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Parallel simulation of asynchronous cellular
automata on different computer architectures∗

K. Kalgin

Abstract. An overview and experimental comparative study of parallel algorithms
of asynchronous cellular automata simulation are presented. The algorithms are
tested for physicochemical process model of the surface reaction CO+O2 over the
supported Pd nanoparticles on different parallel computers. For the testing, we
use shared memory computers, distributed memory computers, i.e., clusters, and
a graphical processing unit. Characterization of these algorithms in terms of the
methods of parallelism maintenance is given.

1. Introduction

Asynchronous cellular automata (ACA) are used for simulation of physical
and chemical processes on molecular level, for example, for studying oscil-
latory chemical surface reactions [1, 2], absorption, sublimation and diffu-
sion of atoms in the epitaxial growth processes [3]. Simulation of natural
processes requires a huge cellular space and millions of iterative steps for
obtaining a real scene of the process. Therefore, it requires high comput-
ing costs. The fact is, ACA cannot be parallelized so easily as synchronous
cellular automata (SCA). As distinct from SCA, the ACA functioning is a
sequential application of a transition rule to randomly selected cells. The
cells are selected with equal probabilities and irrespective of the process
history.

Parallelization of ACA is performed by the domain decomposition
method: each process hosts its own domain of cells and stores copies of
boundary cells of neighboring processes. A parallel algorithm simulation
should preserve the behavioral properties of ACA: Independence, Fairness,
Correctness, and Efficiency. Independence means an independent selection
of cells in the course of simulation. Fairness means that different cells are
selected with equal probabilities. Correctness means deadlock-absence and
coherence of boundary cell states and corresponding copies in different pro-
cesses. Efficiency implies that tk is less than t1 for a certain k. Here tk is
the total time of parallel algorithm execution on k processors, and t1 is the
total time of sequential algorithm execution on one processor.
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There are several parallel algorithms of the ACA simulation on com-
puters with different architectures. In [4], an algorithm suitable only for
shared memory computers only is proposed. Parallel algorithms for dis-
tributed memory computers are presented in [5, 6]. In addition, [7] and [8]
describe a practical approach to parallel simulation of ACA, where a given
ACA is transformed to a synchronous one, called block-synchronous cellular
automaton (BSCA) that approximates its evolution and also provides easy
parallelization.

This paper presents a comparative study of the above-mentioned par-
allel algorithms and their efficiency on computers with different architec-
tures. Section 2 gives a formal definition of ACA. Section 3 outlines the
main ideas of these algorithms and briefly characterizes them with respect
to the above four properties. In Section 4, the following parallel computer
systems are overviewed: shared memory computers, distributed memory
computers (i.e., clusters), and a graphical processing unit (GPU) support-
ing CUDA [9]. These systems are used for testing implementations of the
algorithms in question. Section 5 describes an ACA model of the physic-
ochemical process of the surface reaction CO + O2 over the supported Pd
nanoparticles [2]. The typical sizes of cellular array for a model are from
100×100 to 10, 000×10, 000. A usual simulation process with a 1000×1000
cellular array takes more than twenty four hours on one core of Intel Core i7.
Also, this section presents the results of testing the above-mentioned paral-
lel algorithms implemented for this model on different parallel architectures.
All the tested combinations of computer architectures and parallel algorithm
implementations are presented in Table 1. We do not present results ob-
tained for the algorithm given in [5] as far as additional costs of the parallel
computations maintaining are too large for the model under consideration.

Table 1. The tested combinations of computer
architectures and parallel algorithm implementations

Reference
Shared
memory

Distributed
memory

Graphical
processing

unit

[4] + − −
[6] + + −

[7, 8] + + +

2. Asynchronous cellular automata

An asynchronous cellular automaton is specified by the tuple 〈Zd, A,Θ〉,
where Zd is a finite set of cell coordinates, A is an alphabet, i.e. a finite set
of cell states, and Θ is a transition rule.
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A pair (x, a) ∈ Zd × A is called a cell, where a ∈ A is a state of a cell
and x ∈ Zd are its coordinates.

