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A combined inverse tsunami problem∗

Sergey Kabanikhin, Olga Krivorotko

Abstract. It is known that some of the parameters required for the direct simu-
lation of tsunamis are the bottom relief characteristics and the initial perturbation
data (a tsunami source). The seismic data about the source are usually obtained in
a few tens of minutes after an event has occurred (the seismic waves velocity being
about five hundred kilometers per minute, while the velocity of tsunami waves is
less than twelve kilometers per minute). A difference in the arrival times of seismic
and tsunami waves can be used when operationally refining the tsunami source
parameters and modeling expected tsunami waves on the shore. The most suit-
able physical models related to the tsunamis simulation are based on the shallow
water equations. We investigate three different inverse problems of determining a
tsunami source using three different additional data: DART measurements, satel-
lite wave-form images and seismic data. We investigate a gradient-type and SVD
inverse problem solution and show that using a combination of three different types
of data allows one to increase the stability and convergence of numerical inverse
problem solution. Results of numerical experiments of the tsunami source recon-
struction are presented and discussed.

1. Introduction

Tsunamis are gravitational, i.e., gravity-controlled waves resulting from
abrupt large-scale perturbations arising during seaquakes, underwater vol-
cano eruptions, underwater landslides, rock fragment falls, underwater ex-
plosions, etc. More than 250 tsunamis were observed in the 20th century,
about 90 percent of all of them are generated by seaquakes. Hence, a central
component of the early warning system is quick detection and evaluation of
earthquakes. For this aim, various ocean measuring instruments positioned
on the ocean floor, on buoys or in the form of tide gauges are used to recog-
nize an approaching tsunami. The recent severe tsunamis occurred in Japan
(2011), Sumatra (2004), and on the Indian coast (2004) have shown that a
system giving exact and immediate information about tsunamis is of vital
importance. Mathematical modeling and numerical simulations are the most
used instruments for providing such an information. It is known that some
of the parameters required for direct simulation of tsunamis are bottom relief
characteristics and initial perturbation data (a tsunami source). The seis-
mic data concerning the source are usually obtained in a few tens of minutes
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after the event, (the seismic waves velocity being about five hundred kilo-
meters per minute, while the velocity of tsunami waves is less than twelve
kilometers per minute). A difference in the arrival times of seismic and
tsunami waves can operationally be used when refining the tsunami source
parameters and modeling expected tsunami waves on the shore. Most suit-
able physical models related to simulation of tsunamis are based on shallow
water equations (see, [1–3] and references therein). For the tidal motion,
even a very deep ocean may be considered as shallow as its depth will al-
ways be much smaller than the tidal wave length [1, 4]. The shallow water
equations (also called the Saint Venant equations in their uni-dimensional
form) are a set of hyperbolic partial differential equations that describe a
flow below the pressure surface in a fluid. The equations of shallow water
theory are based on the following assumptions: the vertical acceleration of
liquid particles is inessential versus the acceleration of gravity, and the hori-
zontal velocities depend but slightly on the vertical coordinate. In this case,
the vertical velocity component (versus the horizontal components) may be
ignored.

In the Cartesian coordinate system, we formulate the initial boundary-
value problem

ηt + (Hu)x + (Hv)y = 0,
ut + gηx = 0,

vt + gηy = 0, (x, y, t) ∈ ΩT := Ω× (0, T ) ⊂ R3, T > 0;

η(x, y, 0) = q(x, y), u(x, y, 0) = 0, v(x, y, 0) = 0, (x, y) ∈ Ω ⊂ R2,

(1)

for the linear equations of shallow water theory in terms of the liquid flow
components in the dimensional form; Ω := {(x, y) ∈ R2 : x ∈ (0, Lx), y ∈
(0, Ly), Lx, Ly > 0} is assumed to be a rectangular domain. It is assumed
that the action of external forces, e.g., the Coriolis force and the bottom fric-
tion, are zero. Note that most of the benchmark problems use no bottom
friction. Here η(x, y, t) defines the free water surface vertical displacement,
i.e., the amplitude of a tsunami wave, the function H(x, y) > 0 describes the
bottom relief (bathymetry), u(x, y, t) and v(x, y, t) are the depth-averaged
velocities in the Ox and Oy directions, respectively, g = 9.8 m/s2 is the
acceleration of gravity. Further, c(x, y) =

