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Traveling SH waves in a fluid-saturated
porous medium*

B.Kh. Imomnazarov, Kh.Kh. Imomnazarov

Abstract. New solutions to wave equations with variable coefficients describing
traveling SH waves in a porous medium, taking energy dissipation into account,
are obtained. These solutions are obtained using transformation methods, where
equations with variable coefficients can be reduced to equations with constant co-
efficients.

Introduction

In oil field development, the question of reservoir parameter changes during
well operation is of particular interest. For this purpose, reservoir filtration
parameters (RPP) studies were conducted at the Romashkinskoye field site
in September 1980 and July 1981 using the automated reservoir production
monitoring system. An experiment to determine the dependence of RP on
reservoir pressure was also conducted at this site. The RPP studies, using
the filtration pressure wave (FPW) method at a reservoir pressure of 155
ppm atm, revealed slight RPP heterogeneity across various wellbore inter-
vals. Harmonic Fourier analysis of the experimental results revealed signifi-
cant phase shift changes in two of the three studied directions. The increase
in piezoconductivity at the interwell interval 4379a–9793 was 45%, and at
the interval of wells 4379a–9794–– 26% [1]. As noted in [2], a feature of fluid
motion in fractured-porous media is the exchange of fluid between blocks
and fractures. Non-stationary processes in fractured-porous media after a
certain time, which is defined as the delay time, proceed in the same way as
in a homogeneous porous medium. With regard to the FVD method, it can
be concluded that the greater the period of oscillations created in the forma-
tion compared to the delay time, the more accurately the fractured-porous
formation is described by the model of a homogeneous porous formation.

In the book [3] an important experimental fact is noted that if a sound
vibration receiver is lowered into the borehole of a well filled with water and
the energy spectrum of the noise is measured, then a resonant frequency can
be identified at the level of the fluid-saturated formation.

Non-stationary processes are described by the equations of filtration the-
ory in fractured-porous media. As noted in [4,5] and other works, due to the
relatively high permeability of the interblock space, Darcy’s approximations

*Supported by Project FWNM-2025-0004 of the SB RAS state assignment.



2 B.Kh. Imomnazarov, Kh.Kh. Imomnazarov

for describing non-stationary processes may, in principle, be invalid. The
law of conservation of mass and the equations of fluid motion in the case
where the velocity of an elastic porous body uf = 0 and the stress tensor
hik = 0 are described by the following system of differential equations [6]

∂ρl
∂t

= div(ρlv) = 0, (1)

∂v

∂t
+ χρlv =

1

ρ
∇p. (2)

In formulas (1) and (2), v = v(t,x) is the filtration rate of liquid in an elastic
porous medium with partial density ρl = ρl(t,x), ρ = ρl(t,x) + ρs(t,x),
ρs(t,x) and p = p(t,x) are the partial density of the matrix and pressure,
respectively, χ = χ(t,x) is the coefficient of friction, t is time, x = (x, y, z)
is the point from R3.

As noted in [6], when considering problems of isothermal non-stationary
rectilinear-parallel filtration of a homogeneous liquid in an isotropic porous
medium, taking into account the finite speed of propagation of disturbances,
the filtration law is usually used

w + τ
∂w

∂t
= − k

µl

∂p

∂x
. (3)

Here τ is the time constant, k is the permeability coefficient, and µl is the
viscosity of the liquid.

Comparing the first equation (2) with equation (3), we obtain an expres-
sion for determining the constant τ through the friction coefficient χ0 and
the partial density ρ0,l of the liquid in the Dorovsky model

τ =
1

χ0ρ0,l
.

The paper studies the one-dimensional direct problem of seismic wave prop-
agation in a porous medium.

1. Statement of the problem

Let us consider the propagation of seismic waves in a heterogeneous porous
medium, taking into account the energy loss due to the friction coefficient
χ(x):

ρs(x)
∂2u

∂t2
− ∂

∂x

(
µ(x)

∂u

∂x

)
− ρ2l (x)χ(x)

(∂u
∂t

− ∂v

∂t

)
= 0, (4)

∂v

∂t
+ ρl(x)χ(x)(u− v) = 0, (5)

where µ(x) is the shear modulus.
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To find the solution to this system in the form of a traveling wave, we
will use a transformation (mapping) technique that reduces the system of
equations (4), (5) with variable coefficients to a system of equations with
constant coefficients [7–9]. To do this, we make the following substitution
into the system of equations (4), (5):

u(t, x) = A(x)U(t, ξ(x)), v(t, x) = A(x)V (t, ξ(x)),

where A(x), U(t, ξ(x)), V (t, ξ(x)), and ξ(x) are four unknown functions to
be determined. Then this system of equations (4), (5) is transformed into a
system of equations with variable coefficients

ρs(x)

[
∂2U

∂t2
− µ(x)

(dξ(x)
dx

)2∂2U

∂x2

]
+

(µ(x)A′(x))′ −A(x)ρ2l (x)χ(x)
(∂U
∂t

− ∂V

∂t

)
= 0, (6)

A(x)
∂V

∂t
+A(x)ρl(x)χ(x)(U − V ) = 0, (7)

Since system (6), (7) contains three unknown functions, three conditions
can be imposed to determine them uniquely. In [10], the following choice of
these conditions in the form of three equations was proposed:

c2t (x)
(dξ(x)

dx

)2
= 1, (8)

dct(x)

dx
+ 2

ct
A

dA(x)

dx
+

ct
ρs

dρs
dx

= 0, (9)

1

ρsA

d

dx

(
ρsc

2
t (x)

dA(x)

dx

)
= P, (10)

where P is an arbitrary constant, ct(x) is the shear wave velocity. When
conditions (8)–(10) are satisfied, the system of equations (6), (7) is reduced
to a system of equations of the form with constant coefficients at the highest
derivatives

∂2U

∂t2
− ∂2U

∂x2
− PU − ω(x)ε(x)

(∂U
∂t

− ∂V

∂t

)
= 0, (11)

∂V

∂t
+ ω(x)(U − V ) = 0, (12)

where ω(x) = ρl(x)χ(x), ε(x) =
ρl(x)

ρs(x)
.

The system of equations (11), (12) implies the existence of evanescent
traveling waves (in particular, monochromatic traveling waves). If the wave
is not monochromatic, we can use the Fourier or the Laplace transform to
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analyze the waveform. However, waves traveling in opposite directions do
not interact with each other.

Equation (8) is called the eikonal equation [11, 12] and defines the tran-
sition to the phase of the wave (for definiteness, a wave propagating to the
right is taken) or the time of passage

ξ =

∫ x

x0

dy

ct(y)
.

Equation (9) defines the relationship between the wave amplitude and the
acoustic stiffness of the porous medium (ρs(x)ct(x)):

A(x) =
const√

ρs(x)ct(x)

and this formula coincides with the famous Green’s law (for liquid media in
the case of constant density), known from the law of conservation of energy
flow in media with slowly changing parameters [13, 14]. Note that here we
do not impose a condition on the slow change of the medium with depth.

Conclusion

The problem of the existence of traveling waves in inhomogeneous porous
media is important for explaining wave propagation over long distances.
New solutions to wave equations with variable coefficients describing trav-
eling SH waves in a porous medium, taking energy dissipation into account,
are considered. These solutions are obtained using transformation methods,
where equations with variable coefficients can be reduced to an equation
with constant coefficients.
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