A set of cells Ω ⊂ Zd × A is called a cellular array if there does not
exist a pair of cells with equal coordinates and {x | (x, a) ∈ Ω} = Zd. Since
between the cells in a cellular array and their coordinates there exists a one-
to-one correspondence, we will further identify each cell with its coordinates.

The transition rule Θ is a probabilistic function:

Θ : A|T | → A|T |,

where the template T is a set of naming functions φi : Zd → Zd, T =
{φ1, φ2, . . . , φ|T |}. The template determines the neighborhood of a cell x:

T (x) = {φ1(x), φ2(x), . . . , φ|T |(x)}.

Further we use a 2D rectangular space Z2:

Z2 = {(i, j) | 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}.

We use the templates T1, T5, and T13, where

Tk(x) = {x + v0,x + v1, . . . ,x + vk−1},
V = {v0,v1, . . . ,v12} = {(0, 0), (0, 1), (1, 0), (0,−1), (−1, 0),

(1, 1), (1,−1), (−1, 1), (−1,−1), (0, 2), (2, 0), (0,−2), (−2, 0)}.

An application of the transition rule to the cell x results in updating the
neighboring cells T (x) with the new states Θ(T (x)).

As usual, the transition rule can be expressed as substitution or as compo-
sition of several transition rules. The most widespread rules of composition
are random execution (R), sequential execution (S), and randomly ordered
sequential execution (RS). These rules can be given by formulas:

ΘR = R(Θ1, p1; Θ2, p2; . . . ; Θn, pn), (1)

Θ′R = R(Θ1,Θ2, . . . ,Θn), (2)

ΘS = S(Θ1,Θ2, . . . ,Θn), (3)

ΘRS = RS(Θ1,Θ2, . . . ,Θn), (4)

TΘR
= TΘ′R

= TΘS
= TΘRS

=
n⋃

i=0

TΘi . (5)

The result of application of ΘR to x coincides with that of application of Θi

to x with probability pi. If probabilities pi are omitted (2), then they are
equal to 1/n. The result of application of ΘS to x coincides with sequential
applications of Θ1,Θ2, . . . ,Θn to x. The result of application of ΘRS to x
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coincides with sequential applications of randomly ordered Θ1,Θ2, . . . ,Θn

to x.
An elementary transition rule can be written down as a substitution in

the following form:

Θsub : {a1, a2, . . . , an}
p−→ {a′1, a′2, . . . , a′n}. (6)

Application of Θsub to a cell x results in replacing the states of the cells
TΘsub

(x) with probability p. Here the probability p and the states a′i can be
functions of current states, p = p(a1, a2, . . . , an), a′i = fi(a1, a2, . . . , an).

An ACA simulation process is split to iterations. An iteration comprises
|Z2| = NxNy transition rule applications to randomly chosen cells.

3. Parallel algorithms

In papers [4, 5], an ACA is defined as a discrete event model that evolves
in continuous time. Transition rule applications to different cells asyn-
chronously occur at random times. These applications form a Poisson pro-
cess for each cell. For different cells, these Poisson processes are independent
and the application rate is the same for each cell. Parallelization of the ACA
model is performed by the domain decomposition: each process hosts its own
domain of cells and copies of the boundary cells of the neighboring processes.
For the correct simulation of the Poisson process for each cell, every comput-
ing process controls its own local time. The process local time is the next
time instant of a transition rule application to a newly selected cell from
its domain. A process increments its own local time by an exponentially
distributed pseudorandom number after each transition rule application.

In [4], an algorithm suitable for shared memory computers is proposed.
Each process repeats the following steps while its own local time is less than
the predefined Tmax: (1) selects a random cell from its domain, (2) waits
for the situation when a minimal local time of the neighboring processes
is greater than its own local time for the cells belonging to the domain
boundary, (3) applies a transition rule to the cell, and (4) increments its
own local time according to the Poisson distribution. Independence and
Fairness of the algorithm are provided by the independence and fairness of
random cell selection from the domain and the way of incrementing the local
time. Correctness is provided by the synchronization based on domain’s local
time briefly described at step (2). Efficiency is provided by the property that
boundary cells are seldom selected in large domains.