√
gH(x, y) is the tsunami propa-

gation velocity, according to the long-wave theory the propagation velocity
for tsunami waves, and q(x, y) is the amplitude of a tsunami wave. It is as-
sumed that q(x, y) is a finite function with the compact support supp q ⊂ Ω.

Differentiating the first equation in system (1) with respect to the time
variable t > 0, then using the second and the third equations of this sys-
tem, we obtain the following initial boundary value problem in terms of the
function η(x, y, t) for the second order hyperbolic equation:
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Lη := ηtt − div(c2(x, y) grad η) = 0, (x, y, t) ∈ ΩT ;
η(x, y, 0) = q(x, y), ηt(x, y, 0) = 0, (x, y) ∈ Ω,
η(x, y, t) = g(x, y, t), (x, y, t) ∈ ∂Ω× (0, T ).

(2)

Here g(x, y, t) is a smooth function defined on the boundary.
With respect to the admissible initial perturbations q(x, y) and the co-

efficient H(x, y), we will assume that

q ∈ H1(Ω), supp q ⊂ Ω, H ∈ L∞(Ω). (3)

For a given initial perturbation q(x, y), the hyperbolic problem (2) is
defined to be a direct (or forward) problem. The solution of the direct
problem will be defined as η(x, y, t; q) ∈ C[0, T ]∪H1(Ω), in order to indicate
its dependence on the the initial perturbation q(x, y).

2. The DART data as additional information for the inverse
problem

One of the tsunami inversion techniques is mainly used to reconstruct the
properties of tsunamigenic sources from tsunami records on the set of points
{(xm, ym) ∈ Ω, m = 1, 2, . . . ,M, M ∈ N} (a discrete set of measured output
data) or along some smooth simple line γ(s) := (x(s), y(s)), s ∈ (0, 1), during
the time t ∈ (T1,m, T2,m) ⊂ (0, T ) (Deep-Ocean Assessment and Reporting
of Tsunamis, DART). This inverse problem is considered in [5, 6].

We assume that the free surface oscillation data at (xm, ym) are given as
measured output data:

fm(t) := η(xm, ym, t)χm(t), (xm, ym) ∈ Ω, m = 1, 2, . . . ,M, (4)

or, equivalently, fγ(t) := η(x(s), y(s), t)χm(t), (x(s), y(s)) ∈ γ(s), s ∈ (0, 1).
Here χm(t) is a characteristic function of the interval (T1,m, T2,m). Without
loss of generality we assume that (T1,m, T2,m)∩(T1,k, T2,k) = ∅, for all m 6= k,
m, k = 1, 2, . . . ,M .

The ocean domain in question is bounded from above by the free surface
η(x, y, t), and from below––by the bottom relief H(x, y). The lateral bound-
ary ΓT := ∂Ω × (0, T ) is assumed to be a non-reflecting boundary, that is,
it allows a free passage of propagating waves. Thus, the following bound-
ary conditions are assumed at the lateral boundary ΓT = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4,
Γi ∩Γj 6= 0, i 6= j, of the domain ΩT (the type of boundary condition in (2)
instead of g(x, y, t):

ηt − c(x, y)ηx = 0, (x, y, t) ∈ Γ1 := {(x, y, t) ∈ ΓT : x = 0},
ηt + c(x, y)ηx = 0, (x, y, t) ∈ Γ2 := {(x, y, t) ∈ ΓT : x = Lx},
ηt − c(x, y)ηy = 0, (x, y, t) ∈ Γ3 := {(x, y, t) ∈ ΓT : y = 0},
ηt + c(x, y)ηy = 0, (x, y, t) ∈ Γ4 := {(x, y, t) ∈ ΓT : y = Ly}.

