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Two-phase flows in an inclined channel∗

Sh.Kh. Imomnazarov, K.E. Sorokin

Abstract. The application of a hydrodynamic model of the two-velocity media
flow of to non-stationary problems of the heterophase flows motion in channels is
considered. Various flow regimes of such media are studied for given penetration
rates for initially inhomogeneous flow at various values of channel inclination.

The presented mathematical model can be used for describing various types
of geological fluid, fluid-magmatic, hydrothermal systems, as well as for describing
convective heat and mass transfer in ore-magmatic systems.
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1. Mathematical model

Let us consider a system of equations for a pressure-equilibrium two-velocity
model of a compressible two-phase medium that takes into account energy
dissipation through phase viscosity, thermal conductivity, and interfacial
friction. The heterophase medium flow is determined by the equations de-
scribing the conservation laws for mass, momentum, and entropy [1]:
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This system is closed by the equations of state
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∗The work was carried out according to the state order for the Institute of Geology
and Mineralogy of the Siberian Branch of the Russian Academy of Sciences.
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where
cp = cphps (1− φ) + cphpl φ, αT = αph

Ts(1− φ) + αph
T lφ,

αQ = αph
Qs(1− φ), βP = βphPs(1− φ) + βphPlφ.

Here ux, uy, vx, vy, ρ, ρl, ρs, s, P , Q, T are unknowns for the models,

αph
Qs, α

ph
Ts, α

ph
T l , β

ph
Ps, β

ph
Pl , c

ph
ps , cphpl are thermodynamic parameters of phases,

φ is the volumetric content of dispersed phase, ηs, ηl are phase viscosities,
ℵ is the coefficient of thermal conductivity, b =

ηl
ρk

is the coefficient of

interfacial friction, and k is the permeability coefficient.

2. Problem statement

Figure 1

The paper considers the pressure-driven flow of a
viscous two-phase medium in a flat channel in a
gravity field. As the calculation area, a rectangular
area was chosen with the side walls parallel to the
coordinate axes x, y (Figure 1).

On the lateral boundary x = 0, the no-flow and
no-slip boundary conditions are set:

ux|x=0 = uy|x=0 = 0,

Similar statements are set for the components of ve-
locity vector of the second phase and on the lateral
boundary x = Lx of the computational domain.

At the “inlet” boundary y = 0, the veloc-
ity vector components for the dispersed phase are
specified:

ux|y=0 = uinx , uy|y=0 = uiny ,

and similar relations can be written for the components of the carrier phase
velocity vector.

The following conditions are imposed on the “output” boundary for the
components of the velocity vector of the dispersed phase:

∂ux
∂y
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y=Ly

= 0,
∂uy
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∣∣∣
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= 0,

and similarly for the components of the carrier phase velocity vector.

3. Numerical results

Numerical calculations were carried out and results were obtained for the
models with the following physical parameters of a two-phase medium: phys-
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ical phase densities ρs = 8.8 · 102 kg/m3, ρl = 9.9 · 102 kg/m3, phase viscosi-
ties of the carrier phase ηl = 0.001 N · s/m2, and dispersed phase viscosity
ηs = 0.1 N · s/m2. The rest of the parameters correspond to the normal con-
ditions. The value of the velocity vector component of the dispersed phase
usy = 0.1 m/s and, similarly, of the carrier phase usy = 0.1 m/s.

The calculations were carried out in a channel with the inclination angle
of 0, 5, and 25◦.

3.1. Calculations for a horizontally oriented channel. The distribu-
tion of the volumetric content of the dispersed phase and temperature in
a channel with the inclination angle of 0◦ for high and low values of the
Reynolds number are shown in Figures 2–5.

Figure 2. Volumetric dispersed phase content at the time points of 1,000, 5,000,
10,000, 20,000, 40,000 (Re = 1875, inclination angle 0◦)

Figure 3. The two-phase medium temperature at the time points of 1,000, 10,000,
40,000 (Re = 1875, inclination angle 0◦)
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Figure 4. Dispersed phase volumetric content at at the time points of 1,000, 5,000,
10,000, 20,000, 40,000 (Re = 188, inclination angle 0◦)

Figure 5. Two-phase medium temperature at the time points of 1,000, 10,000,
40,000 (Re = 188, inclination angle 0◦)

Figure 6. Volumetric content of the dispersed phase at the time points of 1,000,
5,000, 10,000, 20,000, 40,000 (Re = 1875, inclination angle 5◦)
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Figure 7. Two-phase medium temperature at the time points of 1,000, 10,000,
40,000 (Re = 1875, inclination angle 5◦)

Figure 8. Volumetric content of the dispersed at the time points of 1,000, 5,000,
10,000, 20,000, 40,000 (Re = 188, inclination angle 5◦)

Figure 9. Two-phase medium temperature at the time points of 1,000, 10,000,
40,000 (Re = 188, inclination angle 5◦)

3.2. Calculations for a channel with a small inclination angle. The
volumetric content distribution for dispersed phase and the temperature
distribution in a channel with the inclination angle of 5◦ for high and low
values of the Reynolds number are shown in Figures 6–9.
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Figure 10. Volumetric content of the dispersed phase at the time points of 1,000,
5,000, 10,000, 20,000, 40,000 (Re = 188, inclination angle 25◦)

Figure 11. Two-phase medium temperature at the time points of 1,000, 10,000,
40,000 (Re = 188, inclination angle 25◦)

3.3. Calculations for a channel with a big inclination angle. The
volumetric fraction for the dispersed phase and the temperature for dif-
ferent times for the case of two-phase pressure flown a channel with the
inclination angle of 25◦ for low value of the Reynolds number are shown in
Figures 10, 11.

Conclusion

Setting different values for the phase velocities at the inlet boundary does
not lead to a change in the qualitative flow pattern. For a difference in the
boundary values of the velocities for both phases (even by a factor of three),
we observe only a minor quantitative difference in the nature of flow.
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