In [5], a modified Time Warp algorithm is presented. Time Warp [10]
is an optimistic parallel algorithm for the simulation of any discrete event
model on distributed memory computers. The main idea of the parallel Time
Warp algorithm is as follows. In contrast to the previous algorithm, appli-
cation of the transition rule and computing a new local time are performed
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without waiting for the neighboring processes (each process “hopes” that the
neighboring processes will not change the boundary cell states). If a process
changes the boundary cell state, then it sends a message to its neighbors
called a positive message. When a process receives a positive message “from
the future” (i.e., its own local time is less than that of a sender), it saves
the message for the future processing. A situation when a process receives a
positive message “from the past” is called causality error. In this situation,
a recovery mechanism should be initiated. Recovery from the prematurely
executed steps results in two things to be rolled back: the cellular array and
the messages sent to other processes. The rolling back of the cellular array
is accomplished by periodically saved updated cell states and restoring the
boundary cell states, which are valid for the rolled back local time. The
rolling back of previously sent positive messages is accomplished by sending
anti-messages. If a process receives an anti-message that corresponds to an
unprocessed positive message, then these two messages annihilate each other
and the process proceeds. If there arrives an anti-message that corresponds
to a positive message, which has been already processed, then the process
has made an error and is also to be rolled back.

A consequence of the recovery mechanism is that more anti-messages
can recursively be sent to other processes. Independence and Fairness of the
algorithm are provided in the same way as in the previous algorithm. Cor-
rectness is provided by the recovery mechanism from causality errors (see [5]
for detail). In a few words, efficiency is provided by optimistic behavior of
processes. However, there are some costs for saving the history of sending
messages and updating the boundary cell states. If the costs are sufficiently
large, then the efficiency of the algorithm decreases. Also, the efficiency sig-
nificantly depends on the following two parameters of the transition rule [5]:
the amount of work to be performed for the rule computing and an average
number of actually changed cell states after application of the rule.

In [6], an algorithm suitable for distributed memory computers is pre-
sented. The ACA is defined as described in Section 2. Let us consider a
sequence of randomly selected coordinates X = {x1,x2, . . . ,xn} for an iter-
ation. According to the decomposition of the cellular array to the domains
d1, d2, . . . , dp, we can divide the sequence X into 2p parts: for each domain
dk we take its internal Ik and boundary Bk subsequences. The subsequences
Ik and Bk can be formed with the use of uniform, exponential, and binomial
pseudorandom number generators. The algorithm is based on the stochastic
properties of Ik and Bk, and on planning the order of interactions between
processes. The main idea of the parallel algorithm is as follows. Firstly,
a process k (hosting a domain dk) forms the pair (Ik, Bk) independent of
other processes. Secondly, each process avoids unnecessary synchronizations
because it is informed about the neighbors subsequences Bk′ . This means
that the process waits only for those new boundary cell states that will be
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actually used by it. Note that in the first algorithm [4] the process has to
wait in any case. Independence and Fairness of the algorithm are provided
by the method, in which Ik and Bk are formed (for detail see [6]). Correct-
ness is provided by means of the synchronization based on Bk. Efficiency is
provided by avoiding unnecessary synchronization.

In [7, 8], a practical analog of the ACA is described. This model is called
Block-Synchronous Cellular Automata due to the ways of asynchronism re-
duction. An iteration of the BSCA is a sequence of m stages. At each stage,
the transition rule is synchronously applied to all cells from a randomly se-
lected set Si ⊂ Ω, where {S1, S2, . . . , Sm} is partitioning of the cellular array
Ω with the following properties:

m⋃
i=1

Si = Ω, (7)

∀i ∀j : Si ∩ Sj = ∅, i 6= j, (8)

∀i ∀j : |Si| = |Sj |, (9)

∀i ∀a ∈ Si ∀b ∈ Si : T (a) ∩ T (b) = ∅, a 6= b. (10)

Such a reduction of asynchronism (at the expense of Independence) re-
sults in a very simple parallel algorithm. In this algorithm, processes have
to synchronize with each other (to send and to receive new boundary cell
states) only between stages. A high efficiency of the algorithm is provided
by rare process synchronizations. Correctness and fairness are provided by
properties (10) and (7)–(9), respectively.