(5)
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The inverse problem consists in determining the unknown initial pertur-
bation q(x, y) of the free surface in (2), (5) from the free surface oscillation
data fm(t) given by (4) (or fγ(t)).

Lemma 1. Let conditions (3) hold. Then the input-output map A : q ∈
H1(Ω) 7→ F ∈ C(0, T ;EM ) is a linear compact operator. Here F (t) :=
(f1(t), f2(t), . . . , fM (t)) ∈ EM is the vector of discrete measured output data,
EM is the Euclidean space of the time-dependent observations.

Since linear equations with compact operators are always ill-posed, the
inverse source problem (2), (5), (4) is ill-posed as well [6].

2.1. A variational formulation of the inverse problem.
A gradient formula for the data misfit functional

Introduce the data misfit functional

J(q) = ‖Aq − F‖2
L2(0,T ) :=

M∑
m=1

T2,m∫
T1,m

[η(xm, ym, t; q)− fm(t)]2 dt.

Assume that q, q+∆q ∈ H1(Ω) and ∆η(x, y, t;∆q) := η(x, y, t; q+∆q)−
η(x, y, t; q), where η(x, y, t; q) ∈ C[0, T ]∪H1(Ω) is the solution of the direct
problem (2), (5) corresponding to the given source term q ∈ H1(Ω). Obvi-
ously, the function ∆η := ∆η(x, t, y;∆q) satisfies the following hyperbolic
problem:

∆ηtt − div(c2(x, y) grad∆η) = 0, (x, y, t) ∈ ΩT ;
∆η(x, y, 0) = ∆q(x, y), ∆η(x, y, 0)t = 0, (x, y) ∈ Ω;
∆ηt − c(x, y)∆ηx = 0, (x, y, t) ∈ Γ1,

∆ηt + c(x, y)∆ηx = 0, (x, y, t) ∈ Γ2,

∆ηt − c(x, y)∆ηy = 0, (x, y, t) ∈ Γ3,

∆ηt + c(x, y)∆ηy = 0, (x, y, t) ∈ Γ4.

(6)

Consider now the variation ∆J(q) := J(q + ∆q) − J(q) of the data misfit
functional J(q). We have

∆J(q) :=
M∑

m=1

T2,m∫
T1,m

2[∆η(xm, ym, t,∆q)− fm(t)]∆η(xm, ym, t,∆q) dt+

M∑
m=1

T2,m∫
T1,m

[∆η(xm, ym, t,∆q)]2 dt.
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Lemma 2 [6]. Let conditions (3) hold. Assume that η(x, y, t; q) ∈ C[0, T ]∪
H1(Ω) and ∆η(x, y, t;∆q) ∈ C[0, T ] ∪H1(Ω) are the solutions of problems
(2), (5) and (6) for given initial sources q,∆q ∈ H1(Ω), respectively. De-
note by η(xm, ym, t; q)χm(t) and ∆η(xm, ym, t;∆q)χm(t), the corresponding
output data. Then the following integral identity (relationship) holds:

2
M∑

m=1

T2,m∫
T1,m

[η(xm, ym, t, q)− fm(t)]∆η(xm, ym, t,∆q) dt

=

Lx∫
0

Ly∫
0

∆q(x, y)ψt(x, y, 0) dx dy, (7)

for all q,∆q ∈ H1(Ω), where ψ(x, y, t) ∈ C[0, T ] ∪H1(Ω) is the solution of
the following final data hyperbolic problem:

Lψ = −2
M∑

m=1

{
[η(xm, ym, t; q)− fm(t)]δ(x− xm)δ(y − ym)χm(t)},

(x, y, t) ∈ ΩT ;

ψ(x, y, T ) = 0, ψt(x, y, T ) = 0, (x, y) ∈ Ω;
ψt + c(x, y)ψx = 0, (x, y, t) ∈ Γ1,

ψt − c(x, y)ψx = 0, (x, y, t) ∈ Γ2,

ψt + c(x, y)ψy = 0, (x, y, t) ∈ Γ3,

ψt − c(x, y)ψy = 0, (x, y, t) ∈ Γ4.

where Lψ := ψtt − div(c2(x, y) gradψ).

