coefficients,
α = ρ0α3 + K/ρ20, ρ

3
0α3 > 0 is the modulus of volumetric compression of

the liquid component of the heterophase medium, ~F = (F1, F2) is the vector
of mass forces, f(t) is the simulated time signal in the source. F1 and F2

are the components of the force vector describing the action of a source
localized in space. The values of these components depend on the type of
the simulated source:

• For a source of the “vertical force” type

F1 = 0, F2 = δ(x1 − x0) δ(x2 − z0);

• For a source of the “center of pressure” type

F1 = δ(x2 − z0)
∂δ(x1 − x0)

∂x1
, F2 = δ(x1 − x0)

∂δ(x2 − z0)

∂x2
;

• for a source of the “dipole without moment” type

F1 = 0, F2 = δ(x1 − x0)
∂δ(x2 − z0)

∂x2
.

Here x0, z0 are the spatial coordinates of the source.

Elastic moduliK, µ, α3 are expressed through the velocity of propagation
of the shear wave cs and the two velocities of the longitudinal waves cp1 , cp2 ––
by the following formulas [18, 19]:
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2. The solution algorithm

To solve problem (1), we apply the integral Laguerre transform with respect
to time [14, 15]:

−→
Wm(x1, x2) =

∫ ∞
0

−→
W (x1, x2, t)(ht)
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where lαm(ht) are the Laguerre functions.
As a result of this transformation, the original problem (1) is reduced to

a two-dimensional spatial differential problem in the spectral domain:
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To solve the above problem, we will use the finite difference approxi-
mation of derivatives with respect to spatial coordinates on staggered grids
with the 4th order of accuracy [20]. To do this, in the computational domain
in the direction of the coordinate z = x1, the grids ωz1 and ωz1/2 with a
discretization step ∆z are shifted relative to each other by ∆z/2:
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ωz1 = (x, j∆z, t), ωz1/2 = (x, j∆z + ∆z/2, t), j = 0, . . . ,M.

Similarly, we introduce in the direction of the coordinate x = x2 the grids
ωx1 and ωx1/2 with the discretization step ∆x shifted relative to each other
by ∆x/2:

ωx1 = (i∆x, z, t), ωx1/2 = (i∆x+ ∆x/2, z, t), i = 0, . . . , N.

On these grids, we introduce the differentiation operators Dx and Dz

approximating the derivatives
∂

∂x
and

∂

∂z
with the fourth order of accuracy

in the coordinates z = x1 and x = x2. Let us define the components of the
solution vector at the following grid nodes:

u1(x, z), ν1(x, z) at ωx1 × ωz1,
u2(x, z), ν2(x, z) at ωx1/2 × ωz1/2,

σ11(x, z), σ22(x, z), P (x, z) at ωx1/2 × ωz1,
σ12(x, z) at ωx1 × ωz1/2.

As a result of the finite-difference approximation of problem (2), we
obtain a system of linear algebraic equations. Let us represent the required
solution vector W in the following form:

W = (V0,0, V0,1, . . . , VM,N )T ,

Vi,j = (ui,j1 , u
i+1/2,j+1/2
2 , νi,j1 , ν

i+1/2,j+1/2
2 , σ

i+1/2,j
11 , σ

i+1/2,j
22 , σ

i,j+1/2
12 , P i+1/2,j).

Then, this system of linear algebraic equations in the vector form can be
written down as (

A+
h

2
E
)
Wm = Fm−1.

As a result, the matrix of the system of the reduced problem is well con-
ditioned, which makes it possible to use fast methods for solving systems of
linear algebraic equations based on iterative methods, such as the conjugate
gradients, converging to the desired solution with the required accuracy in
just a few iterations.

3. Numerical results

We present the numerical results of modeling the seismic wave fields for a
test medium model consisting of two isotropic layers –– the upper layer is
water and the lower one is a porous medium. The physical characteristics
of the layers were specified by the following parameters:

• the upper layer–– ρ = 1 g/cm3, cp = 1.5 km/s, cs = 0;
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• the bottom layer –– ρf0,s = 1.5 g/sm3, ρf0,l = 1 g/sm3, cp1 = 2.1 km/s,

cp2 = 0.6 km/s, cs = 1.3 km/s, d = 0.2.

The wave field was simulated from a point source of the dipole type
without a moment with the coordinates x0 = 3 km, z0 = 1.5 km, which is
located in the upper water layer. The time signal in the source was set in
the form of the Puzyrev pulse with a carrier in the form

f(t) = exp

(
−2πf0(t− t0)2

γ2

)
sin(2πf0(t− t0)),

where γ = 4, f0 = 10 Hz, t0 = 0.15 s.

Snapshots of the wave field of the displacement velocity at the time instants T = 1
(top) and 1.8 (bottom) seconds: the left for the component ux(x, z), the right for
the component uz(x, z)
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The results of numerical calculations of the wave field for a given model
of the medium are presented in the figure. The interface between the layers
is shown by a solid line.

The figure shows that when a longitudinal wave emitted by a source of a
given type falls on the interface between the layers, the corresponding types
of waves in a given medium are formed. In the water layer, the longitudinal
waves reflected from the boundaries appear, and in the lower porous layer,
two types of the longitudinal waves P1 and P2 and the transverse wave S
appear.
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