4. Computer architectures overview

For testing the algorithms given above, we use computers with three types of
architecture: multicores and multiprocessors with shared memory, a cluster
with distributed memory and graphical processing unit (GPU). Parameters
of computers with shared memory Core-i7 and SMP-8 are given in Table 2.

The cluster MVS-100k consists of SMP-8 nodes connected through In-
finiband.

Table 2. Multicores and multiprocessors parameters

Computer Processor GHz
Total
cores

Memory
controller

Core-i7 1×Intel Core i7 2.6 4 integrated
SMP-8 2×Intel Xeon 5140 2.3 8 separate
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The GPU GTX-280 consists of a 240-core processor and 2Gb off-chip
global memory. The cores are grouped in 8-core multiprocessors. Each mul-
tiprocessor has its own 16Kb on-chip shared memory and 32Kb register file.
Note, that the multiprocessor belongs to SIMD (Single Instruction Multiple
Data) class in Flynn’s taxonomy: at each clock all eight cores perform the
same instruction but using different arguments.

A parallel program intended for running on GTX-280 consists of thou-
sands of threads grouped in blocks. Each block consists of no more than 512
threads. One block of threads can be run on one multiprocessor, only. But
one multiprocessor can manage up to 8 blocks. Threads of the same block
can communicate all to all through the shared memory of a multiprocessor
and synchronize. But threads from different blocks cannot communicate
and can not synchronize in the same way.

The point is, one cannot directly implement parallel algorithms of the
above-discussed ACA simulation with exception of the BSCA. The reason
is in the SIMD architecture of multiprocessor and the impossibility of syn-
chronization of threads belonging to different blocks.

5. Simulation of surface reactions on palladium

A model of oscillatory dynamics of the reaction CO + O2 over the sup-
ported Pd nanoparticles is described in [2]. This model is a combination
of the model for the CO + O2 reaction over the Pd(110) single crystal [11]
and the stochastic model for imitating the supported nanoparticle with a
dynamically changing shape and surface morphology [12]. The model con-
sists of the following processes: CO adsorption (Θ1,Θ2,Θ6), CO desorption
(Θ3,Θ4,Θ7), O2 adsorption (Θi

9), CO diffusion (Θi
11,Θ

i
12,Θ

i
13), Pd atoms

diffusion (Θi
14), subsurface oxygen Oss formation (Θ5), CO+O and CO+Oss

reactions (Θ8,Θi
10,Θ

i
15). In terms of the ACA this model can be described

as follows.
The state a of a cell x is written down as [n, α], where n is the number

of Pd atoms, n ∈ {0, 1, 2, . . .}, and α is the state of the surface Pd, α ∈
{∅,CO,O,Oss,CO.Oss};

A = {0, 1, 2, . . .} × {∅,CO,O,Oss,CO.Oss},

Θ = R(Θ1,Θ2,Θ3,Θ4),

Θi = S(R(Θ1, p1; . . . ,Θ8, p8; Θi
9, p9; Θi

10, p10;S(Θi
11, . . .Θ

i
14), p11),Θi

15),

Θi
15 = RS(Θ1,0

15 , . . . ,Θ
5,0
15 ,Θ

0,1
15 , . . . ,Θ

0,5
15 ,Θ

1,i
15 , . . . ,Θ

5,i
15 ,Θ

i,1
15 , . . . ,Θ

i,5
15 ),

TΘ(x) = TΘi(x) = T13(x),

TΘj (x) = T1(x),

TΘi
j
(x) = T1(x) ∪ T1(x + vi), j = 9, . . . , 13,
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TΘi
j
(x) = T5(x) ∪ T5(x + vi), j = 14, 15,

T
Θk,m

15
(x) = T1(x + vk) ∪ T1(x + vm);