Note, that in the right-hand side of integral identity (7) represents the
inner product of J ′q and ∆q in the space L2(Ω), that is J ′q = ψt(x, y, 0).

2.2. The degree of ill-posedness of the inverse problem

In this section we study the degree of ill-posedness of the inverse problem
for the one-dimensional bottom function H(x) c(x, y) ≡ c(x), respectively)
using SVD.

Using the finite Fourier series expansion of η(x, y, t) and q(x, y), we
have N initial boundary value problems for each Fourier coefficient (n =
1, . . . , N):

ηn,tt = (c2(x)ηn,x)x − n2c2(x)ηn, x ∈ (0, Lx), t ∈ (0, T );
ηn(x, 0) = qn(x), ηn,t(x, 0) = 0, x ∈ (0, Lx);
(ηn,t − c(x)ηn,x)|x=0 = 0, t ∈ (0, T );
(ηn,t + c(x)ηn,x)|x=Lx = 0, t ∈ (0, T ).

(8)
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ηn(xm, t)χm(t) = fm(t), xm ∈ (0, Lx), m = 1, 2, . . . ,M. (9)

Using an explicit finite difference scheme, we approximate and represent
problem (8), (9) in the algebraic form

A(n)Qn = F. (10)

Here Qn = (qn,0, qn,1, . . . , qn,Nx)T , F = (fk
1 , . . . , f

k
M )T . We use the approach

given in [10] to describe in brief the algorithm of constructing the matrix
A(n). To this end, we introduce additional notations.

Let ht be a time step, ηk
i,j be the approximate value of η(xi, yj , tk) at the

mesh points (xi, yj , tk) of a uniform mesh ωh =
{
(xi, yj , tk) ∈ ΩT : xi =

ihx, i = 0, Nx, yj = jhy, j = 0, Ny, tk = kht, k = 0, Nt

}
. Here hx = Lx/Nx

and hy = Ly/Ny are the steps along x and y axes, respectively.
Denote

v1 = (η2
n,0, η

2
n,1, . . . , η

2
n,Nx

)T , v2 = (η3
n,0, η

3
n,1, . . . , η

3
n,Nx

)T , r =
ht

hx
.

Let U1 = (v1, v2)T and U0 = (η0
n,0, η

0
n,1, . . . , η

0
n,Nx

, η1
n,0, η

1
n,1, . . . , η

1
n,Nx

)T be
2l vectors, l = Nx + 1. The vectors v1 and v2 can be represented in the
form: v1 = B1U

0, v2 = B2v1 + B3U
0. Here B1 = (I(Nx−1) |B2) is l × 2l

matrix, B2 is l × l matrix and B3 = (O(l) | I(Nx−1)) is l × 2l matrix, O(l)

is 0th l × l matrix and I(Nx−1) = diag(0, 1, 1, . . . , 1, 0) is l × l matrix with
Nx − 1 non-zero values; B2 is the three-diagonal matrix with entries

b2,ij =



1− rc0, i = j = 0,
rc0, i = 0, j = 1,

r2
c2i + c2i−1

2
+ htn

2 c
2
i+1 + c2i−1

4
, 0 < i < Nx, j = i− 1,

2− r2
(
c2i + c2i−1

2
+
c2i + c2i+1

2

)
, 0 < i < Nx, j = i,

r2
c2i + c2i+1

2
− htn

2 c
2
i+1 + c2i−1

4
, 0 < i < Nx, j = i+ 1,

rcNx , i = Nx, j = i− 1,
1− rcNx , i = j = Nx.

Theorem 1 [6]. Let P = (I(l) |B2), C =
(

B1

B2B1 + B3

)
. Denote by cpk the

k-th row of the matrix Cp and introduce M(Nt + 1)× 2l-matrix
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M =



c0sm

c0sm+l

c1sm

c1sm+l
...

c
(Nt−1)/2
sm

c
(Nt−1)/2
sm+l


,

where sm is x-coordinate of m-th sensor in the mesh. Then A(n) = MP .

We use SVD of the matrix A(n) = U(n)Σ(n)V T (n) to solve prob-
lem (10). Here U(n) and V (n) are square orthogonal M(Nt + 1) and l
matrices, respectively, Σ(n) = diag(σ0(n), σ1(n), . . . , σp(n)) is M(Nt +1)× l
matrix, p = min{M(Nt + 1), l}, σ0(n) > σ1(n) > . . . > σp(n) ≥ 0 are
singular values of A(n).

Due to the ill-conditioning of the matrix A(n), the solution to system
(10) is very sensitive to small perturbations in the measured data F ; SVD
of the matrix provides insight into the ill-posedness of the original problem.

Figure 1 shows a plot of {σn}600
n=1 in the logarithmic scale for the matrix

A(n) (n = 1, 5, 15) for the bottom function

H(x, y) = H(x) = 1500 sin
2πx
Lx

+
Hmax −Hmin

Lx
x+Hmin.

Figure 1. Singular values of the matrix A(n), n = 1, 5, 15.
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Here Lx = 50000 m, Hmax = 6000 m, Hmin = 5 m are the highest and the
lowest average depths of the ocean, respectively.

From Figure 1 it is evident that the inverse problem (8), (9) is severely
ill-posed, i.e., σn = O(e−nα) for some α > 0 [7].

3. Satellite data as additional information for the inverse
problem

Let us consider the problem of determining the water surface oscillations
in a domain after perturbations of the bottom of the domain at t = 0
described by the function f (1)(x, y) = u(x, y, 0). It is assumed that in a
certain period of time t = T the shape of the water surface is measured and
found to be f (2)(x, y) = u(x, y, T ). This inverse problem is motivated by
altimetry measurements from satellite [8]. Altimeters have been designed to
observe the sea level variability. The satellite altimetry contribution is for a
better understanding and improving the quality of the modeling of tsunami
propagation and dissipation.

We also assume that the time period T is not sufficiently long for a wave
to reach the edges of the domain, and therefore we can set homogeneous
boundary conditions at the boundary of the domain. Thus, we arrive at the
following Dirichlet problem for the wave equation:

Lη = 0, (x, y, t) ∈ ΩT ,

η|t=0 = f (1)(x, y), η|t=T = f (2)(x, y), (x, y) ∈ Ω,
η|∂Ω = 0, t ∈ (0, T ).

(11)

For the conditions on ∂Ω to be homogeneous, we require that the support
of the function f (1)(x, y) be sufficiently small:

supp f (1) ⊂ Ω(a) =
( b

2
− a,

b

2
+ a

)
×

( b
2
− a,

b

2
+ a

)
,

a ∈ (0, b/2), Lx = Ly = b;

as well as the parameter T :

T ∈ (0, Tmax), where Tmax =
b/2− a

‖c‖C(0,b)
.

We now formulate the ill-posed problem (11) as an inverse problem with
respect to the direct (well-posed) initial boundary value problem for the
wave equation
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Lη = 0, (x, y, t) ∈ ΩT ,

η|t=0 = f (1)(x, y), ηt|t=0 = q(x, y), (x, y) ∈ Ω,
η|∂Ω = 0, t ∈ (0, T ).

(12)

In direct problem (12), it is required to determine the function η(x, y, t)
from the given function q(x, y).