Θ1 : {[n, ∅]} → {[n,CO]},
Θ2 : {[0, ∅]} → {[0,CO]},
Θ3 : {[n,CO]} → {[n, ∅]},
Θ4 : {[0,CO]} → {[0, ∅]},
Θ5 : {[n,O]} → {[n,Oss]},
Θ6 : {[n,Oss]} → {[n,CO.Oss]},
Θ7 : {[n,CO.Oss]} → {[n,Oss]},
Θ8 : {[n,CO.Oss]} → {[n, ∅]},
Θi

9 : {[n, ∅], [n, ∅]} → {[n,O], [n,O]},
Θi

10 : {[n,CO], [n,Oss]} → {[n, ∅], [n, ∅]},
Θi

11 : {[n,CO], [m, ∅]} → {[n, ∅], [m,CO]},
Θi

12 : {[n,CO], [m,Oss]} → {[n, ∅], [m,CO.Oss]},
Θi

13 : {[n,CO.Oss], [m,Oss]} → {[n,Oss], [m,CO.Oss]}

Θi
14 : {[n+ 1, ∅], a1, . . . , a4, [m, ∅], a6, . . . , a9}

p′−→
{[n, ∅], a1, . . . , a4, [m+ 1, ∅], a6, . . . , a9},

Θk,j
15 : {[n,CO], [n,O]} → {[n, ∅], [n, ∅]}.

Here for Θi
14, the states ai are ai = [ni, αi], and the probability p′ is that of

the actual movement of Pd atom, which depends on changing the total en-
ergy of the atomic connections ∆E, p′ = exp(−∆E/kT ). The probabilities
pi depend on the rates of the processes ki, pi = ki/

∑11
j=1 kj . For concrete

values k1, k2, . . . , k11 and concrete energies of atoms connections see [2].
The algorithm [4] is implemented as a multithreaded program using

POSIX Threads. Each thread controls its own local time and hosts a part
of the cellular array (domain). The algorithm [6] is implemented using MPI
(Message Passing Interface). For sending short messages, containing the
new cell states, MPI Bsend (buffered mode) is used. The algorithm [7, 8]
is implemented using MPI and OpenMP. In each node SMP-8, one process
with eight threads is executed. Using OpenMP reduces the number of ac-
tually executed processes and therefore, also reduces communication costs.
For GTX-280, the algorithm [7, 8] is implemented using CUDA [9]. Each
thread deals with the neighborhood of a particular cell. First, it loads the
states of the neighboring cells to the shared memory. Then the thread com-
putes new states for the neighborhood. After that the thread returns the
new states to the global memory.
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Results of testing on the shared memory computers, the cluster and the
GPU are presented in Figures 1, 2, and Table 3, respectively. All the tests
are performed with several cellular array sizes (1000 × 1000, 2000 × 2000,
4000× 4000, and 8000× 8000). As usual, the efficiency of parallelization is
Ep = T1/(pTp).

Figure 1. Efficiency of the parallel algorithms ((a, d) for [4], (b, e) for [6], and (c, f)
for [7, 8]) for Core-i7 (a, b, c) and SMP-8 (d, e, f). Along x-axis are the numbers of
used cores, along y-axis, efficiency is shown

Figure 2. Efficiency of the parallel algorithms ((a) for [6], and (b) for [7, 8]) for
MVS-100k. Along x-axis are the numbers of used cores, along y-axis, efficiency is
shown

Table 3. Acceleration of the algorithm [7, 8] imple-
mented on GPU in comparison with that on Core-i7

Size 1000 2000 4000 8000

Acceleration 25 31 34 35
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6. Conclusion

Results of testing show that the efficiency of the algorithm [4] is high on
modern multicore computers (Core-i7) even for relatively small cellular ar-
rays. The algorithm [6] possesses a good efficiency only for large cellular
arrays but can be run on a cluster with several nodes. The reason is in
additional costs of MPI sendings and receivings. Further improvement of
the algorithm should be focused on multithread extensions to reduce the
costs of communications. The algorithm [7, 8] shows a high efficiency for
all sizes of a cellular array and on all parallel architectures. The reason of
such a high performance is in reduction of asynchronism (at the expense of
independence). For some models, it is shown [7, 8] that such a reduction
does not affect the simulation process. Nevertheless, for each new model
one has to make sure that the model allows such a reduction.
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