Now let q(x, y) be unknown. Assume that the following additional infor-
mation the solution to direct problem (12) is given

η(x, y, T ) = f (2)(x, y). (13)

The inverse problem consists in determining the function q(x, y) from
(12), (13) and the given functions f (1)(x, y), f (2)(x, y), and H(x, y).

3.1. The degree of ill-posedness of the inverse problem

As was shown in [9] Dirichlet problem (11) and inverse problem (12), (13)
are ill-posed in terms of Hadamard.

Consider a simple case of H(x, y) = g−1 and b = π. Take an odd
extension of all functions in problem (12), (13) to the interval (−π, π) with
respect to the variable y. Then, taking the Fourier series expansion of the
function

η(x, y, t) =
∑
k∈N

ηk(x, t) sin ky

and of all the other functions, we obtain a sequence of the one-dimensional
inverse problems (k ∈ N)

ηk,tt = ηk,xx − k2ηk, x ∈ (0, π), t ∈ (0, T ),

ηk(x, 0) = f
(1)
k (x), ηk,t(x, 0) = qk(x), x ∈ (0, π),

ηk(0, t) = ηk(π, t) = 0, t ∈ (0, T );

(14)

ηk(x, T ) = f
(2)
k (x). (15)

Taking an odd extension of the functions uk(x, t), f
(1)
k (x), f (2)

k (x), and
qk(x) with respect to x to the interval (−π, 0), we expand them to Fourier
series:

ηk(x, t) =
∑
n∈N

ηk,n(t) sinnx,

and so on.
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As a result, we have a sequence of the inverse problems

η′′k,n + (n2 + k2)ηk,n = 0,

ηk,n(0) = f
(1)
k,n, η′k,n(0) = qk,n;

(16)

ηk,n(T ) = f
(2)
k,n. (17)

Theorem 2 (uniqueness of the solution to inverse problem (16), (17)). As-
sume that for all k, n ∈ N, m ∈ Z, the parameter T ∈ (0, Tmax) satisfies the
condition T 6= πm

pk,n
(for example, T = r1

r2
is a rational number in the interval

(0, Tmax)). If inverse problem (14), (15) has a solution in C1[0, π], then the
solution is unique and its Fourier coefficients are given by the formula

qk,n =
f

(2)
k,n − f

(1)
k,n cos pk,nT

sin pk,nT
pk,n.

We define an operator A(k) : L2[0, π] → L2[0, π] of problem (14), (15) as
follows:

[A(k)qk](x) = Fk(x) :=
∑
n∈N

(
f

(2)
k,n − f

(1)
k,n cos pk,nT

)
sinnx.

Theorem 3 [10]. Singular values of the operator A(k) have the form

σn(A(k)) =
| sin pk,nT |

pk,n
, n ∈ N.

Figure 2 shows that a sequence of singular values of the operator A(k)
decreases as n increases. Moreover, the singular values decrease as k in-
creases.

Figure 2. Singular values σn(A(k)) for k = 1, 5, 10, 20, T = 3: left––n = 0, . . . , 40;
right–– n = 100, . . . , 180
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4. A numerical method for determining the amplitude of a
wave edge in the shallow water approximation

In the open ocean, the wave height rarely exceeds one meter, and the wave-
length (the distance between wave crests) may reach several hundreds km.
These numbers are typical calculation domain sizes. It is necessary to solve
the inverse problem for determination of the tsunami source parameters.
The solution of the inverse problem is based on the solution of the wave
propagation problem in the open ocean (the direct problem). The simula-
tion of tsunami wave propagation in such scales is not an easy calculation
task. A numerical algorithm, which makes possible to calculate the front
amplitude of a wave coming to a given point (x0, y0) and the wave arrival
time by solving this problem not in the entire domain, but only on a selected
characteristic surface, is proposed.

We consider the Cauchy problem for shallow water equations (1):

Lη = 0, (x, y) ∈ R2, t > 0;

η(x, y, 0) = q(x, y), ηt(x, y, 0) = 0, (x, y) ∈ R2.
(18)

Assume that the function q(x, y) is represented in the form q(x, y) =
h(y)q1(x). Here h(y) is a smooth function, and the function q1(x) has the
following form:

q1(x) =

 q̃1(x), x < −ε,
x, x ∈ (−ε, 0),
0, x > 0,

where q̃1(x) is a smooth function, and ε > 0 is a small parameter. Then
the solution to problem (18) is a fundamental solution to the tsunami wave
propagation problem.

Problem (18) can be reduced to the problem in a half-plane after some
transformations [11,12]:

Lη = 0, x, y > 0, t > 0,

η|t<0 ≡ 0, ηx|x=0 = −1
2
g(y)δ(t) + h̃(y, t), x, y > 0.

(19)

Here g(y) = c2(0, y)h(y) and h̃(y, t) are smooth functions.
Let α = y and z = τ(x, y) be new variables, where τ(x, y) is the solution

to the following problem [13]:

τ2
x + τ2

y = c−2(x, y), x > 0, y ∈ R,
τ(0, y) = 0, τx > 0, y ∈ R.

We change the variables

w(x, y, t) = v(z, α, t), b(z, α) = c(x, y),
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and represent the function v(z, α, t) as follows:

v(z, α, t) = s(z, α)θ(t− z) + v(z, α, t), t > z > 0,

where s(z, α) is the wave amplitude, v(z, α, t) is a smooth function, and
equate the coefficients to the delta-function δ(t− z) [12]:

2sz + 2b2τysα +
(
b2(τxx + τyy) + 2

bz
b

+ 2bbατy

)
s = 0, z, α > 0,

s(0, α) =
g(α)

2
√
b(0, α)−2 − τ2

y

, α > 0.
(20)

Thus, the numerical algorithm constructed for solving the Cauchy prob-
lem for the wave equation makes possible to determine the wave front am-
plitude at a point of interest (x0, y0) in the spatial domain at any fixed
time t0.

In the one-dimensional case (when all functions depend on the variable
x only) the solution of (20) has the form:

s(z) = s(0) 4

√
H(0)
H(z)

.

Note, that the amplitude of the wave edge is inversely proportional to
the fourth root of the bottom topography function. Thus, the amplitude
increases as a depth of the bottom decreases.

4.1. Numerical experiment

Let us apply the algorithm to the one-dimensional problem on the inter-
val [0, L], L = 400 km.

We define the bottom depth as H(x) = Hmax − (α + βx2), x ∈ [0, L].
Here α = Hmin = 0.01 km, β = (Hmax −Hmin)/L2, Hmax = 4.5 km. Then
c(x) =

√
gH(x) =

√
g(Hmax − (α+ βx2)). The amplitude of the initial

wave perturbation is equal to 1 m. After substituting

z =

x∫
0

dλ

c(λ)
=

arcsin
√
βx/(Hmax −Hmin)√

gβ
,

we determine the amplitude of a wave edge in the entire domain [0, L] (see
Figure 3).
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Figure 3. The bottom topography is described by the curve. The wave motion
is described by the graphs: 1 –– t = 0 min (initial position), 2 –– t = 12 min, 3 ––
t = 18 min, 4 –– t = 24 min, 5 –– t = 31 min, 6 –– t = 43 min.

5. Conclusion

We investigate three different inverse problems of determining a tsunami
source using three different additional data: DART measurements, satellite
wave-form images and seismic data. We describe the gradient-type and the
SVD inverse problem solution. All these problems are linear. Combining
all the above mentioned additional data, we use the termin “combined” not
only for the sake of briefness, but keeping in mind that in practice specialists
always deal with combined inverse problems. When trying to find a correct
location for a possible tsunami source, one should take into account and
combine all the results from seismic data, DART data, satellite data, and
so on. It is evident that using a combination of three different types of data
allows one to increase the stability and convergence of the numerical inverse
problem solution.
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